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Aims of the breakout session

* Quick recap of unsupervised deep learning

— Building blocks: Restricted Boltzmann Machines
— Hierarchical generative models: Deep Belief Networks

* Hands-on tutorial
— Learning a hierarchical generative model of handwritten
digits (MNIST dataset): efficient implementation on GPUs

— Analyzing the model:
* Plotting receptive fields of the hidden neurons
* Reading-out internal representations (supervised linear classifier)



Restricted Boltzmann Machines

Bipartite, fully-connected graphs (no intra-layer connections)
Joint probability distribution defined by an energy function “E”

Energy depends on the strength of connections (model parameters):

Markov blanket {



Contrastive Divergence

Simple maximume-likelihood approach to learn RBMs

Basic idea: minimize the discrepancy between the empirical data distribution
(training set) and the model distribution (patterns generated by the network)

Producing model’s expectations is computationally too demanding, so we
approximate this term by using “distortions” of the data produced by the model

AW = a(v*h* —v~h")
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Deep Belief Networks

_ _ task 1 | | task 2 task n
abstract representations can then be easily
read-out by linear classifiers! \ ,\ /

 We can learn more complex generative
models by stacking together many RBMs -

N\

— Greedy, layer-wise learning P(H,|H,)
— Build multiple levels of representation »
(hypotheses over hypotheses) <
. . P(VIH,)
— Unsupervised learning of abstract features N

— Can simulate top-down effects

NB: each layer performs a non-linear projection of the input data!

Hinton & Salakhutdinov (2006), Science



MNIST dataset
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Reading-out internal representations

We can test how well each
layer of representation
supports a discriminative task

Read-out accuracy (test set)
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Reading-out internal representations

If accuracy is at ceiling, differences might be found by injecting noise and
calculating psychometric functions:
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Testolin et al. (2017), Nature Human Behaviour
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Step O: Download source code

For fast learning on graphic processors (GPUs), download source
code from our website: http://ccnl.psy.unipd.it/research/deeplearning

— MATLAB (version > 2012) with Parallel Computing Toolbox
— Python (version > 2.7) with PyCUDA libraries

Additional MATLAB routines for useful analyses:
http://ccnl.psy.unipd.it/research/dbn-analyses




Step 1: Data preparation

1. Download and unzip the following 4 files from http://yann.lecun.com/exdb/mnist

* train-images-idx3-ubyte.gz

* train-labels-idx1-ubyte.gz
* t10k-images-idx3-ubyte.gz
* t10k-labels-idx1-ubyte.gz

NB: Make sure file names are not changed during unzipping ('-' is often replaced with '.')

2. Convert raw images into MATLAB/Octave format by copying them into the source
code directory and running the routine 'converter.m’

3. Save the training set into a suitable 3D matrix by running 'makebatches.m’
(mini-batch size can be set inside that file before running it).
This will produce a file called "MNIST _data n.mat’, where nis mini-batch size.

We can plot one pattern to make sure everything was correct:




Step 2: DBN training

Now we are ready to train a deep belief network using 'deeptrain_GPU.m'

Make sure you set all the desired hyper-parameters before proceeding:

% DEEF HETWORE SETUF

% (parameters and final network weights will be =sawved in structure DH)
DH.layer=size = [S500 500 B00]: % network architecture

DH.nlayers = length (DN.layer=size):

DN .maxepochs = 40; % unsupervised learning epochs
DN .batch=size = 125; mini-bhatch =size

sparsity = 1; et to 1 to encourage sparsity
spars_ factor = 0.05; how much sparsity?

learning rate (weights)

epsilonw GFU = gpuArrav(0.1):

1 o o o o o e o

epsilonvb GPFU = gpulrray(0.1): learning rate (vi=sible biases)
epsilonhb GPFU = gpulrray(0.1): learning rate (hidden biases)
welghtcost GPU = gpuArray(0.0002); decay factor

init momentum = 0.5; % initial momentum coefficient
final momentum = 0.9; % momentum coefficient

During training we should plot the reconstruction error to make sure it converges



Step 3: DBN analysis

Plot receptive fields at different levels of the hierarchy, given as input a deep
belief network and the desired number of hidden units:

plot L1(DN, 100) plot L2(DN, 100) plot L3(DN, 100)
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Step 3: DBN analysis

Perform a read-out using a simple linear classifier, given as input a set of training
and test patterns with corresponding labels. The function gives as output the
weights of the classifier and the training and test accuracies:

[W, tr _acc, te acc] = perceptron(tr _patt, tr_labels,
te patt, te labels)

* NB: first we need to reshape the 3D matrices back to 2D! (and we can use
single instead of double to save memory)

 We should start by giving as input to the classifier directly the raw images

 Then we should project the patterns on the internal representations by
activating the hidden units (of each layer!) and repeat the read-out:

H1 tr = 1./(1 + exp(-tr_patt*DN.L{1}.vishid -
repmat(DN.L{1}.hidbiases,size(tr_patt, 1),1)));

H1 te = 1./(1 + exp(-te_patt*DN.L{1}.vishid -
repmat (DN.L{1}.hidbiases,size(te patt, 1),1)));

[W, tr_acc, te_acc] = perceptron(H1l tr, tr labels,H1 te, te labels);



Useful references

» Testolin & Zorzi (2016). Probabilistic models and generative neural networks:
towards an unified framework for modeling normal and impaired neurocognitive

functions. Frontiers in Computational Neuroscience.
Perspective paper about how to use unsupervised deep learning for neuropsychological
modeling and how to relate it to other network-based approaches.

 Testolin, Stoianov, Sperduti, & Zorzi (2015). Learning orthographic structure with

sequential generative neural networks. Cognitive Science.
Cognitive model based on a powerful extension of RBMs that takes into account the
temporal structure of the data (i.e., statistical sequence learning).

» Zorzi, Testolin, & Stoianov (2013). Modeling language and cognition with deep
unsupervised learning: a tutorial overview. Frontiers in Psychology.

Comprehensive tutorial review of unsupervised deep learning and related methods to build
and test psychological models.

» Testolin, Stoianov, De Grazia, & Zorzi (2013). Deep unsupervised learning on a

desktop PC : A primer for cognitive scientists. Frontiers in Psychology.
Description and benchmarking of our efficient GPU implementation.

* Hinton (2007). Learning multiple layers of representation. TICS.
Theoretical foundations for unsupervised deep learning.



