
Unsupervised Deep Learning

Alberto Testolin and Marco Zorzi
Department of General Psychology, University of Padova (Italy)

Workshop on Contemporary Deep Neural Network Models

COGSCI 2016 - Philadelphia, 10 August 2016

http://ccnl.psy.unipd.it/research/deeplearning

Aims of the breakout session

• Quick recap of unsupervised deep learning
– Building blocks: Restricted Boltzmann Machines

– Hierarchical generative models: Deep Belief Networks

• Hands-on tutorial
– Learning a hierarchical generative model of handwritten

digits (MNIST dataset): efficient implementation on GPUs

– Analyzing the model:
• Plotting receptive fields of the hidden neurons

• Reading-out internal representations (supervised linear classifier)

• Bipartite, fully-connected graphs (no intra-layer connections)

• Joint probability distribution defined by an energy function “E”

• Energy depends on the strength of connections (model parameters):

• The topology of the graph encodes conditional (in)dependences:

Restricted Boltzmann Machines

V

H

W

Markov blanket

Contrastive Divergence

• Simple maximum-likelihood approach to learn RBMs

• Basic idea: minimize the discrepancy between the empirical data distribution
(training set) and the model distribution (patterns generated by the network)

• Producing model’s expectations is computationally too demanding, so we
approximate this term by using “distortions” of the data produced by the model

W

positive phase
(data driven)

negative phase
(model driven)

positive phase
(data driven)

negative phase
(model driven, but

constrained by the data)

In practice, CD-1 already
works extremely well!

Deep Belief Networks

• We can learn more complex generative
models by stacking together many RBMs
– Greedy, layer-wise learning

– Build multiple levels of representation
(hypotheses over hypotheses)

– Unsupervised learning of abstract features

– Can simulate top-down effects

NB: each layer performs a non-linear projection of the input data!

task 1 task 2 task n
…

P(H1|V)

P(H2|H1)

P(V|H1)

P(H1|H2)

Hinton & Salakhutdinov (2006), Science

abstract representations can then be easily
read-out by linear classifiers!

Example: MNIST dataset

MNIST
(handwritten digits)

Connection
strength:

Before learning
(random)

After learning
(location specific)

Receptive fields of
hidden neurons:

Reading-out internal representations

We can test how well each
layer of representation

supports a discriminative task

linear read-outs

Reading-out internal representations

If accuracy is at ceiling, differences might be found by injecting noise and
calculating psychometric functions:

Testolin et al. (2017), Nature Human Behaviour

Step 0: Download source code

• For fast learning on graphic processors (GPUs), download source
code from our website: http://ccnl.psy.unipd.it/research/deeplearning

– MATLAB (version > 2012) with Parallel Computing Toolbox

– Python (version > 2.7) with PyCUDA libraries

• Additional MATLAB routines for useful analyses:
http://ccnl.psy.unipd.it/research/dbn-analyses

Step 1: Data preparation

1. Download and unzip the following 4 files from http://yann.lecun.com/exdb/mnist

* train-images-idx3-ubyte.gz

* train-labels-idx1-ubyte.gz

* t10k-images-idx3-ubyte.gz

* t10k-labels-idx1-ubyte.gz

NB: Make sure file names are not changed during unzipping ('-' is often replaced with '.')

2. Convert raw images into MATLAB/Octave format by copying them into the source
code directory and running the routine 'converter.m'

3. Save the training set into a suitable 3D matrix by running 'makebatches.m'
(mini-batch size can be set inside that file before running it).
This will produce a file called 'MNIST_data_n.mat', where n is mini-batch size.

We can plot one pattern to make sure everything was correct:

Step 2: DBN training

Now we are ready to train a deep belief network using 'deeptrain_GPU.m'

Make sure you set all the desired hyper-parameters before proceeding:

During training we should plot the reconstruction error to make sure it converges

Step 3: DBN analysis

Plot receptive fields at different levels of the hierarchy, given as input a deep
belief network and the desired number of hidden units:

Step 3: DBN analysis

Perform a read-out using a simple linear classifier, given as input a set of training
and test patterns with corresponding labels. The function gives as output the
weights of the classifier and the training and test accuracies:

[W, tr_acc, te_acc] = perceptron(tr_patt, tr_labels,
te_patt, te_labels)

• NB: first we need to reshape the 3D matrices back to 2D! (and we can use
single instead of double to save memory)

• We should start by giving as input to the classifier directly the raw images

• Then we should project the patterns on the internal representations by
activating the hidden units (of each layer!) and repeat the read-out:

