Idx_Testolin
Note: This material is presented to ensure timely dissemination of scholarly and technical work. By downloading any of these files, I'm requesting a copy of the publication to its author and I accept the terms of use.
Publications, Alberto Testolin
A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients
Calesella et al - Brain Informatics - 2021.pdf — PDF document, 3.33 MB (3487234 bytes)
A Developmental Approach for Training Deep Belief Networks
Zambra et al. - 2022 - Cognitive Computation.pdf — PDF document, 4.43 MB (4649860 bytes)
A HMM-based Pre-training Approach for Sequential Data
es2014-166.pdf — PDF document, 1.21 MB (1267386 bytes)
A machine learning approach to QoE-based video admission control and resource allocation in wireless systems
2014 - Testolin et al. - IEEE IFIP Annual Mediterranean Ad Hoc Networking Workshop.pdf — PDF document, 801 KB (820669 bytes)
An emergentist perspective on the origin of number sense
Zorzi, Testolin - 2018 - PTRS-B.pdf — PDF document, 918 KB (940317 bytes)
Assessment of Sequential Boltzmann Machines on a Lexical Processing Task
Testolin et al. ESANN. 2012.pdf — PDF document, 198 KB (203477 bytes)
Automated detection of dolphin whistles with convolutional networks and transfer learning
Korkmaz et al. - Frontiers in AI - 2023.pdf — PDF document, 893 KB (914497 bytes)
AUV navigation using cues in the sand ripples
Shalev et al. 2022 - Autonomous Robots.pdf — PDF document, 2.66 MB (2789328 bytes)
Bilingualism advantage in handwritten character recognition: A deep learning investigation on Persian and Latin scripts
SadeghiTestolinZorzi_ICCKE_final.pdf — PDF document, 394 KB (403970 bytes)
Cognition-based networks: applying cognitive science to wireless networking
2014 - Badia et al. - IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks.pdf — PDF document, 308 KB (315574 bytes)
Cognition-based networks: a new perspective on network optimization using learning and distributed intelligence
Zorzi_et_al-2015.pdf — PDF document, 5.74 MB (6017614 bytes)
Combining Denoising Autoencoders and Dynamic Programming for Acoustic Detection and Tracking of Underwater Moving Targets
TestolinDiamant-Sensors-2020.pdf — PDF document, 8.96 MB (9396271 bytes)
Deep learning systems as complex networks
Testolin.et.al.2019-JCompNet.pdf — PDF document, 1.17 MB (1223495 bytes)
Deep unsupervised learning on a desktop PC: A primer for cognitive scientists
Testolin et al. - 2013 - Deep unsupervised learning on a desktop PC A primer for cognitive scientists.pdf — PDF document, 1.07 MB (1126074 bytes)
Detecting submerged objects using active acoustics and deep neural networks: A test case for pelagic fish
Testolin et al. 2021 - IEEE TMC.pdf — PDF document, 2.96 MB (3103380 bytes)
Do estimates of numerosity really adhere to Weber’s law? A reexamination of two case studies
Testolin_McClelland-2020-Psychonomic_Bulletin_&_Review.pdf — PDF document, 1.38 MB (1443375 bytes)
Do estimates of numerosity really adhere to Weber’s law? A reexamination of two case studies
Testolin_McClelland-2021-Psychonomic_Bulletin_&_Review.pdf — PDF document, 1.38 MB (1448486 bytes)
Emergence of Network Motifs in Deep Neural Networks
Zambra.et.al.-Entropy-2020.pdf — PDF document, 6.49 MB (6801416 bytes)
L’approccio moderno all’intelligenza artificiale e la rivoluzione del deep learning
Testolin and Zorzi 2021 - GIP.pdf — PDF document, 406 KB (415910 bytes)
L’approccio moderno all’intelligenza artificiale e la rivoluzione del deep learning
Testolin and Zorzi 2021 - GIP.pdf — PDF document, 406 KB (415910 bytes)