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Abstract—The rapid growth of video traffic in cellular net-
works is a crucial issue to be addressed by mobile operators.
An emerging and promising trend in this regard is the de-
velopment of solutions that aim at maximizing the Quality of
Experience (QoE) of the end users. However, predicting the
QoE perceived by the users in different conditions remains a
major challenge. In this paper, we propose a machine learning
approach to support QoE-based Video Admission Control (VAC)
and Resource Management (RM) algorithms. More specifically,
we develop a learning system that can automatically extract the
quality-rate characteristics of unknown video sequences from
the size of H.264-encoded video frames. OQur approach com-
bines unsupervised feature learning with supervised classification
techniques, thereby providing an efficient and scalable way to
estimate the QoE parameters that characterize each video. This
QoE characterization is then used to manage simultaneous video
transmissions through a shared channel in order to guarantee
a minimum quality level to the final users. Simulation results
show that the proposed learning-based QoE classification of video
sequences outperforms commonly deployed off-line video analysis
techniques and that the QoE-based VAC and RM algorithms
outperform standard content-agnostic strategies.

I. INTRODUCTION

Mobile data and video services are taking a key role in
everyone’s daily life. According to the latest global mobile
data traffic forecast in [1], in 2012 the mobile video traffic
already exceeded 50% of the total data traffic in the Internet
and a further 75% increment of the video traffic is expected by
2017, accounting for over 66% of the total mobile data traffic
by the end of the forecast period. Furthermore, widespread
heterogeneous high-speed wireless coverage by means of LTE
femto-cells and WiFi hotspots will increase the number of
users that require mobile access to high quality video services,
with dramatic impact on the access network performance in
both uplink and downlink. Therefore, mobile operators face
the issue of supporting high quality video services with the
available network resources.

A possible way to reach this goal is to dynamically adapt
the video coding rate to the available transmission resources in
order to always optimize the QoE perceived by the final video
consumers. As observed in [2], reducing the encoding rate of a

video is indeed much less critical in terms of QoE degradation
than increasing the packet loss probability or the delivery
delay. However, the perceived QoE at a certain encoding rate
depends on the video content, e.g., scene and source dynamics
and frame-by-frame motion and, therefore, it is not easy to
predict.

In this paper, we consider a large set of H.264-AVC [3]
video clips coded at different source rates, which correspond
to different perceived quality levels. We then assess the quality
level of each video in terms of the average Structural SIMi-
larity (SSIM) index [4]. After a suitable normalization and re-
scaling of the encoded source rate, we are able to analytically
approximate the empirical SSIM-to-bitrate characteristics of
each video by means of a polynomial expression, which is then
used by QoE-aware VAC and RM algorithms. Unfortunately,
this method requires to calculate the SSIM rates for each video
and to fit the corresponding polynomial function, which is
computationally prohibitive in realistic scenarios. However, we
show that the polynomial coefficients can be reliably estimated
using a machine learning approach [5]. Crucially, the proposed
method does not require to process the original content of the
video frames, but only uses network information available after
the encoding process, namely the video frame size. The ratio-
nale is that the SSIM-to-bitrate function of a video is closely
related to the dynamics of its content, and this information
is reflected in the structure of the corresponding sequence
of frame sizes after the encoding [6]. Indeed, the content
of a video influences the structure of its compressed version
(e.g., highly-dynamic videos, containing complex spatial and
temporal structure, will likely result in larger frame sizes).
Thus, we build a training dataset containing the frame sizes
of the different Group-of-Pictures (GOPs) of the test videos,
and upon this dataset we train a Restricted Boltzmann Machine
(RBM; [7]) in an unsupervised fashion. The RBM captures the
latent features such as input data, thus providing a high-level
representation that can be exploited by supervised learning
algorithms to estimate the polynomial coefficients that estimate
the SSIM-to-bitrate characteristics of unknown videos, which
is then used by the aforementioned QoE-aware VAC and RM
algorithms.



As a proof of concept, we apply our approach to a simple
transmission scenario with a congested link shared by mul-
tiple video flows, e.g., a wireless downlink video streaming
scenario. We show that, after an off-line learning phase, our
approach can run online, performing VAC of unknown videos
with basically negligible computational complexity.

To summarize, following [5], we extend the approach in [6]
by using a machine learning scheme to estimate the SSIM-to-
bitrate characteristics of unknown videos from the distribution
of the coded frame sizes, and to use this characterization in
QoE-aware VAC and RM algorithms. By means of simula-
tions, we show that combining unsupervised feature extraction
and linear classification provides better results than a more
basic approach that tries to extract the SSIM characteristics
directly from the raw data. Furthermore, we show that QoE-
based VAC and RM algorithms make a better use of the avail-
able transmission resources than content-agnostic schemes.

The remainder of the paper is organized as follows. In
Section II we review the related work. Our video analysis
is presented in Section III. The machine learning approach is
described in Section IV and validated in Section V. In Sec-
tion VI we describe the QoE-based and QoE-agnostic resource
management algorithms, whose performance is compared by
simulations in Section VII. Finally, Section VIII concludes the

paper.

II. RELATED WORK

Prior works on video detection over communication net-
works mainly focus on extracting objective networking and
quality metrics. In [8] the authors classify videos based on
selected common spatial-temporal audio and visual features
described by the MPEG-7 compliant content descriptors. Due
to the complexity of the method, the authors make use of
the principal component analysis (PCA) to reduce the set
of features under study. Nevertheless, this work is strictly
dependent on the MPEG-7 multimedia format. Scene detection
mechanisms were developed in recent years based on predic-
tive analytical models. In [9], the authors propose a scene-
change detector for video-conference traces that works based
on the average number of bits generated during the scenes,
and is modeled with a two-state Markov chain. The proposed
low complexity method comes at the cost of requiring full
knowledge of video content to properly set the thresholds for
the scene recognition.

Further related works focus on quality prediction models
to capture the behavior of video scenes. In [10], an objective
model to predict the quality of the lost frames for 3D videos
is designed based on the header information of the video
packets at different ISO/OSI layers. This model is able to
roughly capture the SSIM of some video clips based on the
size of the lost frames and via deep packet inspection, which
is usually avoided by operators in cellular deployments due
to the complexity and national privacy rules. Nevertheless, in
[11], the authors claim that the frame loss probability, which is
mainly a network metric, provides only limited insight into the
video quality perceived by the user. Moreover, the authors state
that the rate distortion curves drawn using the Peak Signal-
to-Noise Ratio (PSNR) provide a limited representation of the

perceived video quality, thus improved quality metrics to better
represents videos are needed.

In our work, we analyze and group video test sequences
based on the relation between video compression rate and
SSIM. It is widely recognized that the SSIM index improves
traditional objective QoE metrics like PSNR and mean square
error (MSE), which have proven to be inconsistent with the
human eye perception. Although the SSIM characterization
of a video sequence is computationally expensive, in [6] we
showed that it can be compactly represented by means of
polynomial curves that can be associated to each video. Tagged
videos can then be handled by simple traffic shaping mech-
anisms in case of network congestion or under-provisioned
network resources.

Despite its appeal, a major drawback of this approach is
that it requires to tag all the videos with the corresponding
polynomial coefficients [6]. Computing the SSIM-rate for
each video being transmitted is infeasible even in medium-
scale scenarios. An alternative approach is to use automatic
methods to support the tagging process [5]. Machine learning
algorithms represent the state-of-the-art in many classification
tasks, especially when the structure of the domain is difficult
to characterize. However, extracting information from visual
sequences has proven to be a challenging problem for machine
learning algorithms. In the so-called “content-based” video
retrieval [12], a range of different techniques can be applied
depending on the task of interest, e.g., video indexing, scene
recognition and/or classification, object tracking, and motion
detection.

The problem of automatic video processing is closely
related to that of image recognition, with the additional
complexity given by the temporal dimension of the data. In
recent years, advances in the theory and practice of prob-
abilistic graphical models and statistical learning led to the
development of extremely powerful learning systems, which
achieve state-of-the-art performance in several machine vision
tasks [13], [14]. Although the main application of these
systems has been primarily focused on still frames, there have
also been successful extensions to the temporal domain [15].
However, all the above-mentioned machine learning methods
are usually applied at the pixel level, or to some higher-level
representations obtained after additional pre-processing of the
raw images. Nevertheless, for the task of classifying different
videos depending on the dynamics of their content, we assume
that the relevant information is still preserved after the video
has been encoded to be sent on a transmission channel. In this
work, which builds on our preliminary position paper in [5],
we therefore propose to automatically extract a set of features
that can be used to describe the relevant characteristics of
the original videos, using only information available at the
network level. To our knowledge, this is the first attempt to
apply machine learning algorithms on this type of data for
such a purpose.

II1. VIDEO ANALYSIS

For the reader’s convenience, we report here the video
analysis framework described in [6]. We evaluate the objective



TABLE 1

MAPPING SSIM TO MEAN OPINION SCORE SCALE

SSIM MOS Quality Impairment
>0.99 5 Excellent Imperceptible
[0.95,0.99) 4 Good Perceptible but not annoying
[0.88,0.95) 3 Fair Slightly annoying
[0.5,0.88) 2 Poor Annoying
< 0.5 1 Bad Very annoying
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TABLE II
VIDEO TEST SET

Name Full quality Duration
rate [kbit/s] [s]
3inrow 11856 12
Srow1 11135 12
Akiyo 5387 10
Boblec 11504 12
Bowing 10325 10
Bridge_close 18246 66
Bridge_far 18304 70
Vtclnw 11210 12
Bus 16954 5
CaesarsPalace 17001 12
Cheerleaders 21757 12
City 14139 10
Coastguard 16570 10
Container 12229 10
Crew 16179 10
FlamingoHilton 25622 12
Flower 16335 8
Football 15806 3
Football_ext 18092 12
Foreman 14642 10
Hall_Monitor 16291 10
Harbour 17929 10
Highway 17529 66
Husky 24065 8
Ice 9517 8
Sign_Irene 14091 18
‘Washdc 12948 12
Mobile 19172 10
Mother_Daughter 11348 10
News 7824 10
Pamphlet 10917 10
Paris 12450 35
Redflower 14168 12
Silent 11586 10
Soccer 14063 10
Stefan 17589 3
Tempete 17850 8
‘Waterfall 14950 8

Fig. 1. Logarithm of the normalized rate p(c) versus compression level ¢
for different video clips.

QoE of the videos with the SSIM index, which is a full
reference metric that measures the image degradation in terms
of perceived structural information change, thus leveraging the
tight inter-dependence between spatially close pixels which
contain the information about the objects in the visual scene
[4]. SSIM is calculated via statistical metrics (mean, variance)
computed within a square window of size N X N (typically
8x8), which moves pixel-by-pixel over the entire image. The
measure between the corresponding windows X and Y of two
images is computed as follows:

Cuxpy +c1)(20xy + c2)
(13 + p3 +c1)(0% + 02 + co)

SSIM(X,Y) = (1)
with g and o2 denoting the mean and variance of the lumi-
nance value in the corresponding window, and ¢; and ¢, being
variables to stabilize the division with weak denominator (we
refer the interested reader to [4] for details).

The range of the SSIM index goes from 0 to 1, which repre-
sent the extreme cases of totally different or perfectly identical
frames, respectively. Tab. I shows the mapping between SSIM
and Mean Opinion Score (MOS) scale, which assesses the
subjective perceived video quality on a scale of 5 values, from
1 (bad) to 5 (excellent), as reported in [16].

We consider a pool of V' = 38 CIF video clips, taken from
standard reference sets.! Each video has been encoded with the
Joint Scalable Video Model (JSVM) reference software [18]
into H.264-AVC format at C' = 18 increasing compression
levels (i.e., quantization points), which correspond to as many

1Video traces can be found in [17], ftp://132.163.67.115/MM/cif

quality levels. The list of video names, full quality transmit
rate and duration are provided in Tab. II. Note that there are
no scene transitions inside each video sequence. The SSIM
of a frame encoded at compression level ¢ is obtained by
comparing the decoded frame with the full quality version
of the same frame. For practical reasons, we take the average
values of the SSIM index for each video.

We denote by 7,(c) the transmit rate of video v €
{1,...,V} encoded at rate ¢ € {1,...,C}, with r,(1) being
the maximum (i.e., full quality) rate. To ease the comparison
between different video clips, it is convenient to normalize
the video rates to the full quality rates. Moreover, following
the Weber-Fechner’s law that postulates a logarithmic relation
between the intensity and the subjective perception of a stim-
ulus, we introduce a logarithmic measure of the normalized
rate, here named Rate Scaling Factor (RSF) and defined as

p = log(ru(c)/rs(1)). @)

Fig. 1 shows p when varying the compression level c for the
different videos. We can see that the same compression level
c corresponds to different rates, depending on the content of
the videos. In general, given ¢, the more dynamic the video
sequence the larger the RSF p. Indeed, dynamic sequences
exhibit lower spatial and temporal correlation of consecutive
video frames and, hence, are less amenable to compression.

The dynamics of the video content also impact the perceived
QoE for a certain RSF value, as clearly shown in Fig. 2 that
reports the average SSIM of each video clip when varying
pv» (markers). We observe that the SSIM characteristics of a
video v can be approximated with an n-degree polynomial
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Fig. 2. SSIM of the different video clips when varying the RSF: markers show
empirical values, lines are obtained by the 4-degree polynomial approximation

F§(p).
expression, which takes the form
Fén) (P) ~1 + Ay, 1P + av,2p2 + av,3p3 +...F av,npn . (3)

The vector of coefficients a, = {a,;} provides a compact
description of the relation between the perceived QoE and the
RSF of a video v. It is hence conceivable to tag each video
with such a compact representation of its QoE characteristics
that can then be used by RM and VAC algorithms, as discussed
in the next section. We observe that, in general, a 4-degree
polynomial provides a quite accurate approximation of the
SSIM values in the range of p of practical interest (lines in
Fig. 2). Hence, in the following we consider i) (p) as the
reference (exact) QoE characteristics of video v € {1,...,V}.
However, in this paper we will also consider 3-degree and 2-
degree polynomial approximations of the SSIM that, while
providing a less accurate approximation of the SSIM curve,
are likely simpler to be estimated by the machine learning
model described in Sec. IV.

IV. MACHINE LEARNING APPROACH TO VIDEO
CLASSIFICATION

The computation of the exact SSIM characterization of a
video sequence is computationally demanding and infeasible
in many practical cases. To overcome this problem, following
the rationale described in [5], we propose a machine learning
approach that provides a fairly accurate estimate of the SSIM
characteristics of a video from the size of the frames coded in
a GOP. As previously mentioned, we postulate that the SSIM
characteristics of a video are closely related to the dynamics
of its content, and that this information is preserved in the
structure of the corresponding sequence of frame sizes after
the encoding. However, extracting the SSIM characteristics
of a video directly from the raw data, i.e., the frame sizes, is
problematic because of the non-linear and hidden interrelations
between the two quantities.

The fundamental idea behind our approach is to learn a
generative model to capture these non-linearities, providing an
alternative representation of the input data that is amenable to
classification even by means of linear discrimination methods.
This strategy has been shown to be very effective in several
machine learning scenarios, and resembles that used by the

hidden layer

p(hlv)

NN D7
S s
// LR KA \\

R

visible layer

Fig. 3. Graphical representation of a Restricted Boltzmann Machine.

so-called “kernel methods” like Support Vector Machines [19],
which first perform a non-linear projection of the data into a
(usually higher-dimensional) feature space, and then exploit a
linear optimization method to classify the data based on their
structural similarities.

More specifically, our learning framework consists of two
main phases. First, unsupervised learning is used to extract an
abstract representation of the raw data that captures descriptive
features of the video. Then, supervised learning is performed
to create a mapping between the abstract representations and
the corresponding SSIM coefficients of the related videos.

A. Unsupervised phase: the Restricted Boltzmann Machine

Our approach relies on a powerful family of generative
models, which can be implemented as stochastic recurrent
neural networks known as Boltzmann Machines [20]. They
can be interpreted as probabilistic graphical models, where
connections between units are symmetric, i.e., with equal
weight in either direction. The input to the network is given
through a layer of visible (i.e., observed) units, which are
fully-connected to another layer of hidden units that are used
to model the latent features of the data. If there are no
connections among units of the same layer, we obtain the
so-called Restricted Boltzmann Machine (RBM) [7], which
is graphically represented in Fig. 3.

RBMs can be trained in a particularly efficient way, which
consists in iterating a positive and a negative phase [21].
During the positive phase, visible units are clamped to the
values of the data observed in the training set. The network
then propagates activations to hidden units, according to the
weights of the connections. If we consider binary units for
simplicity, each hidden unit h; is activated according to the
conditional probability

p(hj = 1lv) = o(c; + Zviwij) , “4)
7

where o is the sigmoid logistic function, c; is the bias term of
the hidden unit h;, and w;; is the weight of its connection with
the visible unit v;. The entire vector of hidden unit activations
constitutes an internal representation of the pattern observed
in the visible units. During the negative phase, instead, hidden
units are fixed and activations are propagated backward to
the visible units in a similar fashion, in order to accurately
reconstruct the original input vector. The objective of the
learning algorithm is therefore to iteratively adjust the values
of the connection weights until the network is able to generate
good reconstructions of the input patterns. From a probabilistic
standpoint, this corresponds to fitting a generative model to
the observed data using a maximum likelihood approach. In



e linear SSIM
> — 2
linear SSIM

----> —

Fig. 4. Scheme of the proposed learning framework, on which unsupervised
feature extraction (left) is followed by a supervised linear read-out (right).
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practice, this is usually accomplished by performing some
form of gradient descent over the likelihood function of the
training data. The reader could refer to [22], [23] for more
details about learning in RBMs and for the explanation of
important additional parameters of the algorithm.

In our case, the training set consists of the vectors of frame
sizes in each GOP of the videos in the dataset. Unsuper-
vised learning tunes the RBM model parameters (i.e., the
connections weights) with the objective of reproducing the
patterns presented in the visible layer, thereby minimizing the
reconstruction error. At the beginning, weights are randomly
initialized to small values (close to zero) and the reconstruc-
tions will be completely wrong. However, the learning process
iteratively adapts the weights until the network is able to
accurately reproduce the observed patterns. At the end of this
unsupervised learning phase, the values taken by the units in
the hidden layer provide an alternative and, hopefully, more
expressive representation of the input vector, i.e., of a certain
sequence of frame sizes in a GOP.

B. Supervised phase: the linear classifier

The estimate of the SSIM coefficients for a GOP is obtained
by placing a simple linear classifier on top of the hidden
layer of the trained RBM, and performing a supervised clas-
sification task. The idea is that some characteristics of the
data are not directly visible in the raw input patterns, but
can be discovered by the feature extraction process during
the unsupervised learning phase. Once the RBM has learned
good internal representations of the patterns by modeling their
underlying causes, it should be easier to perform a supervised
classification task starting from those abstract representations.

We use a simple linear classifier as read out module.
The discrimination between the possible classes is therefore
performed by exploiting a linear combination of the data
features. This choice is motivated by observing that the non-
linearities of the data should be captured by the generative
model during the unsupervised learning phase, which creates
more separable representations that could be easily read out
even by a linear method. Within this perspective, accuracy
of linear read-out can be considered as a coarse measure
of how well the relevant features of the data are explicitly
captured by the generative model [22]. Therefore, the use of
a linear classifier makes it easier to understand the quality of
the internal representations learned by the RBM, because we
can directly compare the classification accuracy obtained using
the raw input patterns with that obtained from the internal
representations of the RBM. A schematic representation of
this process is given in Fig. 4.

V. LEARNING FRAMEWORK PERFORMANCE

In this section we evaluate the performance of the proposed
RBM-based learning framework with respect to a linear clas-
sifier that acts directly on the raw data, i.e., the frame sizes
contained in a GOP.

A. Dataset and learning parameters

The system is tested on the video dataset described in
Section III. In order to make the size of the data uniform, we
consider the first 15 GOPs of each video, thereby discarding
shorter videos. Thus, we use 34 videos for a total of 510
data patterns, i.e., GOPs. Each GOP is formed by an inter-
coded frame (/), followed by 15 predicted frames (P). Due
to the limited size of the dataset, we test the performance
of the system using a k-fold cross-validation technique [24].
To this aim, we partition the dataset into 34 subsets (folds),
each including the 15 GOPs of a specific video. The RBM is
then trained using 33 folds (training set), and its generalization
performance is computed on the left-out fold (test set). This
way, 34 different RBMs are trained, each time changing the
left-out video to be used as test, and we report the mean
estimation accuracy over all the 15 GOPs.

The input to the RBM consists of 32 visible units. Each
input vector is obtained by concatenating the sizes of the
16 frames in a GOP, coded with compression levels ¢ = 1
(full quality) and ¢ = 9 (intermediate quality). The / and
P frame sizes of each GOP are normalized between 0 and
1, as this is the usual format of the input patterns used
for training neural networks. The size of the hidden layer
determines the complexity of the generative model, since the
number of free parameters in the model is given by the number
of connection weights. We test different layer sizes, with a
number of units varying between 50 and 200, and we find
that our results are robust with respect to this parameter.
We present results for a network with 70 hidden units. We
use a publicly available efficient implementation of RBMs
that exploits Graphic Processing Units (GPUs) to parallelize
the learning algorithm [25]. With the current settings of the
machine learning parameters, the learning phase converges
after about 50 epochs without exceeding one minute of run-
ning time. Regarding the supervised phase, a linear classifier
can be implemented as a single layer perceptron, on which
iterative learning is performed using the delta-rule. We use an
equivalent but computationally more efficient method, which
relies on the calculation of a pseudo-inverse matrix and is
readily available in some high-level programming languages
such as Python or MATLAB [22].

We remark that the unsupervised and supervised learning
processes are performed only once. When the RBM and the
coupled linear classifier are trained, the estimate of the SSIM
coefficients for unknown videos is extremely simple, and can
be performed online in negligible time.

B. Coefficients estimation accuracy

We assess whether the internal representation learned by the
RBM allowed to estimate the n coefficients of the polynomial
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Fig. 6. Examples of predicted polynomial curves with respect to ideal curve for two different videos.
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Fig. 5. Coefficients prediction error in terms of mean RMSE between the ideal
and predicted curve for each GOPs of the test video.

SSIM function for each GOP in the test set. To evaluate
the quality of the estimation, we compute the Root Mean
S(%uare Error (RMSE) between the exact SSIM curve, i.e.,
Fv4)(p), and the curve generated using the n coefficients
estimated by the classifier, which we denote by Fén)(p). In
Fig. 5 shows the mean estimation accuracy on the 15 GOPs
contained in each of the 34 videos of the test set (dashed
line). To better appreciate the performance of the RBM-based
learning architecture, we also report the RMSE for the SSIM
curves obtained by applying the linear classifier directly on
the raw data patterns (solid line). We see that the internal
representation learned by the RBM model is indeed capable
of capturing critical features of the data, thereby allowing to
increase the estimation accuracy for almost all test videos.

Fig. 6 offers a visual comparison between the exact and
estimated SSIM curves for two different videos. Fig. 6(a)
shows that the curve estimated using the RBM internal repre-
sentations (solid line) clearly exhibits a better alignment with
the exact SSIM curve (dashed line) than the curve obtained
directly from raw data (dotted line). Even in the few cases
where the RMSE is worse for RBM prediction, as that reported
in Fig. 6(b), the RBM estimate of the SSIM curve still remains
acceptable.

VI. SSIM-BASED RM AND VAC ALGORITHMS

In this section, we revisit the approach presented in [6],
which in this paper is used in conjunction with the learn-
ing framework of Sec. V. Given a mechanism to infer the
QoE characteristics of a video, we here develop VAC and
RM mechanisms that can make use of such information.
We consider a framework where different video clips are
multiplexed into a shared link of capacity R by a control unit

that performs VAC and RM. More specifically, the RM module
detects changes of the link capacity (e.g., due to concurrent
data flows or fading phenomena in wireless channels) and
triggers an optimization procedure that adapts the video rates
to maximize a certain utility function. Similarly, the VAC
module determines whether or not a new video request can
be accepted without decreasing the QoE of any video below
a threshold F™* negotiated, for instance, between operator and
video consumers. To this end, the VAC invokes the RM module
to get the best resource allocation for all the videos potentially
admitted into the system and, then, computes the expected
SSIM of each video by using (3). If the estimated SSIM is
below F* the last video admission request is refused, other-
wise the video is accepted and the rates of the videos in the
system are adapted to the new allocation of the transmission
resources determined by the RM module.

Formally, let R denote the transmission capacity that needs
to be allotted to the videos, and let I" = {~, } be an allocation
vector that assigns to the vth video a fraction v, of R, with
v, = 0 indicating that the video is not accepted into the
system. Although the H.264 encoding can only offer a discrete
set of transmit rates (see Fig. 1), in the formulation of the
optimization problem we assume that video rates can change
in a continuous manner. Under this assumption, the RSF of
the vth video can be expressed as

~ YR
v =1 . 5
pv = log (rv (1)) o)

The optimization problem addressed by the RM module can
then be defined as follows:

= <
Lopt arngaxU(F,R,{Fv}) s.t. 21;%71 (6)

where {F,} denotes the set of SSIM functions of the videos,
while U(-) denotes the utility function considered by the opti-
mization algorithm. We consider two baseline utility functions
that reflect different optimization purposes:

Rate Fairness (RF): Resources are distributed to all active
videos proportionally to their full quality rate, without con-
sidering the impact on the perceived QoE. In this case, the
optimal rate allocation for the ith video is simply given by

ry(1)
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so that the RSF of each video equals p = log(R/ >, 7;(1)).

@)

Yopt,v =
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Fig. 7. Performance comparison of our proposed algorithms when varying the channel capacity.

SSIM Fairness (SF): Resources are allocated according to
a max-min fairness criterion with respect to the SSIM of the
different videos:

UL, R, {F,}) = min F,(5,) )

Note that under the assumption of continuous rate adaptation,
the SF criterion yields the same SSIM, say ¢, to all active
videos. Given this target SSIM, the RSF for each video can
be easily found as p, = F, 1(p), where F ! is the inverse
of the QoE function F), (which is monotonic in the range of
interest). Therefore, the optimization problem can be easily
solved by searching for the maximum ¢ that satisfies the rate
constraint in (6), i.e., such that

1 -1
Eer(l)lon (@) <1. )

VII. COGNITIVE VIDEO ADMISSION CONTROL
PERFORMANCE

In this section we compare the performance of the VAC and
RM algorithms described in Sec. VI by means of simulation.

We consider a scenario where a transmission link is shared
among the users, e.g., the wireless downlink channel of a
cellular system, and the VAC mechanism allows the admission
into the system and the transmission of a video under the
constraint that the quality does not fall below a certain SSIM
threshold that we set to F'* = 0.95, which corresponds to good
quality (MOS of 4, see Tab. I).

The video generation process is simulated as a Poisson
process with A = 0.66 requests/s, where each video request
refers to a video randomly picked from the dataset. Denoting
by T the average duration of a video sequence, we then
have an offered load of AT ~ 11 videos, which corresponds

to an aggregate rate request for full video quality of about
G ~ 161 Mb/s.

Video requests are processed by the VAC algorithms de-
scribed in Sec. VI, and resources are allocated accordingly.
In particular, we consider four different flavors of the SF
algorithm, corresponding to different choices of the SSIM
function F,(p), namely:

e SF-Exact based on the exact SSIM curve, i.e., F,(p) =
FY (p);

e SF-RBM-n based on the n-degree polynomial estimation
given by the RBM model, ie., F,(p) = E™(p), with
n € {2,3,4}.

A. Results

We compare the algorithms in terms of: (i) average number
of admitted videos, (ii) average SSIM of admitted videos, (iii)
blocking probability of a video request, and (iv) quality outage
probability, i.e., probability that the quality of an accepted
video drops below the minimum threshold F* during the
session. Note that with SF-Exact there is no quality outage,
therefore this performance index captures the impact of the
SSIM estimate errors of the RBM-based methods.

Fig. 7 shows the performance indices when varying the
channel rate R with respect to the nominal average rate request
G for full-quality videos. At first glance, we observe that
the SF policies always perform better than RF, and accept
more videos with above-threshold quality. This confirms that
content-aware admission and resource allocation policies are
much more effective than traditional content-agnostic policies
in a QoE framework. It is interesting to observe in Fig. 7(b)
that the average SSIM of the active videos is well above the
minimum required quality threshold F*. The reason is that we
considered the actual video rates obtained with the different
compression levels, so that resource allocation occurs with



a granularity that prevents the “water filling” effect of the
channel and leaves part of the capacity unused. This effect
is minimized when R/G ~ 0.05. From Fig. 7(d) we also
note that the smaller the margin between the mean SSIM and
F*, the larger the quality outage probability of the SF-RBM
schemes. This is a consequence of the smaller robustness to
the SSIM estimate errors.

For what concerns the SF algorithms, we observe in
Fig. 7(a) that, on average, the SF-RBM polynomial approxi-
mations perform quite closely to the SF-Exact scheme. Hence,
the RBM-based prediction is nearly-optimal and proves the
goodness of the training phase. A closer look at the results
reveals that SF-RBM-2 is slightly looser than the other SF
schemes in the admission process, allowing a moderately
larger number of videos in the system, with a little lower
average SSIM, as shown in Fig. 7(b). From Fig. 7(d), however,
we note that the 2-degree approximation exhibits the largest
quality outage probability, which negatively impacts the sys-
tem performance due to the aforementioned nearly-optimal
number of admitted videos. Conversely, the SF-RMB-3 and
SF-RMB-4 schemes perform in a comparable manner, with a
very small advantage of SF-RBM-3 over SF-RBM-4 in terms
of quality outage probability. Thus, we might suggest the use
of 3-degree predictions due to the slightly lower computational
complexity and amount of signaling required in the system.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We designed a framework for video admission control in
wireless systems that exploits machine learning algorithms to
optimize resources management. By means of simulation, we
showed that our proposal outperforms offline video analysis
techniques in terms of the trade-off between QoE delivered
and computational costs.

One promising future direction to further improve the pro-
posed method could be to extend the unsupervised learning
phase by using a deeper architecture, thereby considering a
hierarchical generative model of the data distribution [13].
However, more complex models usually need larger training
datasets, which must provide enough statistical information to
extract a good set of descriptive features. An important step
would therefore be to also increase the amount of data used
to train the generative model, which can be accomplished by
collecting more videos or integrating other available datasets
into the framework. Finally, exploiting unsupervised learning
to build an expressive set of high-level features allows great
flexibility to the proposed framework, which can be used to
transfer knowledge across several tasks [26].
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