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Thanks to the availability of large scale digital datasets and massive amounts of computational power,
deep learning algorithms can learn representations of data by exploiting multiple levels of abstraction.
These machine-learning methods have greatly improved the state-of-the-art in many challenging cognitive
tasks, such as visual object recognition, speech processing, natural language understanding and automatic
translation. In particular, one class of deep learning models, known as deep belief networks (DBNs), can
discover intricate statistical structure in large datasets in a completely unsupervised fashion, by learning
a generative model of the data using Hebbian-like learning mechanisms. Although these self-organizing
systems can be conveniently formalized within the framework of statistical mechanics, their internal func-
tioning remains opaque, because their emergent dynamics cannot be solved analytically. In this article, we
propose to study DBNs using techniques commonly employed in the study of complex networks, in order
to gain some insights into the structural and functional properties of the computational graph resulting
from the learning process.

Keywords: networks theory; artificial neural networks; deep belief networks; hierarchical generative
models; machine learning; graph analysis.

1. Introduction

Recent strides in artificial intelligence research have opened tremendous opportunities for technological
development. In particular, the last decade has been marked by the so-called ‘deep learning revolution’,
which is having strong impact both for scientific investigation and for engineering applications [1].
Deep learning allows building artificial neural networks composed of many processing layers, which
can learn high-level representations of the data by exploiting multiple levels of abstraction [2]. To differ
from conventional machine-learning techniques, this allows to automatically discover intricate statistical
structure in large datasets without the need for domain expert knowledge: the relevant features needed to
describe the data distribution are learned by the machine from the raw input (e.g. pixels values in a digital
image). An intriguing aspect of deep learning systems is that they are inspired by neuronal networks in
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6102 1snBny g0 UO Jasn [Dg BAOped ,BusIoAiun AQ Z¥SZ 1L SG/8 1 0ZUD/A8UW0/S60 L 0L /I0p/A0BISqe-8[011iB-80UBAPE/18UW0D/W0 dnoolWwapede//:sdyy Wolj peapeojumoq



2 A. TESTOLIN ET AL.

biological brains: information processing occurs in a parallel and distributed fashion [3], thereby allowing
cognitive abilities to emerge from the orchestrated operation of many simple, non-linear processing
units [4, 5].

Deep learning has dramatically improved the state-of-the-art in challenging cognitive tasks, such as
image classification [6, 7], speech recognition [8], natural language understanding [9] and even high-level
reasoning [10, 11]. It is currently employed by all major IT companies (Google, Facebook, Microsoft,
Apple, just to mention a few) to automatically extract knowledge from large digital datasets, and it is
achieving impressive performance also in many other domains such as drug discovery [12], genomics
[13], high-energy physics [14] and telecommunications [15, 16].

However, despite the continuous progress and the widespread deployment in real-world applications
of deep learning, there is still a limited comprehension of its working principles [17]. How does these
multilayer networks self-organize to solve a particular task? How is information represented in these
systems? Is there a set of fundamental properties underlying the structure and dynamics of deep neural
networks?

Some insights into these challenging questions have been gained by inspecting deep learning systems
with methods borrowed from neuroscience. For example, response profiles of individual neurons in deep
networks often exhibit an impressive match with neurophysiological data [18-21]. Similarly, at the neu-
ronal population level it has been shown that the representational space developed by deep networks has a
striking overlap with that observed in the inferior temporal cortex of the primate brain [22, 23]. However,
these empirical analyses are somewhat limited in scope because they do not allow to systematically assess
structural and functional properties of these complex systems.

We believe that a fresh perspective on these issues can be provided by studying deep learning using the
analytical and numerical techniques developed by network science [24, 25], which have already provided
very useful in neuroscience research [26—29]. Indeed, in deep learning even knowing perfectly how a
single neuron (node) of the network works does not allow to understand how learning occurs, why these
systems work so efficiently in many different tasks, and how they avoid getting trapped in configurations
that deteriorate computational performance [17, 30, 31]. In these models, interactions play a crucial
role during the learning process, therefore a step forward toward a more comprehensive understanding
of deep learning systems is their study also in terms of their emerging topological properties [32]. For
example, a first characterization of deep networks can be done through several statistical graph properties:
connectance, degree distribution, strength distribution and other centrality measures that are now standard
in network theory [25]. In particular, we expect that these properties encapsulate relevant information
about the learning process of the system. Can we unveil some general relationship between the function
(learning outcome) and the structure (topology) of the network? What does depend on the learning task,
and what is instead independent of the specific distribution of the input data?

In summary, the aim of the present work is to show that a network science perspective on deep
learning may enlighten some of these relationships. We also make available the source code of our
software analyses in order to promote the use of the analytical methods we describe.!

2. Deep neural networks

Strictly speaking, the main goal of deep learning is to support the creation of ‘intelligent’ machines that can
autonomously learn from experience. Indeed, according to the view promoted by neural network models,

' The complete source code can be found at https: //osf.i0/sg7rn/.
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perceptual and cognitive phenomena can be conceived as the evolution over time of a complex system of
interconnected units that self-organize according to physical principles [4]. Within this framework, the
pattern seen in overt behaviour (macroscopic dynamics of the system) emerges from the coordination
of subcognitive processes (microscopic dynamics of the system), such as the propagation of activation
and inhibition among simple, but non-linear, processing units. The computational properties of neural
networks have been investigated since the dawn of artificial intelligence research [33, 34], but only
recently the computational power of these systems has been fully unleashed: the major achievement
of deep learning algorithms has been to show that artificial neural networks can learn a hierarchy of
increasingly more complex concepts, with each concept defined through its relation to simpler concepts
(for an historical review, see [35]).

In the following, we will first briefly review the basic theory of learning in deep neural networks,
and we will then describe the details of the deep learning model used in our study. For a recent and
comprehensive survey about the topic, the reader could refer to [36].

2.1 Theoretical background

Artificial neural networks can be formally described using the theory of probabilistic graphical models
[37, 38], which provides a general framework to model the stochastic behaviour of a large number of
interacting variables. Learning in probabilistic graphical models can be framed within two different
settings: in discriminative models, the goal is to model conditional distributions over a set of output
(target) variables, whose values are specified by explicitly labelling each pattern given as input to the
system. This approach is usually referred to as supervised learning, because the system is always guided
by an external teacher who provides the correct labels. Classification, discrimination and regression
problems can be easily framed within this scenario, and are usually solved by applying feed-forward,
convolutional deep neural networks trained with error backpropagation (e.g. [7]). In generative models,
instead, the aim is to capture the joint distribution of all the variables in the system, thereby including also
the input variables. This learning modality is usually described as being unsupervised, because there are
no correct labels that must be associated with each input pattern. The goal is rather to build an internal
model of the environment, that is, to discover a set of latent features that compactly describe the statistical
correlations observed between the variables at play. Clustering, density estimation and dimensionality
reduction problems can be framed within this scenario.

In this article we will focus on the latter approach, because generative neural networks can be more
naturally characterized using the physical formalism of statistical mechanics, as we will highlight in the
following.

2.1.1 Boltzmann machines Generative models can be implemented using different types of probabilistic
graphical models. One of them is the Boltzmann machine [39], which is an undirected model (i.e. edges are
symmetric, implying a bidirectional flow of information between the nodes) that has been traditionally
defined using concepts borrowed from statistical physics. In particular, following the seminal model
introduced by Hopfield [40], it can be shown that this type of fully connected, recurrent networks (see
Fig. 1A) can develop a point-attractor dynamics, which can be analysed using techniques inspired by the
study of pattern formation in physical systems composed by many interacting units. This allows to draw a
useful analogy between physical systems with a metastable behaviour and information processing systems
that implement content-addressable associative memories: each local energy minima in a metastable
physical system can be interpreted as an embodiment of a ‘prototype’ in an associative memory, where
the aim is to store as much information as possible in the form of static configurations of a set of variables.
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FiG. 1. Graphical representation of several recurrent neural network architectures. (A) Hopfield network, which is a fully connected
graph. (B) Boltzmann machine, which is a fully connected graph with two separate sets of units: the visible neurons v are used to
perceive input patterns, while the hidden neurons / capture the statistical structure observed in the data. (C) Restricted Boltzmann
machine, where intra-layer connections are removed in order to form a bipartite graph.

If each configuration is defined by the actual state of the variables, it is possible to recall previously stored
information by giving as input to the network a partially observed state (which would correspond to a
specific initial condition acting as content-specific ‘search key’) and letting the system settle into a stable
state, thereby completing the missing values of the remaining variables according to the closest prototype
(i.e. by converging to the closest attractor).

Modelling phase transitions in such physical systems has been a longstanding issue in statistical
mechanics, which has been explored especially in the context of Ising models. An Ising model is a
collection of K binary variables (o; = +1, —1 representing the spins of the atoms in the up (1) or down
(—1) state in a ferromagnetic material) arranged into a two-dimensional lattice, which are magnetically
coupled to each other. This can be mathematically represented by assigning an energy function to the
state of the whole lattice 0 = 07, ..., 0x € RX, given the coupling J,,, = J if m and n are neighbours and
Jun = 0 otherwise, and the external magnetic field H:

E(o:J,H) = —% ZJm,,oma,, - ZHUn. (1)

m,n n

At equilibrium, spins try to align with the external field and to get parallel each other in order to fulfil
the minimum energy principle, that is, minimize E(J, H). The stationary state distribution for the spin
system at temperature 7 is given by the usual Boltzmann distribution:

1 .
P 1. H) = e PHOD, @)

where 8 = kB#T defines the inverse temperature of the system (kz can be set to 1), and Z(8,J,H) =
> e PE@IH) ig the partition function that assures the normalization of the distribution.

A Boltzmann machine is a generalization of the Ising model, where all units are connected to each
other by bidirectional links, that is, in this case the couplings are given by a fully connected matrix W.
If we now call x the state of the machine, where each unit i can be off (x; = 0) or on (x; = 1), then we
can write the energy gap of the jth unit, defined as the difference between the energy of the whole system

6102 1snBNy G0 UO Jasn [Dg BAOPEY BUSISAIUN AQ ZHSZ L SS/8 L 0ZUD/IoUWO/S60 L 0 | /I0P/1oBISqR-0[911B-00UBAPE/JaUWO0/WO0D dNo olWspese//:sdjy woi) peapeojumoq



DEEP LEARNING SYSTEMS AS COMPLEX NETWORKS 5
with the jth ‘off” and its energy with jth ‘on’ by:

AE; =) Wyx;, 3)

where W is the matrix of synaptic connection weights, which are symmetric (i.e. w; = w;;) and which
define the reciprocal interactions between all neurons in the network. If AE; < 0 then the switch off of the
jth element decreases the total energy E(x; W, H). Therefore, we can minimize the energy by evolving
the system over time through stochastic dynamics, where each neuron j changes its local state regardless
of its previous state to:

1 ith probability —~
5= { with probability 77, ’ @)

0 otherwise

where the activation energy AE; depends on the overall activation received by unit j from its neighbours.
Iteratively updating the state of each unit using this rule, the global system configuration is driven towards
thermal equilibrium, that is, towards a state where the energy is locally minimized, thereby following
the Boltzmann distribution P(x|W) with energy E(x; W) (as in Eq. (2)). In order to avoid the system
being trapped in local minima with relatively high-energy, the overall temperature of the system can be
gradually decreased, thereby mimicking the annealing process in physical systems [41].

Perhaps the most interesting property of Boltzmann machines is their ability to ‘learn’ by modifying
the connections strength between units in response to the statistical properties of an external signal that
is provided as input to the system. To this aim, the whole network can be partitioned into two distinct
functional subsets of units (see Fig. 1B): a set of visible neurons v, which are the interface between the
network and the external environment and therefore receive the input pattern (the ‘observed’ data, in the
language of graphical models), and a set of hidden neurons h, which constitute the internal state of the
network and which are used to capture useful ‘features’ (i.e. statistical correlations) in the input variables.

Intuitively, the objective of learning is to discover a useful set of features, which would serve as
latent variables that compactly encode the statistical structure contained in the input data. To this aim,
during the learning phase all the network connections are initially set to small, random values and then
are gradually adjusted as the network observes new input data (the ‘training examples’). The network
modifies the strengths of its connections so as to construct an internal generative model that produces
examples with the same probability distribution as the examples it is shown. At each learning iteration,
all the visible units are clamped into a specific state provided by one training vector, and the hidden units
activates according to Eq. 4. This is called the positive (or ‘wake’) phase, because the system is driven by
the input data [42]. The visible units are then unclamped, and the network is left free to generate its own
visible states by starting from a random state in the hidden units activations. This is called the negative
(or ‘sleep’) phase, because the system is driven by its own internal model and tries to generate plausible
configurations in the visible layer. Following these two phases, the model parameters (i.e. the connection
weights) are updated by maximizing the agreement between the empirical correlations among visible
and hidden units resulting from the positive phase and those resulting from the negative phase [39].

Formally, given a set of training examples clamped to the visible neurons {v™}) we would like to
adjust the connection weights W such that the samples generated by the network are well matched by
those provided in the training distribution. To this aim, we can define learning as a maximum likelihood
problem, where a set of model parameters W has to be adjusted in order to maximize the likelihood of
the sampled data. By performing gradient descent on the empirical negative log-likelihood of the training
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data, we can analytically derive the equation for updating the connection weights (model parameters) at
each learning iteration. Crucially, the derivative of the log-likelihood of a training example with respect
to the weight w;; turns out to be surprisingly simple:

dlogP(v,h;B,J,H)
BW,‘/‘

= (Vihj)data - <Vihj>model’ @)

where the angle brackets are used to denote expectations under the distribution specified by the subscript
that follows, that is, under the empirical data distribution (positive phase) and under the model distribution
(negative phase). This leads to a very simple learning rule for updating each connection weight of the
network:

Awlf/' = €(<vihj)data - <vihj>model)’ (6)

where € is a small constant representing the learning rate.

2.1.2 Restricted Boltzmann machines Although interesting from a theoretical perspective, Boltzmann
machines are seldom used in practice due to their extremely high computational complexity. Indeed, these
models have an intractable partition function, which prevents the exact computation of the likelihood
gradient. This issue can be mitigated using mean-field approximations [43], but computing the model’s
expectations (v;#;)moder Still remains computationally demanding.

A more effective approach has been instead to constrain the connectivity of the network, moving from
a fully connected topology to a bipartite graph (see Fig. 1C). By removing all the intra-layer connections
we obtain a Restricted version of a Boltzmann Machine (RBM), where all the neurons in the same layer
are conditionally independent given the state of neurons in the opposite layer. This allows to enormously
speed-up learning, for example by exploiting efficient implementations of Monte Carlo methods based
on parallel Gibbs sampling[44]. For example, when the neurons in one layer are clamped to a particular
state (e.g. the visible neurons v are clamped to one training example), the activation probability of all the
neurons in the other layer can be efficiently computed in one parallel step:

P(hl) = [ [ PGulv), (7)
where,
P(h; = 1|v) = ! 8
i =1v) = T»mw (3
14+e /

and P(v,h|1,J,H) = P(h|v)P(v), omitting for simplicity the dependence on the parameters.

2.1.3 Deep belief networks A groundbreaking discovery is that RBMs can be used as building blocks
to build more complex neural network architectures, where the hidden variables of the generative model
are organized into layers of a hierarchy (see Fig. 2). These models are usually referred to as deep belief
networks (DBNs) [45, 46]. Such systems are built by stacking together multiple RBMs, which are learned
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FiG. 2. Graphical representation of a deep belief network built as a stack of restricted Boltzmann machines.

in a layer-wise fashion, that is, the A, layer is trained after training is completed for the #,_; layer. In
this way, the hierarchical generative model is built at separate stages, first starting with simpler features
that are kept fixed in order to subsequently learn the more complex ones. After the first RBM has
been learned, the activities of its hidden neurons are used as input for a second RBM, with the aim of
extracting higher-order correlations from the original data. The main intuition behind these powerful
architectures is that, by training a generative layer using as input the hidden causes discovered at the
previous layer, the network will progressively build more structured and abstract representations of the
input data. Importantly, architectures with multiple processing levels efficiently encode information by
exploiting re-use of features among different layers: simple features extracted at lower levels can be
successively combined to create more complex features, which will eventually unravel the main causal
factors underlying the data distribution [2, 47]. Indeed, it has been shown that functions that can be
compactly represented by a depth k architecture might require an exponential number of computational
elements to be represented by a depth & — 1 architecture [36]. Moreover, adding a new layer to the
architecture increases a lower bound on the log-likelihood of the generative model [45], thus improving
the overall representational capacity of the network.

Thanks to its efficiency, the algorithm proposed by [45] solves the problem of learning in densely
connected networks that have many hidden layers. Moreover, when implemented on multi-core hardware
[e.g. graphical processing units (GPUs)] deep learning is practical even with billions of connections,
thereby allowing the development of very large scale simulations [48].
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2.2 Network architecture and learning details

In our analyses, we considered a popular deep network architecture that has been shown to achieve
excellent performance on the MNIST benchmark task of handwritten digit recognition [45, 49]. To
assess the robustness of our methods, we also analysed a single-layer RBM trained on a very different
type of stimuli, that is, natural image patches [20].

2.2.1 Training datasets For the MNIST, learning was performed over a large dataset containing 60000
images of handwritten digits [50]. Each training example contains a digit between 0 and 9, represented
as a grey-scale image of size 28 x 28 pixels. The input to the network was therefore a vectorized matrix
of 784 real-valued elements in the range [0,1]. For the natural image patches, learning was performed
over a large dataset containing 80000 images of natural scenes [51]. Each training example contains a
small portion of a natural landscape, represented as a grey-scale image of size 40 x 40 pixels. The input
to the network was therefore a vectorized matrix of 1600 real-valued elements in the range [0,1].

2.2.2 Learning parameters For the MNIST, the DBN was composed of a stack of three RBMs. The
visible layer contained 784 neurons, each corresponding to one pixel in the input image. Hidden layers
had, respectively, 500, 500 and 2000 neurons, for a total of about 1.6 million connections in the whole
DBN. Learning was performed using one-step contrastive divergence, with a fixed learning rate ¢ = 0.1,
a momentum coefficient of 0.9 and a weight decay factor of 0.0004. The latter two hyperparameters
serve as regularizers for the loss function in order to minimize the risk of overfitting the training data: for
additional details, the reader is referred to [52]. For the natural images, the RBM had 1600 neurons in
the visible layer and 1000 neurons in the hidden layer. Learning hyperparameters were the same adopted
for the MNIST model.

Both models were implemented using MATLAB by exploiting an efficient code tailored for graphic
processors [49].”

2.2.3 Training time Each layer of the DBN was trained for 50 epochs, where each epoch corresponds
to a full sweep over all patterns in the training set. We verified learning convergence by monitoring the
average reconstruction error after each epoch [52]. After 50 epochs, the reconstruction error did not
significantly further improve and most of the neurons already developed structured receptive fields.

3. Network-based analyses

In deep learning systems, the initial processing architecture is fairly generic. For example, in our DBN
with k-1 hidden layers, it corresponds to a fully connected (connectivity C = 1) k-partite [53] graph
with random weights drawn from a Gaussian distribution of mean zero and standard deviation o, that
is, w; ~ N(0,0). As a result of learning, complex structural patterns gradually emerge, that a priori
depend also on the input given for the training algorithm that we have described in detail before.

In the case of input digit images, we are dealing with a multilayer neural network composed by three
stacked RBMs. The analysis of the network properties can be performed both on the DBN seen as one
aggregate graph, and on each of the three bipartite networks between pairs of layers. By denoting with

2 The complete source code can be found at http://ccnl.psy.unipd.it/research/deeplearning.
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W, (a = 1,2,3) the weighted bipartite network between layers v — hl,hl — h2, h2 — h3, respectively
(see Fig. 2), we can write the adjacency matrix W of the whole DBN as:

O W, 0 O
wr o w, O ©)
o wWr o W |

0O 0O W' O

W =

From W, we then calculate topological properties of both the intra-layers and the whole network. In
particular, we are interested in studying the structure of subnetworks composed by groups of nodes that
have characteristic functional properties (given by their receptive fields, see next section). In this way, we
try to infer topological signatures of the functional roles of the nodes. We first calculated the distribution
of the network degrees, strengths and weights emerging as a result of the learning process in each layer
h;, with i = 1,2,3. We also calculated the overlap [25] between each pair of layers, to see if group of
nodes are less or not activated. We finally computed the average degree, strength, coefficient of variation
and average nearest neighbours of the subnetworks formed by nodes with similar functional properties.
In all these cases, we used a simplification threshold 6 and set to zero all edge weights smaller than 6, in
order to obtain a non-weighted graph to work on.

3.1 Neuronal receptive fields

It is useful also to introduce the notion of receptive field [47], which allows to have a straightforward
visualization of how a given neuron ‘sees’ the input, that is, it incorporates the functional role of that
neuron given the input. In other words, the receptive field of a neuron represents the type of visual feature
that has been extracted during learning. Since neurons in the visual layer are directly clamped to the input
pattern, we can define the concept of receptive field only for neurons that live in upper, hidden layers.

The receptive field for a neuron of the first hidden layer is just the visual representation of the weights
of its links toward the neurons in the input layer below. To plot the receptive field of the jth neuron in the
layer A1, we just need Wy, and extract the weights of the links that start from node j in 1 and arrive to
all nodes in the layer below (v), that is, the vector w}J fori = 1,...,n;, where n; is the number of nodes
in the v-layer while j is fixed. We can then reshape this vector to the original input square matrix form
(whose dimension is 28 x 28 pixels for the case of the MNIST handwritten digits). Each ith pixel value
is represented in a grey-scale colour from the minimum (black) value to the maximum (white) value
(receptive field samples are shown in Fig. 3). These receptive fields are informative about the neuron’s
function in the sense that they suggest which features of the input images mostly activate the neuron. For
example, a neuron could be particularly sensitive to straight, vertical lines in the peripheral side of the
image, while being completely indifferent to analogous straight lines drawn at the bottom of the image
(e.g. the first of the four images in Fig. 3). Other neurons could be excited by circularish ring shapes,
while being anti-correlated with the space inside this ellipse (see fourth receptive field). Some neurons
do not encode localized features, as they assume a distribution of weights that makes the receptive field
a fuzzy blurred blob (as in the cases of the second and third images in the figure).

For neurons that lie in the 42 and /3 layers, we define the receptive field in an indirect way, since
there is no direct linkage between the neuron and the visible layer. For a hidden layer 2 neuron (say,
), we first make a weighted average of the receptive fields of the neurons in the hidden layer 1, using
the weights ijJ leaving from the /th neuron and linking it with the j neurons below. Then, we plot the

two-dimensional receptive field of the neuron as > w! .w?, (1 is fixed, while i varies over the nodes in the
i

NN

6102 1sNBNy 60 U0 J8sn |Dg eAOped ,BlUSISAIUN AQ ZHSZ1LSS/810ZUD/1UWO0d/S60 L 0 | /I0P/10BISE-8|dILEB-80UBAPE/1SUW0D/WO02 dNO"dIWapee//:sd)y Wol) PaPEOjUMO(]



10 A. TESTOLIN ET AL.

F1G. 3. Example of four different receptive fields emerging in the hidden neurons.

visible layer), obtaining an image of what pixels our /th neuron in the second hidden layer is responsible
for. For a neuron m in the third layer we proceed in the same way, by plotting: Z w; wj ,w, .- Results are

somehow similar to the receptive fields observed in the first hidden layer, but we can see that at deepest
layers the receptive fields become more ‘structured’ and complex.

3.2 Clustering of receptive fields

To infer a possible relation between the structure and the function of the trained deep networks, we
need to establish whether neurons with similar ‘function’ developed similar topological properties. As
explained above, we argue that receptive field images of each neuron could be used for such functional
characterization.

In order to automatically group neurons with similar functional properties, we thus implemented a
hierarchical clustering algorithm based on the earth mover’s distance [54]. This distance metric defines
the distance between two distributions as the minimal cost that must be paid to transform one distribution
into the other, and it is widely used for content-based image retrieval. We adopted this metric because it
is based on a solution to a transportation problem from linear optimization, for which efficient algorithms
are available, and it guarantees a reasonable precision in measuring the visual similarity of two grey-scale
images. Intuitively, the earth mover’s distance is computed as follows: every pixel is represented by a
certain number of ‘pebbles’, which is an integer number corresponding to the grey level of that pixel.
After normalizing the two images to have the same number of ‘pebbles’, the distance between them is
computed as the minimum cost of matching the pebbles between the two images, which can be formalized
and solved as a transportation problem [54]. After computing the distance matrix between all receptive
fields, hierarchical clustering was performed by creating a tree structure based on the Euclidean distances
between all rows in the matrix. A dendrogram was finally produced by first computing the optimal
ordering of the tree leaves using the optimalleaforder MATLAB function, and then calling the

6102 1sNBNy 60 U0 J8sn |Dg eAOped ,BlUSISAIUN AQ ZHSZ1LSS/810ZUD/1UWO0d/S60 L 0 | /I0P/10BISE-8|dILEB-80UBAPE/1SUW0D/WO02 dNO"dIWapee//:sd)y Wol) PaPEOjUMO(]



DEEP LEARNING SYSTEMS AS COMPLEX NETWORKS 11

dendrogram function by setting to 20 the maximum number of leaf nodes. This resulted in a manageable
number of receptive field clusters, at the same time limiting the creation of singletons or clusters with
only few elements.

4. Results
4.1 Weights distribution

By analysing the distribution of the edge weights W of the whole deep network before and after learning,
we observed a clear increase of inhibitory (negative) interactions, highlighted by a shift of the weights
mean toward negative values. Moreover, after learning the weights distribution is no longer Gaussian
(compare panels A and B in Fig. 4), due to the increase of the skewness and kurtosis of the distribution.
This effect is mainly due to the change of edge weights in the first v — Al and third h2 — h3 bipartite
networks (see panels D and F in Fig. 4). Interestingly, the distribution of the weights in the second layer
h1 — h2 is still symmetric and quasi-normal, with an average close to zero (but still negative). In this case,
the departure from a Gaussian distribution is mostly highlighted by an increase of kurtosis, which led to
the increase of the distribution tails (see panel E in Fig. 4). A similar result holds for the network trained
on natural images. In this case, however, we do not observe a clear shift of the weights distribution toward
negative values (the average weight is around zero), but still the distribution becomes markedly skewed,
with long tails (see panel C in Fig. 4). These findings show that the training increase the kurtosis of the
DBN weights distribution, which in biological neural networks is very high. On the other hand, we found

«10* NILf_y-rs «10° All Lﬂram ) 105 Layer 1

o 1] ]
05 o 05 0.5 o 0.5 0.5 0 05
Connection weight Connection welght Connection weight
D. 104 Layer 1 E Layer 2 <105 Layer 3

4.5 0 [1 13 05 o 05 05 o 0.5
Connection weight Connection weight Connection weight

FiG. 4. Distribution of the edge’s weights for: (A) the whole network before learning (initialization); (B) the whole network after
learning on the MNIST dataset; (C) the network after learning on the natural images dataset; (D) the first layer v — A1, (E) second
layer i1 — h2 and (F) third layer h2 — h3 bipartite networks after learning on the MNIST dataset.
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12 A. TESTOLIN ET AL.

that the tail of the trained weights distribution is nevertheless exponential and not log-normal or scale free,
as typically observed in real biological networks [55, 56]. Interestingly, according to a recent proposal
[57], biologically inspired kurtotic weight distributions could also be exploited to improve robustness of
deep learning models to adversarial attacks.

4.2 Strengths distribution

We also analysed the strengths distribution of the network before and after learning. The strength for a
given node i is given by s; = Zj W;;. The distribution of each layer at time ¢ = 0 is still Gaussian as the
strength is just the sum of the random weights of the links connected to that node, and these are Gaussian
distributed at time ¢ = 0. As expected from the results on the final weights, after learning the neurons
displayed an overall negative strength. However, we also found elongated positive tails, especially in the
layer h1 — v, hl — h2 (considering links going from A1 to h2), h2 — hl (links going from A2 to hl),
reaching also very high values (up to s; &~ 30,40). The strengths of nodes in the v — k1 layer were all
negative, indicating that nodes in the visible layers on average operated as inhibitors to nodes in the &1
layer. In the last hidden layer, the strength distribution displayed a high peak around s; &~ 10. As we will
explain later, this is a signature of the strong redundancy that has been found in the last layer’s neurons:
after learning, many units tend to fall into an almost identical set of features.

4.3 Receptive fields

At the end of the learning phase, hidden neurons in the network developed a variety of receptive fields
that represent the set of visual features used to efficiently encode the statistical information contained in
the training distribution. In particular, neurons in the first hidden layer developed receptive fields tuned to
simple, localized spatial structures (such as blobs and small strokes), which were combined by neurons
in the deepest layers in order to produce more complex visual features such as edge detectors and digit
shapes. Some neurons, especially in the third hidden layer, learned features that were not location specific
and covered the whole visual field.

After applying the clustering algorithm to the receptive fields of each hidden layer, we plotted a sample
of receptive fields belonging to each cluster in order to verify that neurons encoding similar features were
grouped together. As shown in Fig. 5, neurons with a similar functional role were indeed assigned to the
same cluster (images in each column represent the receptive fields of the neurons belonging to the cluster
identified by the numeric label). A similar result holds for the network trained on natural images (see
Fig. 6).

4.4 Relation between network structure and function

In order to unveil a potential relation between node topological properties (network structure) and node
receptive fields (network function), we first considered the subnetwork formed by nodes belonging to the
same functional class G;, fori = 1, ..., G (with G = 19 as described in Section 4.3). We then studied the
following topological properties of the nodes for each sub-network:

* The average node degree (k); = ZJEQ; ki/|G;| for j=1..,G, where |G;| is the number of nodes in
the subgraph G;. We can also divide it into two subgroups: the average positive degree ((k*) =
Zjeg,— ki®(k;)/|G;|) and the averaged negative degree ((k~) = Zjeg,- ki®(—k;)/|G;|), where O (x) is
the Heaviside theta function.

6102 1snBny g0 UO Jasn [Dg BAOped ,BusIoAiun AQ Z¥SZ 1L SG/8 1 0ZUD/A8UW0/S60 L 0L /I0p/A0BISqe-8[011iB-80UBAPE/18UW0D/W0 dnoolWwapede//:sdyy Wolj peapeojumoq



DEEP LEARNING SYSTEMS AS COMPLEX NETWORKS 13

Distance

0 th L o

] ‘ ] =]

1 12 2 18 20 8 6 13 17 7 14 5 19 9 4 2 6 15 10

3

EE SN IS ESERAEEEEN
RN EEESEEESEENESEEER
ElFSE NSNS EEEERSEEESEE N
EEEEEEEEEEESEESEEEEEN
BN ENEESSESSEREAEDEENAN

FIG. 5. Hierarchical clustering of the neuronal receptive fields of the first hidden layer emerged from the MNIST handwritten
dataset. The tree structure represents the distances between each of the 20 clusters, with smaller values indicating more similar
types of receptive fields.

*  The average nearest neighbour degree (ki) = > ics. 2 ic uui ki/ G, where nn(i) denotes the nearest
neighbours of the node i.

e The average node strength (s) = Ziegi si/G.

We have also analysed other properties, such as the standard deviation of the above quantities, the related
coefficient of variation, the eccentricity and other centralities measures, but they did not supply any
additional relevant information to the overall picture. Figure 7 shows the results of the analysis. We note
that we have removed from the analysis few subgraphs that were composed by very few nodes (less than
10), as for such clusters it was not possible to compute an average statistically meaningful behaviour.

Although a clear emergent pattern is missing, some common trends have been found. We can see
that in all layers there is not a clear trend in the relation between the averaged degree and the nearest
neighbour degree (leftmost column in Fig. 7). Therefore, it seems that the deep learning system does
not develop any assortativity pattern following the training process. This holds also when the system is
trained using natural images (see leftmost column in Fig. 8).

The relationship between the average node strengths and average node degrees is informative about
the relationship between topology and networks weights. In fact, if there is no correlation between the
degree of vertices and the weight of edges, then the weights w;; are on average independent of node i and
J» and in this case it can be shown [58] that the strength of a vertex is simply proportional to its degree, and
thus node degree and strength provide the same information on the system. In our case, we found that the
trained neural networks (both on the handwritten digits and the natural images) developed a non-trivial
relationship between node degrees and strengths (central column in Figs 7 and 8). In particular, the first
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F1G. 6. Hierarchical clustering of the neuronal receptive fields of the first hidden layer emerged from the natural images dataset.
The tree structure represents the distances between each of the 20 clusters, with smaller values indicating more similar types of
receptive fields.
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layer in the DBN displays a positive Pearson correlation (p = 0.56, p-value = 0.019), while in the second
layer we find a negative correlation (p = —0.71, p-value = 0.001). The network trained on natural images
displays a strong, positive correlation (p = 0.87, p-value <0.0001).

Finally, by analysing the relationship between the positive and negative averaged node degrees in the
deep network we found that, depending on the layer, we have different results (see rightmost column
in Figs 7 and 8). In the first layer, with the exception of the G cluster, we have a positive relationship
between the two measures, quantified by a correlation of p = 0.59, p-value = 0.016. On the other
hand, in the third layer the opposite is true, and we find a clear negative correlation (p = —0.93,
p-value < 0.0001). In the second layer, no statistical correlation is detected, and there is not significant
relation between the two types of degree. The relationship obtained using the neural network trained
on natural images (see rightmost panel in Fig. 8) displays the same positive correlation found in the
first layer of the deep neural network trained with the handwritten digits dataset (o0 = 0.95, p-value
<0.0001).

5. Discussion and conclusions

In this research work, we analysed deep learning systems from a network science perspective, by investi-
gating a variety of structural and functional properties of the emergent computational graph. Our analyses
allowed to gain interesting insights about the internal functioning of these complex networks, suggesting
that the proposed approach might be useful to better understand the principles governing these non-linear,
self-organizing systems.
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F1G. 7. Structural properties of the sub-graphs G; of the deep learning system trained with the MNIST dataset, for a simplification
threshold of & = 0.1, where each number denotes a ‘functional’ group of nodes defined for the similarity of the corresponding
receptive fields, as described in the main text. In particular we show the relation between: (first column) averaged nearest neighbour
degrees and node degree (also known as (diss)assortativity [25]), (second column) averaged node strength and degree and (third
column) averaged positive and negative degrees. Each row corresponds to a different layer of the deep network, ordered from the
first (top row) to the third (bottom row).

The ambitious goal of finding structural signatures of the functioning of deep learning systems turned
out to be a challenging and delicate point of our analysis. First, it should be noted that in order to perform
a non-trivial analysis of the topological properties of the trained networks we need to set a threshold on
the connection weights. Otherwise, we would find a trivial ‘all nodes connected to all nodes’ structure.
Of course, setting a threshold is always a delicate operation. Our rationale has been to set a threshold that
enabled to remove all the weaker links, while preserving the most relevant ones. We have performed a
sensibility analysis with other threshold values (6 = 0.01, 0.03,0.05, 0.2), and the main results presented
here are robust with respect to the choice of different threshold values.
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FiG. 8. Structural properties of the sub-graphs G; of the deep learning system trained the natural images dataset, for a simplification
threshold of & = 0.1, where each number denotes a functional group of nodes defined for the similarity of the corresponding receptive
fields, as described in the main text. In particular, we show the relation between: ((first column) averaged nearest neighbour degrees
and node degree, ((second column) averaged node strength and degree and (third column) averaged positive and negative degrees.

The emergence of inhibitory links in the network trained with the handwritten digits dataset, especially
in the first and third layers, induces strong anti-correlations between neurons in the visible and top layer
with those in the second one. This effect may be promoted by the type of input (i.e. the pixels distribution
in handwritten digits), as this clear shift of the edge weights toward negative values disappears when
the system is trained on natural images. For example, the MNIST dataset contains images of white
digits written on a uniform, black background: the marked contrast between elements in the image may
have induced strong anti-correlations among neurons. Indeed, we observe that many neurons settle their
weights to negative values, thereby inhibiting the activity of several connected neurons. Looking at the
receptive fields of these neurons, we observe that they tend to specialize in describing very localized
features, thereby activating in response to very particular features in the stimulus (e.g. spots or straight
edges), while they are anti-correlated with all the remaining pixels in the input image.

Another relevant information can be drawn from the strength distributions of the neurons in the third
layer, where a high peak of neurons with negative strength (between s; € [—8, —10]) is observed. The
corresponding receptive fields are shown in Fig. 9, which highlight a high level of redundancy in the
neuron’s function. In particular, all the nodes with a strength in the range of the peak have exactly the
same receptive field, and are usually known as dead units [59]. This redundancy may be due to the
use of too many neurons in the third hidden layer, which might not be all necessary to improve the
representational capability of the network. This finding suggests that emerging topological properties
might be used—at runtime, or once learning is completed—in order to adjust the model architecture to
make it more compact and efficient (e.g. by removing dead units). Such method might be used in synergy
with similar approaches that aim at reducing the number of connection weights in deep neural networks.
For example, pruning algorithms have proved very effective for compressing large-scale models that
need to be deployed on embedded systems with limited hardware resources [60], and sparse initialization
schemes based on network-level properties can lead to a quadratic reduction in the number of connections
with no decrease in accuracy [61].

A further non-trivial point is how to define the functional modules of a deep neural network. There is
not an a priori definition about the function of the neurons in a deep learning system, as the overall activity
of the network nodes is very complex and cannot be classified, for example, by a binary variable (e.g.
inhibitory/excitatory neuron). Here, we have proposed to approximately characterize the neuron function
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FI1G. 9. Some receptive fields of the third hidden layer, highlighting the presence of many dead units.

by visualizing its receptive field. The receptive field is a complex, non-trivial emerging description of
the overall activity of each neuron in a given layer. Therefore, it is a highly abstract representation of
the neuron function and it might not always have a clear interpretation. However, we have proposed that
functionally similar neurons can be detected by clustering the corresponding receptive fields, thereby
allowing to define functional sub-networks. The analysis of the topological properties and weighted
architectures of these subgraphs hardly gives clear explanations on how the neural network works.

In conclusion, in this work we have proposed a network science perspective to unveil topological
and functional properties of deep learning systems. Although the relation between structure and function
remains only outlined, it is a first step to go beyond the black-box use of such learning systems. In
particular, our work highlights how some topological properties (i.e. emergence of inhibitory links)
depend on the type of input signals, and thus might be initialized in a non-random way that is closer to
the configuration observed after training. Other properties, such as system redundancy, do not depend on
the input distribution, but might instead depend on the architecture of the system itself (i.e. number of
neurons in each layer or the inclusion of sparsity constraints). An interesting future perspective will be
to relate these results with the recently proposed hypothesis of criticality in deep learning [62]. A related
issue would be to characterize the stability of learning in deep neural networks with respect to random
attacks and link failure [25, 63, 64]: how many edges can we delete before the learning system will stop
working?

We believe that our investigation represents a small step toward the challenging goal of developing
analytical techniques for interpreting and understanding deep learning systems [65, 66]. Even though
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18 A. TESTOLIN ET AL.

deriving analytical descriptions of such complex, self-organizing systems might seem daunting, it has
been recognized as one of the most fundamental issues to be solved in the near future [67]. Indeed,
these powerful Al systems are already operating in our societies, and international regulatory agencies
are pressing scientists and engineers to ensure that Al systems will produce human-understandable
explanations of their automated decisions [68].
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