Idx_Testolin

Note: This material is presented to ensure timely dissemination of scholarly and technical work. By downloading any of these files, I'm requesting a copy of the publication to its author and I accept the terms of use.

Publications, Alberto Testolin

A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients

Calesella, F., Testolin, A., De Filippo De Grazia, M., & Zorzi, M. (2021). A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients. Brain Informatics, 8(1), 1-13.

PDF document icon Calesella et al - Brain Informatics - 2021.pdf — PDF document, 3.33 MB (3487234 bytes)

A Developmental Approach for Training Deep Belief Networks

Zambra, M., Testolin, A., & Zorzi, M. (2023). A developmental approach for training deep belief networks. Cognitive Computation, 15(1), 103-120.

PDF document icon Zambra et al. - 2022 - Cognitive Computation.pdf — PDF document, 4.43 MB (4649860 bytes)

A HMM-based Pre-training Approach for Sequential Data

Pasa, L., Testolin, A. & Sperduti, A. (2014). A HMM-based pre-training approach for sequential data. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges (BE)

PDF document icon es2014-166.pdf — PDF document, 1.21 MB (1267386 bytes)

A machine learning approach to QoE-based video admission control and resource allocation in wireless systems

Testolin, A., Zanforlin, M., De Filippo De Grazia, M., Munaretto, D., Zanella, A., Zorzi, M. & Zorzi, M. (2014). A machine learning approach to QoE-based video admission control and resource allocation in wireless systems. IEEE IFIP Annual Mediterranean Ad Hoc Networking Workshop, Piran (SL)

PDF document icon 2014 - Testolin et al. - IEEE IFIP Annual Mediterranean Ad Hoc Networking Workshop.pdf — PDF document, 801 KB (820669 bytes)

An emergentist perspective on the origin of number sense

Zorzi, M., & Testolin, A. (2018). An emergentist perspective on the origin of number sense. Phil. Trans. R. Soc. B, 373(1740), 20170043.

PDF document icon Zorzi, Testolin - 2018 - PTRS-B.pdf — PDF document, 918 KB (940317 bytes)

Assessment of Sequential Boltzmann Machines on a Lexical Processing Task

Testolin, A., Sperduti, A., Stoianov, I., & Zorzi, M. (2012). Assessment of Sequential Boltzmann Machines on a Lexical Processing Task. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - ESANN.

PDF document icon Testolin et al. ESANN. 2012.pdf — PDF document, 198 KB (203477 bytes)

Automated detection of dolphin whistles with convolutional networks and transfer learning

Nur Korkmaz, B., Diamant, R., Danino, G., & Testolin, A. (2023). Automated detection of dolphin whistles with convolutional networks and transfer learning. Frontiers in Artificial Intelligence, 6, 1099022.

PDF document icon Korkmaz et al. - Frontiers in AI - 2023.pdf — PDF document, 893 KB (914497 bytes)

AUV navigation using cues in the sand ripples

Shalev, H., Nagar, L., Abu, A., Testolin, A., & Diamant, R. (2023). AUV navigation using cues in the sand ripples. Autonomous Robots, 47(1), 95-107.

PDF document icon Shalev et al. 2022 - Autonomous Robots.pdf — PDF document, 2.66 MB (2789328 bytes)

Bilingualism advantage in handwritten character recognition: A deep learning investigation on Persian and Latin scripts

Sadeghi, Z. Testolin, A. and Zorzi, M. (2017). Bilingualism advantage in handwritten character recognition: A deep learning investigation on Persian and Latin scripts. 7th International Conference on Computer and Knowledge Engineering (ICCKE).

PDF document icon SadeghiTestolinZorzi_ICCKE_final.pdf — PDF document, 394 KB (403970 bytes)

Cognition-based networks: applying cognitive science to wireless networking

Badia, L., Munaretto, D., Testolin, A., Zanella, A., Zorzi, M. & Zorzi, M. (2014). Cognition-based networks: applying cognitive science to wireless networking. IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Sydney (AUS)

PDF document icon 2014 - Badia et al. - IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks.pdf — PDF document, 308 KB (315574 bytes)

Cognition-based networks: a new perspective on network optimization using learning and distributed intelligence

Zorzi, M., Zanella, A., Testolin, A. , De Filippo De Grazia, M., and Zorzi, M. (2015). Cognition-based networks: a new perspective on network optimization using learning and distributed intelligence. IEEE Access, vol. 3, pg. 1512–1530.

PDF document icon Zorzi_et_al-2015.pdf — PDF document, 5.74 MB (6017614 bytes)

Combining Denoising Autoencoders and Dynamic Programming for Acoustic Detection and Tracking of Underwater Moving Targets

Testolin, A., & Diamant, R. (2020). Combining Denoising Autoencoders and Dynamic Programming for Acoustic Detection and Tracking of Underwater Moving Targets. Sensors, 20(10), 2945.

PDF document icon TestolinDiamant-Sensors-2020.pdf — PDF document, 8.96 MB (9396271 bytes)

Deep learning systems as complex networks

Testolin, A., Piccolini, M., & Suweis, S. (2019). Deep learning systems as complex networks. Journal of Complex Networks.

PDF document icon Testolin.et.al.2019-JCompNet.pdf — PDF document, 1.17 MB (1223495 bytes)

Deep unsupervised learning on a desktop PC: A primer for cognitive scientists

Testolin, A., Stoianov, I., De Filippo De Grazia, M., & Zorzi, M. (2013). Deep unsupervised learning on a desktop PC: A primer for cognitive scientists. Frontiers in Psychology, 4(251).

PDF document icon Testolin et al. - 2013 - Deep unsupervised learning on a desktop PC A primer for cognitive scientists.pdf — PDF document, 1.07 MB (1126074 bytes)

Detecting submerged objects using active acoustics and deep neural networks: A test case for pelagic fish

Testolin, A., Kipnis, D., & Diamant, R. (2020). Detecting submerged objects using active acoustics and deep neural networks: A test case for pelagic fish. IEEE Transactions on Mobile Computing, 21(8), 2776-2788.

PDF document icon Testolin et al. 2021 - IEEE TMC.pdf — PDF document, 2.96 MB (3103380 bytes)

Do estimates of numerosity really adhere to Weber’s law? A reexamination of two case studies

Testolin, A., & McClelland, J. L. (2020). Do estimates of numerosity really adhere to Weber’s law? A reexamination of two case studies. Psychonomic Bulletin & Review, 1-11.

PDF document icon Testolin_McClelland-2020-Psychonomic_Bulletin_&_Review.pdf — PDF document, 1.38 MB (1443375 bytes)

Do estimates of numerosity really adhere to Weber’s law? A reexamination of two case studies

Testolin, A., & McClelland, J. L. (2021). Do estimates of numerosity really adhere to Weber’s law? A reexamination of two case studies. Psychonomic Bulletin & Review, 28, 158-168.

PDF document icon Testolin_McClelland-2021-Psychonomic_Bulletin_&_Review.pdf — PDF document, 1.38 MB (1448486 bytes)

Emergence of Network Motifs in Deep Neural Networks

Zambra, M., Maritan, A., & Testolin, A. (2020). Emergence of Network Motifs in Deep Neural Networks. Entropy, 22(2), 204.

PDF document icon Zambra.et.al.-Entropy-2020.pdf — PDF document, 6.49 MB (6801416 bytes)

L’approccio moderno all’intelligenza artificiale e la rivoluzione del deep learning

Testolin, A., & Zorzi, M. (2021). L’approccio moderno all’intelligenza artificiale e la rivoluzione del deep learning. Giornale italiano di psicologia, 48(2), 313-334.

PDF document icon Testolin and Zorzi 2021 - GIP.pdf — PDF document, 406 KB (415910 bytes)

L’approccio moderno all’intelligenza artificiale e la rivoluzione del deep learning

Testolin, A., & Zorzi, M. (2021). L’approccio moderno all’intelligenza artificiale e la rivoluzione del deep learning. Giornale italiano di psicologia, 48(2), 313-334.

PDF document icon Testolin and Zorzi 2021 - GIP.pdf — PDF document, 406 KB (415910 bytes)