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Abstract—Several techniques for wireless networking, such as
opportunistic spectrum access, or self-healing networks, may be
seen as using a form of cognition, meaning that they mimic
reasoning processes of intelligent beings. We propose to expand
this cognition-based process by exploiting the parallel processing
power of the infrastructure, so as to go beyond cognition as
is meant by these approaches. We leverage novel approaches,
taken from cognitive science and artificial intelligence, involving
not only supervised but also unsupervised learning, and we
envision their application to systems for video over wireless. The
transmission of multimedia content, and its adaptation to the
condition of the communication infrastructure, i.e., the wireless
channel or the content delivery network, are envisioned as
particularly critical steps for the development of latest generation
mobile networks. For this scenario, we propose and evaluate a
video classifier based on a Restricted Boltzmann Machine that
tries to extract abstract features of videos from the analysis of
the sizes of a few coded frames. These features can then be
exploited by the communication network itself to optimize video
transmission based on its content.

Index Terms—QoE; video delivery; SSIM; resource manage-
ment; video admission control; feature extraction; generative
models.

I. INTRODUCTION

Wireless communication networks are becoming more and
more complex. Communication over unused TV bands ex-
ploiting the so-called white spaces through cognitive radios
[1], self-organizing ad hoc networks for temporary events and
emergency applications [2], or the envisioned next generation
cellular systems [3], all provide clear evidence of this trend.
As the consumers demands and their dependence on wireless
services, and correspondingly the complexity of networks,
grow, there is a need to efficiently manage the scarce resources
without overburdening the network control and the end users.
Current policy-based approaches are wasteful and will not be
able to deal with the heterogeneous wireless networks of the
future. Applying cognition is a way to deal with the challenges
of future wireless networks. In different forms, cognition is
applied in several networks today, e.g., from cognitive radios
to biologically inspired networking solutions [4]–[7].

However, we argue that, in order to efficiently use the
wireless resources across a network, it is critical to consider all
the players in a wireless ecosystem in a more coherent manner.
Thus, we propose the new concept of cognition-based network,
which is more than a collection of smart or cognitive radios
and instead includes a cognitive infrastructure for learning,
management/decision, and dissemination of information.

Our research approach focuses on deconstructing cognition
into the following core functionalities, that are part of the so-
called cognition cycle proposed in [5]: 1) situational awareness
in the form of observation and sensing ability, 2) learning from
new data and situations, and 3) recollection and exploitation
of past experiences and situations to plan, decide and act.
We will consider both supervised and unsupervised learning
techniques, and will focus on several system concepts: (i)
an ideal, centralized, full-knowledge system as an optimistic
benchmark; (ii) a practical system in which each node indi-
vidually runs model-based optimization algorithms using local
information; (iii) a collaborative system in which nodes ex-
change information with their neighbors, and where network-
level optimization might be seen as an emergent property of
a community of wireless devices. The application of these
approaches enables the derivation of a wireless ecosystem
with more advanced capabilities, i.e., able to identify operation
paradigms and learn from new data, so as to make autonomous
decisions and act similar to what a human being would do.

As a possible application of this approach, we will show
how machine learning techniques can be exploited to evaluate
efficient video encoding rates to transmit video content over
wireless. In particular, we consider a set of several video flows,
each encoding with different compression rates. The quality
experienced by the end user when receiving each flow under
a given compression rate can be estimated quite accurately
by means of objective evaluations such as the self-similarity
(SSIM) index. In this way, it can be shown that different
encoding rates do not always result in the same quality of
experience for the end user, mostly depending on the actual
content of the video. This poses a critical challenge in that,
ideally, the resource manager would like to compress the
video down to a rate that significantly reduces the amount
of data without decreasing the quality perceived by the end
user. However, such a choice varies from flow to flow.

In this context, we observed that the quality experienced by
the users can be significantly well estimated without actually
inspecting the video content, but just using the sizes of the
video frames, which are easy to derive directly from the
encoding process. Also, we noted that temporal and spatial
correlation properties of the video flows lead to easily pre-
dictable structures in terms of frame size. Thus, a machine
learning approach appears to be quite useful to learn, and in
certain cases even predict, the end quality experienced by the
user under a given compression level of the video flow.

In this paper we present our vision of “cognition-based



networks” as an evolution of the cognitive paradigm, and
we discuss its application to the optimization of multimedia
transmission over wireless networks. We then present some
preliminary results that support our approach, showing that
machine learning techniques can indeed be exploited to clas-
sify video sequences and infer the end quality of a video flow
from the size of just a few frames. This opens new perspectives
of context aware wireless networking that can be used to
optimize radio resource management yielding a better quality
of experience for the wireless users.

The rest of this paper is organized as follows. In Section II,
we describe general related work on cognition-based networks.
Section III details models for video transmission over wireless
networks and discusses the need for cross-layer optimization
between the source coding rate selection and the conditions
of the communication infrastructure. Section IV presents our
proposed methodology, which makes use of a Restricted
Boltzmann Machine to infer a forecast of the resulting video
quality from a sample of the initial video frames of the
flow. Some numerical results are presented and discussed
in Section V, and finally Section VI concludes the paper
and highlights possible future developments, where cognitive
resource management within the communication network is
applied to other parts of the protocol stack.

II. COGNITION-BASED NETWORKS

Advanced systems such as heterogeneous networks or wire-
less platforms for emergency applications are becoming more
and more complex and will be hard to manage and optimize
without the ability to self-organize and learn. The goal is
to develop systems that use data-driven and model-based
learning as the basis of self-organization and optimal resource
utilization in wireless networks.

Cognition as a way to deal with the challenges of future
wireless networks has been suggested in various forms, in-
cluding cognitive radios [5], as well as self-organizing and
biologically-inspired networks [6], [7]. Adaptability at the
physical layer has been extended to communication networks
in a new paradigm called cognitive radio network [4], where
the spectrum owned by primary users is shared by (secondary)
cognitive radios, which should communicate without harming
the primary users. These works still adopt a rather traditional
view of communications, and do not fully address and/or
exploit the essence of cognition, which includes intelligent
observation, learning, decision-making, and emergent and col-
laborative behaviors, which has been considered only by very
few studies. Among these, [8], [9] are worth mentioning, in
that they propose such an approach to be applied to the whole
protocol stack, not only to dynamic spectrum access.

Following these steps, we advocate to employ cognition
across the protocol stack in a wireless networking ecosystem
for achieving autonomous network operation and efficient
resource usage. In a cognition-based network, each node both
exploits local information to achieve its goals, and shares
it with its neighbors to promote collaborative intelligence
and emergent behaviors. Thus, nodes are able to adapt to
the environment conditions, using a collaborative framework

based on the concepts of collective or group intelligence [7],
used by most living organisms, from bacteria to humans.

Models of learning and behavior have been developed by
cognitive scientists over many years. Recent computational
approaches have greatly improved our understanding of how
cognition and intelligent behavior in humans and animals
emerges. However, it may not be possible to directly apply
such models to our own context, e.g., as they may require
a prohibitive amount of computational resources that are
not available in widespread communications devices, such as
smartphones or even sensors. Therefore, some deep rethinking
may be needed in order to be able to apply current knowledge
on cognitive models to our scenario of interest. In addition,
cognitive science itself is a very dynamic field, and novel
and more powerful models are recently being proposed that
may be suitable for application in the area of wireless system
resource management. Examples of recent approaches that
may be taken as a starting point include learning of generative
models, where the “learner” estimates a probabilistic model of
the system, and evolutionary computation [10].

We aim for a network architecture in which communication
nodes perform sensing and data collection as well as dissemi-
nation of appropriate information. Furthermore, we investigate
a novel cognition-based model to represent and optimize the
protocol stack, using machine learning techniques.

The building blocks for such an approach are as follows.
Network architecture — Future systems are likely to

have positional and temporal awareness as well, so that the
sensing data can be spatio-temporally tagged. As an enabler
for the collection of real system data, this architecture is
critical to integrate cognition across the network [8] and
must enable network-wide observation and sensing (beyond
spectrum occupancy, and including quantities such as traffic,
channel statistics, error events, interference) as well as data
collection from various layers of the protocol stack.

Machine learning aided network optimization — An
important component is the ability of the cognitive entity to
adapt its operation based on past situations that are likely to
repeat again, also including collaborative behaviors. Proper
statistical principles can be used to develop generative models
that discover distributed and non-trivial representations of the
input. These models will then be used to design techniques
in which nodes are considered as agents in a collaborative
framework, where partial coordination and a shared objective
will lead to emergent behavior and collective intelligence.

Practical evaluations — Several applications can serve as
proofs of concept and also to derive novel cognition-based
networking techniques, depending on the problem at hand.
For example, in the following we will report our findings on
the application of a cognition-based approach to the trans-
mission of video content over a wireless network, involving
management of the encoding rate of video and the automatic
recognition of the related quality parameters.

III. VIDEO OVER WIRELESS

The problem of video over wireless is very relevant, since
in 2012 the mobile video traffic already exceeded 50% of



the total data traffic in the Internet, and forecasts foresee a
further increment to over 66% of the total mobile data traffic
by the end of 2017 [11]. Therefore, supporting high quality
video services by means of femto-cells and WiFi hotspots is
challenging and requires to adjust the video encoding rates
according to the available transmission resources.

In this paper, as in [12], [13], we consider the transmission
of video content encoded through Scalable Video Coding
(SVC), an extension of Advanced Video Coding (AVC) mech-
anisms such as H.264 [14]. The general idea of this scheme
is to consider the bitstream transporting the video as divided
into layers, one Base Layer (BL) and multiple Enhancement
Layers (ELs). The BL consists of independently encoded video
frames and by itself is only able to provide a low-quality
transmission of the video content. The ELs are incrementally
encoded based on the BL, and therefore require much lower
transmission capacity, but cannot be decoded by themselves.
However, they are able to provide further enhancements to the
quality of the end user.

Thus, depending on the state of the communication infras-
tructure (communication channel, communication network), it
may be convenient to transmit just the BL, or the ELs as
well. Also, retransmission policies in case of errors can be
variable [15]. Generally speaking, although there are analytical
frameworks to determine the solution to this optimization
problem and its inherent trade-offs, the formulation itself is
made challenging by the fact that the required interaction is
not simply a generic “cross-layer” exchange, but indeed it
encompasses the entire protocol stack, from the application
to the physical layer, also traversing transport, network, and
medium access layers.

Instead of deriving a theoretical abstract framework, we
specifically focus on an H.264-AVC format as reported in
the Joint Scalable Video Model software of [16]. This means
that we consider NR = 18 possible compression levels; such
a number results in a granularity, which is fine enough to
enable general considerations. Thus, the approaches derived in
the following can also be easily extended to higher values of
NR. The NR compression levels are denoted with increasing
index from 1, corresponding to the flow with best quality
(and lightest compression) to NR, where quality is worst and
compression is heaviest.

We adopt a rather simple top-down approach, where we
take into account that using high encoding rates will result
in intense bandwidth usage but will determine a good quality
for the end user; conversely, choosing lower encoding rates
will cause to transmit less data (hence saving bandwidth, or
enabling the transmission of more users on the same channel),
but also result in a lower, sometimes unacceptable, quality.
We denote with Rv(c) the data rate of the video when the
compression level is c, with c = 1, . . . , NR. An interesting
parameter is the rate scaling factor (RSF) for a compression
level c, denoted as ρv(c), and defined as the logarithm of the
normalized video rate [12]:

ρv(c) = log

(
Rv(c)

Rv(1)

)
(1)

where the normalization is made with reference to the highest
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Fig. 1. (a) Logarithm of the normalized rate, ρv , versus compression level c
for different video clips. (b) SSIM versus ρv .

video rate (lowest compression), i.e., level 1.
The reason for taking the logarithm is to empirically eval-

uate the applicability of a Weber-Fechner-like law [17] to the
scaling procedure. Indeed, such a law is relevant in terms of
both determining the minimum noticeable difference in quality
(Weber law) and also tuning the experienced quality depending
on the logarithm of the stimulus (Fechner law), which is the
RSF in our case.

To substantiate this argument, we collected a set of NV=38
test video clips, encoded in CIF format, and for each clip
v we generated NR different H.264 encoded versions with
progressively decreasing rates, Rv(c), with c = 1, . . . , NR.
All the flows have a periodic structure of 16 frames, that
in the H.264 setup constitute a Group of Pictures (GoP), a
video unit carrying both base and enhancement frames that
is periodically repeated. This means that the structure of the
GoP can be thought of as consisting of an independently
encoded frame (type I for H.264 videos), i.e., a BL frame, and
15 incrementally encoded frames (type P for H.264 videos)
belonging to ELs. The actual size of a frame, however, depends
on both its kind (i.e., on the specific layer of the incremental
hierarchy it belongs to) and the specific video content.



The scaling law of the video rate Rv(c) with the compres-
sion level c depends on the video content. As visible from
Fig. 1(a), ρv decreases when the compression is increased, in
an approximately linear fashion, albeit with a great variability
from one video to another. We observe that the relative rate
scaling with the quantization level is generally more pro-
nounced for slowly varying videos, such as Akiyo or Bowing,
while more dynamical videos, as Football, are less amenable
to compression. However, this intuitive relation between the
perceived dynamics of a video content and its potential for
compression is not always verified. This is the case, for
instance, of the Bridge close video clip that, while appearing
rather static at visual inspection, is still quite resistant to
compression, because of the continuous variation of the light
reflections on the water surface. It is therefore, of great interest
to develop automatic methods to estimate the rate scaling law
of a video based on its content.

However, it is also important to remark that the decrease
in the compression rate does not always correspond to an
equivalent increase in the quality of experience for the end
user. The assessment of a “good,” “acceptable,” or “bad”
quality is heavily varying depending on the video content.
Nonetheless, there exist objective indicators of video quality.
The Peak Signal to Noise Ratio (PSNR), which has been
widely used in the literature until a few years ago as an
objective measure of image and video quality, is now generally
discredited as video QoS metric because the pixel-by-pixel
comparison of two images may fail to capture the visual and
structural similarities of the images. Therefore, the research
community has been searching for other objective indicators
of video quality, such as the widely used structural-similarity
index (SSIM) [18], which provides a better indication of the
quality of an image (or a video) as perceived by a human
observer.

The SSIM index can be used to characterize the degradation
of the video quality when increasing the compression ratio of
a video encoder. For instance, comparing a video clip encoded
at a certain rate with the same video with full quality, we can
determine the SSIM value for each video frame and, then,
consider the average. In this way, we get a real value in the
[0, 1] interval: the larger the value, the better the video quality.

If we now plot the mean SSIM versus the normalized log-
rate ρv , we obtain the graph in Fig. 1(b), where we see that
also the scaling of the SSIM with the source rate depends on
the characteristics of v. From the application point of view,
knowing the SSIM characteristics of videos sharing a common
link would make it possible to allot transmission resources in
a quality-aware manner, as done in [12]. Unfortunately, the
extrapolation of the SSIM characteristic of a video clip by
standard frame-comparison methods is time and computational
demanding.

However, our investigations when plotting Fig. 1 seem to
suggest that there is a strong dependence between the size of
the frames in the video and the resulting SSIM. The underlying
connection might be that, regardless of how it is actually
compressed, the quality experienced by a user for a specific
video (and hence, the SSIM) is strongly related to the dynamic
evolution of the content. Small-size frames denote either a

heavily compressed video or an irrelevant or uninteresting
content, hence the perceived quality is low, anyway. Thus,
we should be able to infer some of the SSIM characteristics
of a video from higher-layer features, such as the size of
the H.264 compressed frames when represented as a GoP.
Moreover, indicators such as the frame size (at least for a
frame in the same position within the GoP structure, which
is periodically repeated) are rather easy to predict, since they
are slowly varying for the same flow, mostly depending on the
characteristics of the video flow (and its represented content)
as a whole.

In the following section, we will exploit this correlation
to outline an approach based on a generative model that is
able to identify the quality characteristics, i.e., the SSIM,
from the frame size of the flow. Such a machine learning
technique can also be used in a predictive fashion, i.e., to
identify the evolution in the user experience for a given flow,
also depending on the video compression factor, and can serve
to guide the management of network resources that enable
video transmission.

IV. RESTRICTED BOLTZMANN MACHINES

A key component of the proposed system is represented
by an unsupervised learning module, which we implemented
using a Restricted Boltzmann Machine (RBM) [19]. An RBM
is a stochastic neural network whose structure, represented in
Fig. 2, can be interpreted as an undirected graph including two
layers of neurons. This means that a set of observable variables
(so-called “visible units”) is fully connected to a set of latent
variables (so-called “hidden units”). Each edge in the graph
has an associated weight, which represents the strength of the
connection between the linked variables. The term “restricted”
means that the graph is bipartite, i.e., there are no connections
among units of the same layer.

hidden layer 

visible layer 

p(h|v) p(v|h) 

Fig. 2. The structure of a Restricted Boltzmann Machine.

Our proposal is to use an RBM to first extract a use-
ful set of features from the encoded video streams, which
enable the automatic assessment of the videos according to
some high-level characteristics, such as the dynamics of their
content. After each video has been represented using this
set of abstract features, a subsequent supervised classification
might be easily carried out even by a simple linear classifier,
thereby making it possible to effectively assign a label to
each GoP in agreement with its SSIM characteristics. The
classification process is therefore decomposed into an initial,
unsupervised phase and a subsequent supervised phase. The



rationale behind this approach is given by recent advances in
learning generative models [20], [21], whose aim is to discover
the latent causes that govern the distribution of a set of data by
trying to accurately reconstruct the training patterns through
maximum likelihood learning. In particular, the introduction of
the contrastive divergence algorithm [22] makes it possible to
efficiently train very powerful non-linear models, like RBMs,
which were usually considered computationally intractable.

Once the generative model extracted meaningful latent fea-
tures from the data, this high-level, abstract representation can
be used to perform different supervised tasks. In the machine
learning literature, this process is usually referred to as transfer
learning [23], because the knowledge extracted from the data
can be readily used in many different classification scenarios.
The complete weight matrix represents the parameters of the
model, which are tuned during the learning phase according
to the contrastive divergence algorithm. Intuitively, the visible
units are clamped to a particular instance of the data, and
the goal of the model is to accurately reconstruct their value
by discovering useful features shared among all the patterns
in the training set. In our case, the values of visible units
correspond to the sizes of the sequence of frames contained
in a GoP, and the goal of the hidden units is to discover their
latent structure. Once the RBM has learned a set of latent
features that characterize the training data, we can use this
high-level representation to train a supervised module. The
idea is that the non-linear mapping into the feature space
captures the main factors of variations in the input data,
thereby making it possible to separate the relevant classes
even using a linear classifier. This approach is commonly
employed in other machine learning techniques, like Support
Vector Machines [24], in which the mapping is usually carried
out by a kernel function. The use of a linear classifier to
assess the degree of explicitness of internal representations
in hierarchical generative models has also been shown useful
in cognitive modeling approaches [25].

V. NUMERICAL RESULTS AND DISCUSSION

In this section we present a selection of the results we
obtained by applying the cognition-based approach to video
classification. The basic idea is to design an RBM that is
capable of sorting out specific features of a video content from
the analysis of application-related data, such as the sequence
of frame sizes in a GoP. During the unsupervised training
process, the RBM “learns” an internal representation of the
input patterns, by extracting some features that may be difficult
to capture in the raw data. The RBM maps the input vectors in
an abstract structured space, which makes it easier to perform
a supervised classification of the input, starting from those
abstract representations. Therefore, placing a simple linear
classifier on top of the hidden layer of the trained RBM, and
performing a supervised classification task, we can get better
results than applying the classifier directly to the raw data.

To prove the effectiveness of such an approach, we designed
an RBM with 32 input units, corresponding to the (normalized)
size of the 16 frames of a GoP, coded at two different
quantization levels, namely c = 1 (full quality), and c = 9

Fig. 3. Video recognizing accuracy for our proposed approach.

(intermediate quality). The number of units in the hidden layer
has been varied from 50 to 200, and finally set to 70 units,
which offers a good compromise between the complexity of
the model and the accuracy of the results. Therefore, the
dataset consists of the vectors of frame sizes for each GoP of
all 38 test video clips, coded at c = 1 and c = 9. The dataset
is hence split into Training Set (TR) and Test Set (TE), the
first used to train the RBM and the linear classifier, and the
second to test the performance of the trained network.

We applied the cognition-based approach to perform three
different tasks of increasing complexity: i) assigning a random
GoP to the video it belongs to; ii) classifying the GoPs into
four SSIM-based classes; iii) estimating the SSIM character-
istic of a video. For the second task, we considered the four
classes defined in [12], based on the value of ρ for which
the SSIM of each video crosses the threshold F ∗ = 0.95
that discriminates between “fair” and “good” perceived quality
levels.

In Fig. 3 we report the accuracy obtained in video recog-
nition (left) and video classification (right). In order to assess
the advantage offered by the RBM approach, we compare the
results obtained by training the linear classifier on the hidden
layer of the RBM (shaded columns) with those obtained by
applying the classifier directly to the raw data, i.e., the GoP
frame size vectors (textured columns). The variation of the
classification accuracy in different tests is represented by the
error bar on top of each column.

At a first glance, we note that the accuracy in both video
recognition and classification achieved by the RBM approach
is significantly larger than that obtained by using the classifier
on raw data, thus confirming the capability of the RBM to
abstract the input data into a better structured representation.
The accuracy gap between the two approaches is more marked
in video recognition, for inputs taken from both TR and
TE. Quite interestingly, we note that the RBM approach
achieves comparable accuracy in both video recognition and
classification tasks, while the other approach performs better
in the second task. The reason is that the input space formed
by the frame sizes is not separable in clusters associated to the
different videos by means of simple, planar functions, while



the alternative representation provided by the hidden units of
the RBM is more amenable to such a linear discrimination.
Instead, the raw data seem to be sufficiently structured to
permit a (fairly accurate) classification of the videos in the
four SSIM-based macro classes, which means that the quality
characterization of a video sequence is indeed strictly related
with the distribution of the frame size in its GoPs.

Deeper insights on the latter aspect can be gained by
comparing the performance of the two approaches in the
third task, i.e., the estimation of the SSIM characteristic of
a video clip from the size of the frames in a GoP. This
analysis, which is presented in detail in [13], confirms that the
internal representation learned by the RBM is indeed capable
of capturing critical features of the data and can be used to get
a fairly good estimate of the SSIM characteristics of a video
from the size of the frames of a few GoPs. As shown in [13],
such an estimate is sufficiently accurate to be used by video
admission control and resource allocation algorithms that aim
at maximizing the quality of experience of the end users.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a cognition-based framework
for network optimization and discussed its possible application
to the context of multimedia delivery over wireless networks.
The proposed approach combines unsupervised and supervised
machine learning techniques to supply wireless systems with
much deeper awareness about their own operations and the
environment, so that they can learn relationships among net-
work parameters, protocols, and context. Consequently, they
will plan and make decisions in order to achieve local, end-
to-end, and network-wide performance goals through efficient
resource management and parameter optimization.

As a proof of concept, we showed that the combination
of an unsupervised learning model (an RBM) with a linear
classifier is much more effective in extracting content-related
features of video sequences than a simpler approach that acts
directly upon the raw data, i.e., the size of the encoded video
frames. This information can be then exploited in the design
of resource management algorithms that keep into account the
quality-of-experience of the end users [13].

As a future extension, a promising research direction would
be to combine multiple RBMs to obtain a deep learning system
[26], which could make it possible to extract higher-order sta-
tistical information by building a hierarchical generative model
of the training data. Furthermore, we will investigate how these
techniques can be applied to other optimization problems (base
station selection, protocol parameter optimizations) and we
will implement the resulting procedures in a testbed that is
presently under development.
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