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A B S T R A C T

A recent article by Gu et al. (Nat. Commun. 6, 2015) proposed to characterize brain networks, quantified using
anatomical diffusion imaging, in terms of their “controllability”, drawing on concepts and methods of control
theory. They reported that brain activity is controllable from a single node, and that the topology of brain net-
works provides an explanation for the types of control roles that different regions play in the brain. In this work,
we first briefly review the framework of control theory applied to complex networks. We then show contrasting
results on brain controllability through the analysis of five different datasets and numerical simulations. We find
that brain networks are not controllable (in a statistical significant way) by one single region. Additionally, we
show that random null models, with no biological resemblance to brain network architecture, produce the same
type of relationship observed by Gu et al. between the average/modal controllability and weighted degree.
Finally, we find that resting state networks defined with fMRI cannot be attributed specific control roles. In
summary, our study highlights some warning and caveats in the brain controllability framework.
Introduction

There is large consensus within the neuroscience community on the
usefulness of network theory in contributing to describe the complex,
self-organizing structure of the human brain (Bullmore and Sporns, 2009;
Sporns, 2014). In the last two years, an increasing number of studies have
applied the tools of control theory on brain networks (Kenett et al., 2018;
John Dominic Medaglia et al., 2017, 2017a, 2017b; Tang et al., 2017;
Wu-Yan et al., 2017) to quantify how anatomical network structure,
defined by human connectome data (i.e., white matter pathways derived
from diffusion tensor or diffusion spectrum imaging), constrain or facil-
itate changes in brain state trajectories. Indeed, the analysis of control-
lability has the potential to unveil how specific nodes, and/or sets of
nodes, control the dynamics of the entire network (Medaglia et al.,
2017b) and thus might provide insights on whether and how manipu-
lating the local activity of specific nodes would fully or partially affect
network functions and the activity of the other brain regions (see section
2.1 and below for in-depth discussion).
Astronomia, ‘G. Galilei’ & INFN,

orm 9 March 2018; Accepted 6 A

.

The idea of applying network control theory to neuroscience is thus
based on the hypothesis that we can describe the dynamics of neuronal
activity at brain resting state via a set of differential equations (Abdeln-
our et al., 2014; Gal�an, 2008; Mess�e et al., 2015; Saggio et al., 2016)
linearized around the resting state, which is itself a first strong assump-
tion (see section 2.3). In this context, most of the studies on brain
controllability have investigated if a single brain region can control the
whole-brain dynamics via external stimulation, and attempted to identify
the brain regions that possess a prominent control role.

Controllability of brain networks is important not only on theoretical
grounds, but potentially also for clinical studies (Muldoon et al., 2016).
Indeed, modern brain stimulation (NIBS) techniques, including deep
brain stimulation (DBS), vagal stimulation (VS), transcranial magnetic
(TMS) and electrical stimulation (TES) have the potential to enhance
normal cognitive functions, and restore functions impaired by the effects
of brain injuries or diseases either directly or by potentiating rehabili-
tation or drug therapies (Dayan et al., 2013; Figee et al., 2013). The
potential of these methods would be tremendously increased if supported
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by computational models of the brain controllability that define target
sites according to a rigorous mechanistic framework.

Recently, Gu and collaborators (Gu et al., 2015) proposed to quantify
the ability of a single brain region (i.e., network node) to control the
brain dynamics by measuring the average and modal controllability (see
section 2.2 for the mathematical definition). For example, they found
that regions characterized by high average controllability have high node
strength and this would facilitate the brain to easily reach many of its
cognitive states. In contrast, high modal controllability, characterized by
low node strength, would promote the transition to difficult-to-reach
states. Furthermore, Gu et al. found that brain activity is controllable
from a single node, and the topology of brain networks provides an
explanation for the types of control roles that different regions play in the
brain.

Here we present new results based on the analysis of four human
anatomical brain connectivity datasets, data on C. Elegans connectomes
and numerical simulations, highlighting some warning and caveats in the
use of brain controllability. In particular we show that there is no sta-
tistical evidence that brain networks are controllable from one single
region and that biophysically irrelevant null models produce identical
quantitative results as in prior work, highlighting the crucial role of
proper experimental control and hypothesis-testing. We end with a dis-
cussion of how the brain controllability framework should be theoreti-
cally developed to fulfill the aim of modeling the effect of the external
perturbation on brain functions.

Material and methods

Controllability framework

In a broader context, controllability defines whether or not a
dynamical system can be controlled through one or more external inputs.
In mathematical terms, consider a system composed by n entities (e.g.,
brain regions) each described at time t by a state variable xiðtÞ (e.g., its
activity). Assume that dynamics is described by the discrete time equa-
tion xðtþ 1Þ ¼ AxðtÞ, where xðtÞ ¼ fx1ðtÞ; x2ðtÞ;…; xnðtÞg is the column
vector collecting all the states, A is a matrix depending on the network
anatomical connectivity and incorporating the effective interactions in
the (linear) dynamics between the states. We will specify it for the case of
brain networks in section 2.3.

Controllability is a property of dynamical system with inputs, namely
of systems of the form

xðt þ 1Þ ¼ AxðtÞ þ BuðtÞ; (1)

where uðtÞ ¼ fu1ðtÞ; u2ðtÞ;…; upðtÞg is a column vector collecting the
p external inputs andB is an� pmatrix, called inputmatrix,whoseentryBij is
one if the input ujðtÞ affects the state xiðtÞ, otherwise it is zero. Systems of this
form are said to be controllable if any desired final state xf ¼ xðt→∞Þ
is achievable through a suitable choice uðtÞ. It can be proved that a
system is controllable if the so-called n� np Kalman controllability
matrix C ¼ ½B AB A2B…An�1B� has full rank (Chen, 1995; Kalman, 1963).
There exists an equivalent condition for controllability. If all eigenvalues ofA
lie in theunit circle,1 namely the systemEq. (1) is stable, then it canbeproved
that the equationW � AWAT ¼ BBT (T denotes the transpose operation) has
aunique solutionW that isW ¼ P∞

m¼0A
mBBTðATÞm that is called thediscrete

controllability Gramian. It has been shown that the system is controllable if
andonly ifW is positivedefiniteorequivalently if theminimumeigenvalueof
W is strictly larger than zero (Chen, 1995).

In order to avoid confusion, we need to distinguish between
“controllability” as originally defined by Kalman (Chen, 1995; Gu et al.,
2015) and “structural controllability” (Dion et al., 2003; Lin, 1974;
Shields and Pearson, 1976). Indeed, while controllability is a property
1 For continuous systems, all eigenvalues of A must have negative real parts.
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depending on the system matrices A;B and hence also on the weights of
the network, structural controllability depends only on the system (to-
pological) structure or graph, which is given by fixing all nonzero entries
of the systems matrices A and B. Therefore, the system structure can be
defined by the binary matrices (i.e. graphs) A and B and a realization of
the structure is any weighted matrix (i.e. network) pair A, B in which we
allow the entries to be nonzero only where the entries of A ; B are
nonzero. A system structure is structurally controllable if there exists any
realization A, B which yields a Kalman controllable system (Lin, 1974;
Tu, 2015).

In many cases, the weights of the matrix A are not known, or they are
known only approximately, or it is known only which weights are zero,
i.e., only the graph associated with A is available from data. For this
reason the notion of structural controllability has been promoted as the
right tool in these cases since it depends only on the topological prop-
erties of the network (Lin, 1974; Shields and Pearson, 1976; Reinschke,
1988; Dion et al., 2003; Liu et al., 2011; Godsil, 2012). In particular, Liu
et al. (2011) developed analytical tools to assess the minimum number of
driver nodes ND able to structurally control the system. They mapped the
problem into a matching problem (i.e., finding independent edge set in a
direct graph (Liu et al., 2011)) showing that: (i) if there is a perfect
matching in the network, then ND is equal to one; (ii) otherwise, ND co-
incides with the number of unmatched nodes with respect to any
maximum matchings (see Liu et al., 2011 for more details).

Nevertheless, we think that, at the current stage, these results are of
limited interest to understand the controllability of human brain
anatomical networks for two main reasons. First, the networks derived
from diffusion imaging techniques are symmetric, and thus the above
theorems cannot be used. Second, even if a network is structurally
controllable, it may happen that the energy of the input needed to control
the system is so huge that the system is not controllable in practice.

In order to have a way to actually understand how controllable is our
system, we can define the “energy” needed to control a network. Since
there are many inputs uðtÞ driving the system from the initial state x0 ¼ 0
to the desired final state xf , then one can try to find the input with
minimum energy. It is known that this minimum energy depends on the
controllability Gramian W and, in the worst case, coincides with the
inverse of its minimum eigenvalue, i.e. εmin ¼ λ�1

minðWÞ. Notice that, if εmin

is very high, then the system is very difficult to control (Pasqualetti et al.,
2014). In fact, the energy to control the entire network with one node
increases exponentially with the number of nodes in the graph (Kim
et al., 2017).
Controllability of the brain network

Gu and collaborators (Gu et al., 2015) focused their study on the
Kalman controllability of the brain network. In particular, referring to a
previous theoretical work (Pasqualetti et al., 2014), they considered the
average controllability and the modal controllability of a network. The
first is defined as the average input energy from a set of control nodes and
over all possible target states (Marx et al., 2004; Shaker and Tahavori,
2013). From this definition, it follows (Pasqualetti et al., 2014) that it can
be calculated as the trace of the inverse of the Gramian matrix, i.e.
ðWk

�1Þ, where Wk is the Gramian calculated from the node k. However,
in practice and in our case of interest (brain networks), the Gramian may
result very close to be singular (i.e., very ill-conditioned). Therefore, Gu
and collaborators proposed to use the trace of the Gramian as a reliable
measure of the network average controllability. In this way it is also
natural to define the average controllability of the k-th node of the
network by dk ¼ TrðWkÞ. Finally, they assumed that regions with high
average controllability are, on average, most influential in the control of
network dynamics over all different target states. Note that, as defined by
Eq. (1), controllability is a property of a system with respect to external
inputs u. When assessing the control role of a given region (or node) we
are always considering the effectiveness of the external input uk applied



C. Tu et al. NeuroImage 176 (2018) 83–91
on the brain region k, in coordinating other brain regions activity state.
This is not the same as saying that the internal, spontaneous activity of
region k (which crucially depends on its dynamics) can easily control
other regions (in the absence of the external input uk). In other words,
one cannot embed a region as a state variable in a dynamical system,
while also treating it as an external input. While there may be situations
in which this is true, it is not true in general.

On the other hand, the modal controllability is calculated from the
eigenvalues and eigenvectors of the matrix A, i.e., it is given by ϕi ¼
Pn

j¼1ð1� λjðAÞ2Þν2ij where vij is {i,j}-th entry of eigenvector matrix and
ðλ1; ⋅⋅⋅; λnÞ are the corresponding eigenvalues of A. The modal controlla-
bility is interpreted as the ability of a node to control the dynamics of the
network toward “difficult to reach” states, i.e. states with high energy
with respect to the other states. Nevertheless, we highlight that this is
more an interpretation than a quantitative result, as the definition of
modal controllability involves all the eigenvalues and eigenvectors of the
linearized system dynamics given by the matrix A. We cannot offer an
alternative interpretation of this quantity, as it is far from evident how it
is related to the Gramian controllability matrix.
Whole brain modelling framework

As explained above, in order to apply Control Theory to the brain
network, we need to specify the equations describing the dynamics of the
system activity. In our case the system is the brain, and thus we need a
model that is able to capture, at least qualitatively, the neural activity of
the brain regions during resting state. Following Gu et al. (see Supple-
mentary Material of their work, section 1), we employed a simplified
linear discrete-time neural dynamics model. This model is a noise-free
variation of the Gal�an model (Gal�an, 2008) and can be derived from
the linearization of a general Wilson-Cowan system (for strengths and
weakness of this model see (Gal�an, 2008; Honey et al., 2009; Muldoon
et al., 2016)). We then discretized the linearized dynamics and obtained
the explicit form of the linearized dynamics given by the matrix A:

A ¼ ð1� αΔtÞI þ cMΔt (2)

where α is the inverse of the relaxation time (i.e., the characteristic time
needed to return to a quiescent state after a burst of activity), Δt is the
time step that we use to update the brain state in time, I is the n� n
identity matrix,M is the matrix describing the anatomical connectivity of
the brain and c is a normalization constant. As we will explain in the
following subsection, we characterized the anatomical connectivity ma-
trix M in different ways, from computer-generated random networks,
with no or little biological realism, to real brain networks based on
diffusion tensor or diffusion spectrum imaging (DTI/DSI) data from
different studies (Brown et al., 2012, 2011; Hagmann et al., 2008). We
compared our results with those reported by Gu and collaborators who
however did not use Eq. (2) in their controllability framework but
directly derived the matrix A from DTI and diffusion spectrum imaging
(DSI) data. Although we do not agree on this procedure that neglects the
differences between the linearized system dynamics given by the matrix
A and the brain connectivity structure given by the matrix M, we note
that, for the case of the Wilson-Cowan modeling framework, in practice
there is no relevant difference between the two approaches on the final
results. However, some critical issues should be highlighted at this point:

1) Depending on the model, the relation between the linearized ma-
trix A and the structural (i.e., anatomical) connectivity M will be
different. From a methodological point of view, it is worth noting that Gu
et al. did not derive the matrix A from any model, but they used directly
the anatomical structural connectivity. If one uses the DTI (weighted)
graph as the (linear) dynamical model A (as in Gu et al. work), then the
analysis of the dynamical model reduces to the analysis of the graph, thus
assessing dynamics features (and, consequently control properties) from
strictly static data.
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2) The networks A for the different datasets are always unstable.
Adopting the Gu et al. approach implies the necessity to perform a
normalization (i.e., Anorm ¼ A=ð1þ λmaxðAÞÞ; where λmaxðAÞ is the
maximum absolute value of the eigenvalues of the matrix A) to ensure
that the controllability metrics in question are well-defined. Therefore,
the edge weights of the networks (i.e. the intrinsic linear dynamics of
each brain region) are set on the basis of mathematical convenience,
without a proper analysis on the limitations or biological meaning of this
procedure.

3) The premise that the brain can be linearized about a dominant
fixed point is a strong assumption. In fact, at local circuit levels it is
generally accepted that neurons can embody quite different dynamical
regimes (e.g., synchronization, oscillations, etc.) depending on the
overall network state, which cannot be accounted for by linear generative
models. Thus, any conclusions made through this framework only hold
locally in what is likely a very limited region of the actual traversed state
space of neural activity.

We finally note that Gu and collaborators did not perform any com-
parison with random null models. The use of a null model, as we will now
show, is crucial to formally assess the specific role of the brain topology
in determining the observed results, and it is a standard approach in
network science (Grilli et al., 2017; Molloy and Reed, 1995; Newman,
2010).

Brain networks: data, synthetic random networks and random null models

Human Brain Data.We first applied the controllability framework to
four empirical datasets of anatomical (DTI or DSI) brain networks. All
datasets are open access and were obtained from the Human Connectome
Project (“USC Multimodal Connectivity Database,” n.d.), i) the APOE-4
dataset (Brown et al., 2011) (N ¼ 30 APOE-4 non-carrier and N ¼
25 APOE-4 carrier individuals; gray matter parcellation into n ¼ 110
large scale regions); ii) the Rockland dataset (Brown et al., 2012)
(N ¼ 195 healthy subjects, n ¼ 188 large scale regions); iii) the Hag-
mann dataset (Hagmann et al., 2008) (average matrix corresponding
to N ¼ 5 healthy subjects, n ¼ 66 cortical regions) and iv) the Autism
dataset (Brown et al., 2012) (N ¼ 94 healthy subjects, n ¼ 264 large
scale regions). For more specific details on the data acquisition and
preprocessing we refer to the original studies.

C. Elegans data. As previously noted, for directed graphs the mini-
mum set of driver nodes making the system structural controllable can be
computed. Therefore, we employed the framework of structural
controllability (see section 2.1) to investigate the minimum number of
driver nodes to control the directed connectome of C. Elegans. It is
interesting to compare the results on the number of minimum control
nodes using different methods (Kalman vs. structural) on different
datasets (human vs. C. Elegans). We considered the neuronal connec-
tivity of the N2U (a hermaphrodite adult) and the JSH (a L4 male)
worms. Both data were taken from the Worm Atlas (WormAtlas, n. d).
Network connectivity encompasses chemical synapses and gap junctions.
Because the edge weights do not affect the analysis of structural
controllability, we just considered the corresponding directed binary
networks by assigning 1 if there existed a connection between neurons i
and j, i.e.Mij ¼ 1, and zero otherwise. Following the methodology pro-
posed by Liu et al. (2011), we applied the analysis directly on the C.
Elegans connectome M: The N2U network included a giant connected
component composed by 190 neurons and 2815 edges as well as 12
isolated nodes; while L4 network contained a single giant connected
component composed by 202 neurons and 3007 edges.

Synthetic RandomNetworks.We generated three types of synthetic
brain anatomical random networks, namely, the Barabasi-Albert (BA)
scale-free, Small-World (SW) and Erd}os–R�enyi (ER) networks (Newman,
2010). We used the same node number, connectivity and edge weight
distribution of the averaged DTI matrix of the APOE-4 brain dataset. The
synthetic random networks were generated using standard routines
available in the Mathematica software. We applied the controllability
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framework to synthetic random networks to assess the number of the
minimum subset of control nodes (Table 1) for a fixed amount of energy,
and the controllability profile of the average and modal controllability
(Fig. 1).

Random Null Models. We also generated random null models of the
brain network data by randomizing the network structure of the DTI
matrices M with the exception of some topological properties (Newman,
2010). In this way one can understand which and how much the specific
properties of network explain the observed results. This approach is
widespread in the study of ecological and biological networks (Maslov
and Sneppen, 2002; Suweis et al., 2013). If some properties of the
complex system are observed (for example stability to perturbations), is
there something characteristic in the way species interact that lead to the
observed phenomena? To answer this question, we need to compare the
results observed for real data, with those generated by networks that
have, for example, the same size and connectivity, but different high
order network structure (e.g., degree distribution, cluster coefficient,
etc.). We designed two different random null models to understand the
specific role of the brain network topology on the results of controlla-
bility analyses. In the first one we randomly rewired all links of a real
brain network, keeping only the symmetry and the diagonal entries of the
original matrix. The resulting null model has the same number of nodes,
connectivity, diagonal, and edge weight list of the original data, but all
the other properties are free to vary over permutations. We applied the
controllability framework to random rewired networks in order to
investigate the relations between weighted degrees and average/modal
controllability (Fig. 2). In the second null model, beyond the constraint of
null model 1, we also kept the in-degree and out-degree of each node.
This is also called configuration model/network and it conserves also the
average degree sequences of the original networks (Maslov and Sneppen,
2002; Molloy and Reed, 1995; Suweis et al., 2015). Other high order
topological properties (clustering coefficient, motifs, etc.) are instead
different. We use the configuration network to assess the role of the to-
pological properties of the resting state networks (RSNs) in the modes of
controllability (Fig. 3).
Centrality measures

We investigated in both real and synthetic random networks the role
of node centrality with respect to its impact on average network
controllability (see Result section). In network science, centrality ad-
dresses the question of which are the most important nodes in a network,
from different perspectives. Degree centrality considers that node's
importance as depending on the number of connections to other nodes
and it refers to the number of links for a given node to other nodes
(Newman, 2010). Betweenness centrality considers that node's impor-
tance as depenings on the number of the shortest paths that pass through
the node v and is given by

P

s6¼v6¼t
nstðvÞ=nst where nst is the total number of

shortest paths from node s to node t and nstðvÞ is the number of those
paths that pass through the node (Newman, 2010). Eigenvector centrality
considers that node's importance as depending on the connections to
other nodes that are themselves important and it is given by the vector c
Table 1
The minimum number of nodes (and fraction with respect the size of the network) th
εmin ¼ 1010. We here show results for the APOE-4 data and the corresponding Barabas
(of same size, connectivity and edge weight distribution) following the procedure desc
the smallest, while “Low” is the rank from the smallest to the largest.

Data BA

Centrality measure Low High Low High
Degree centrality 51/0.46 49/0.45 44.64/0.41 42/0
Betweenness centrality 52/0.47 46/0.42 45/0.41 42.52
Eigenvector centrality 50/0.45 51/0.46 45.76/0.42 42.16
Page-rank centrality 51/0.46 47/0.42 44.84/0.41 42.36
Random sequence 46/0.41 47/0.42 44.08/0.40 43.48
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which solves the equation c ¼ 1
λA

Tc, where A is the adjacency matrix and
λ is the corresponding largest eigenvalue (Newman, 2010). Page-rank
centrality considers that node's importance as depending on the num-
ber and quality of edges to a node and it given by the vector x which
solves the equation x ¼ αAD�1xþ β1; where 1 is the vector (1, 1, 1, …),
D is the diagonal matrix with elements Dii ¼ maxðkouti ; 1Þ and kouti is the
out-degree of node i (Newman, 2010). For random networks, all these
centralities measures are correlated one to another.

Results

Brain controllability with finite energy and role of node centralities

We first applied the controllability framework to the four empirical
open access datasets of large-scale anatomical brain connectivity.
Following the original work of Gal�an (2008), we fixed α ¼ 1:0;Δt ¼ 0:2.
The input matrix BK identifies the set of control points K in the brain,
where K ¼ fk1; ⋅⋅⋅; kpg and BK ¼ ½ek1 ; ⋅⋅⋅; ekp �, where ei denotes the i-th
canonical vector of dimension n. We found that, when K contains only
one node/region, all the minimum eigenvalues of the controllability
Gramian associated with the brain networks we analyzed were negative:
λminðWKÞ ¼ � 2:137⋅10�14 � 4:821⋅10�14(Rockland dataset),
λminðWKÞ ¼ � 8:555⋅10�17 � 2:298⋅10�17(APOE-4), λminðWKÞ ¼ �
7:68⋅10�16 � 2:990⋅10�15(Autism dataset) and λminðWKÞ ¼ �7:650⋅
10�17 � 3:352⋅10�17 (Hagmann dataset). Nevertheless, all the λminðWKÞ
are statistically compatible with zero and thus the associated controlla-
bility Gramian cannot be inverted. These results show that it is not
possible to infer one node controllability of the brain numerically.

Next, we studied the role of nodes' topological properties in control-
ling the brain network, but in a more practical way by fixing an upper
bound on the minimum level of energy allowed to control the system. We
arbitrarily set this threshold to εmin ¼ 1010 and we then search for the
minimum number of nodes that are needed to control the system
spending aminimum energy not greater than εmin. If we remove the upper
bound (εmin→∞), we find that we cannot assess the theoretical control-
lability of the brain, i.e., a threshold is necessary if we want to numeri-
cally study the brain controllability in a meaningful way. The results
presented in Table 1 have been obtained using the averaged DTI matrix
for each group of individuals (MavÞ. In the Hagmann dataset, the average
fraction of nodes to control the systemwith energy not greater than εmin is
0.3. For the other two datasets, the precise computation of the minimum
fraction of nodes to control the system with ε � εmin becomes computa-
tionally unfeasible (too large network sizes).

Following Gu and collaborators' claim on the importance of nodes
centrality (Gu et al., 2015), we first ranked all networks nodes according
to five distinct centrality measures (see Methods section) following both
the ascending and descending order. Then we generated a list of nodes in
random order, irrespective of the nodes properties. For each of these two
nodes sequences (“low” and “high”), we determined the minimum subset
of nodes needed to control the brain network with an energy εmin ¼
λ�1ðWKÞ. We have repeated this analysis for the APOE-4 datasets as well
as for synthetic brain networks generated with a desired network
at are needed to control the system spending a minimum energy not greater than
i-Albert network (BA), Small-World network (SW) and Erd}os–R�enyi network (ER)
ribed in the main text. For a given sequence, “High” is the rank from the largest to

SW ER

Low High Low High
.38 45/0.41 43.5/0.40 44.64/0.41 42/0.38
/0.38 46/0.42 42.5/0.39 45/0.41 42.52/0.39
/0.38 46/0.42 44/0.4 45.76/0.42 42.16/0.38
/0.39 47.5/0.43 43/0.39 44.84/0.41 42.36/0.39
/0.40 45.5/0.41 43.81/0.40 44.08/0.40 43.48/0.40



Fig. 1. This figure shows that empirical data and different network models have inherently similar controllability profiles. Panels a, b and c show an example of the
different synthetic random networks used in this study: Barabasi-Albert network (BA); Small-World network (SW) and Erd}os–R�enyi network (ER). The number of
nodes and edges in these networks are approximately the same of those in the brain networks of APOE-4 dataset. Similarly, the weights are drawn from the empirical
distribution estimated from the dataset. Panels d, e show that brain networks cannot be uniquely distinguished in this 2-dimensional controllability space (modal vs.
average controllability), although their structure differs from classic random network models. For each type of network model, the number of the generated realization
is the same as the instances (number of individuals) of the corresponding empirical brain networks in the dataset. In panel d, we report the average values computed
over all networks and each point represents a. node. In panel e, we report the average values computed over all nodes and each point represents a network.
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topology. Table 1 presents the results for the number of the minimum
subset of control nodes with respect to the five different centralities
measures for the APOE-4 data (Brown et al., 2011) (n ¼ 110 nodes),
synthetic random Barabasi-Albert network (BA), Small-World network
(SW) and Erd}os–R�enyi network (ER) (Newman, 2010). All synthetic
random networks have the same node number, connectivity and edge
weight distribution of the APOE-4 dataset to allow a proper comparison.

Nomatter which centrality measure is adopted and howwe generated
the node sequences, the size of the minimum subset was similar in all
cases (and as expected larger than one). This result suggests that the
topological characteristic of the single brain region may play a specific
role in the one node theoretical controllability (Kim et al., 2017), but in
practice when fixing the energy all regions (nodes) seem to play an
equivalent role in the average and modal controllability of the network.
We highlight that this is not true in general for any networks, but in the
case of not-so-sparse and undirected symmetric matrices, as in the case of
human brain DTI/DSI networks. Pruning or introducing a direction in the
network edges will have thus a remarkable impact on the role of topology
and hence on the network controllability (Kim et al., 2017), as we will
also show with the analysis of the C. Elegans connectome.

Relation between nodes weighted degree and the corresponding average/
modal controllability

The next step was to investigate whether the linear relationship be-
tween weighted degrees and the average/modal controllability observed
for human brain networks (see Fig. 2 in Gu et al., 2015) is due to the
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specific brain network topology, or if it also holds for random networks.
First, we examined the relationship between average controllability

and modal controllability of each node in synthetic random networks of
different types (see section 2.4 and Fig. 1 a–c) and compared it with
results for the APOE-4 dataset. Not surprisingly, we found that for APOE-
4 data, average and modal controllability are linearly and negatively
correlated. Indeed, this is expected if both controllability measures
correlate with the network weighted degree. Nevertheless, the same
linear relationship also holds for all the synthetic random networks (see
Fig. 1 d). However, the range in controllability covered by the brain
network data seems to be somehow larger with respect to the corre-
sponding random synthetic networks. At the same time, the range in
values of both average and modal controllability is extremely limited, a
feature not evident in the work of Gu et al. (2015) as they showed only
rank-rank plots.

Second, following the procedure adopted by Gu et al. (Gu et al., 2015)
(Fig. 2 b and d in their main text), we computed the average of the rank
plots between one node average/modal controllability and weighted
degree of our four brain dataset (see Fig. 2; for details on average rank
plots see Gu et al.’s methods section). As Fig. 2a and c show, for all the
analyzed real data we found the same relation between controllability
and network centrality reported by Gu et al. We then randomized the
anatomical connectivity data and calculated average/modal controlla-
bility as a function of nodes' properties in the random networks. Sur-
prisingly, as shown in Fig. 2b and d, we still found exactly the same
relationship as before. We stress that the relationships in average
controllability and modal controllability between real and randomized



Fig. 2. Comparing controllability measures between empirical data and randomized data. Scatter plot of the average of the ranks for weighted degrees versus average
of the ranks of the average controllability for (a) the empirical data and (b) their randomized counterpart. Scatter plot of the average of ranks for weighted degrees
versus the average of ranks of the modal controllability for (c) empirical data and (d) their randomized counterpart.

Fig. 3. Comparison between real brain networks (Hagmann dataset) and the
corresponding configuration null model (see Section 2.4 for details) in terms of
how average controllability would assign control roles to different resting state
networks (RSNs). The similarity suggests that the control role of the RSNs
mainly depends on their overall degree centrality rather than other higher de-
gree topological properties.
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networks are not an artifact of the rank-rank plots. In fact, controllability
measures between real and randomized networks are not distinguishable
also by examining unranked magnitudes (although the values ranges are
very limited, similarly to what shown in Fig. 1).

Indeed, as also shown by Gu et al. the relation between average node
controllability and node centrality can be inferred analytically in the
limit of “small” values of the entries of A (i.e.,aij≪1, that is always
satisfied for the normalization condition). This was noted in the Sup-
plementary Information of Gu et al. (p.5), where they show that the dj �
average controllability of the node j � is simply the j-th diagonal
element of the matrix ðI� A2Þ�1 � Iþ A2, where I is the identity matrix,
resulting in dj ¼ 1þPN

i¼1a
2
ij, while the degree centrality is kj ¼

PN
i¼1aij;

thus proving that “a positive correlation between node degree and
average controllability is mathematically expected”. But this is true for
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any network satisfying aij≪1, also the random ones.
We performed a linear fit y¼mx þ q for both data and random net-

works and we found that the angular coefficients (m) describing the
relation shown in our Fig. 2 between node controllability and degree
centrality are compatible within 3 standard deviations in all dateset (see
Table 2). In other words, there is no significant difference between the
observed linear relations in the data and in the corresponding random-
ized dataset.
Role of the topological properties of the RSNs in the modes of controllability

Finally, we tested if different RSNs can be characterized in terms of
different modes of controllability. RSNs were defined for the Hagmann
dataset according to published RSNs templates (Sizemore et al., 2016).
Following Gu et al.’s procedure, we considered the twenty nodes with
highest average controllability, and then calculated a vector cdata, where
its j-th component gives the percentage of the nodes that belongs to the
j-th RSN. We highlight that the method proposed by Gu and collaborators
to construct the vector c depends on how one defines the controllability
hubs. In fact, the choice to consider hubs the twenty nodes (thirty in their
case) with the highest average controllability are arbitrary. The problem
is that the results of relation between RSNs networks and their control-
lability roles are dependent on this choice. We tested different rankings
of highest average node's controllability, and we obtained different re-
sults. This is a caveat that must be taken in account when drawing con-
clusions from these results. The data used here, and the corresponding
RSN templates, are based on 66 regions and thus we have considered a
different number of nodes with highest average controllability with
respect to Gu et al. (who used a parcellation with 234 regions).

We repeated the Gu et al. analysis using the configuration null model
(section 2.4), obtaining crand from random networks that retained the
degree distribution of the original dataset, but had lost all other higher
degree topological properties. We found that both real and randomized



Table 2
For each element of the table, we show the results of the linear fit describing the relation between node controllability and degree. Upper row: empirical brain data;
lower row: the corresponding randomized networks. Each cell includes an angular coefficient, its standard error and the goodness of fit (R2).

Rockland APOE-4 Autism Hagmann

Average controllability m¼ 0.93� 0.021 R2¼ 0.91
m¼ 0.90� 0.024 R2¼ 0.88

m¼ 0.76� 0.038 R2¼ 0.79
m¼ 0.83� 0.023 R2¼ 0.92

m¼ 0.88� 0.031 R2¼ 0.75
m¼ 0.86� 0.016 R2¼ 0.92

m¼ 0.96� 0.036 R2¼ 0.92
m¼ 0.92� 0.05 R2¼ 0.84

Modal controllability m¼ -0.97� 0.014 R2¼ 0.96
m¼ -0.88� 0.028 R2¼ 0.84

m¼ -0.76� 0.038 R2¼ 0.79
m¼ -0.83� 0.023 R2¼ 0.92

m¼ -0.84� 0.019 R2¼ 0.88
m¼ -0.84� 0.016 R2¼ 0.91

m¼ -0.94� 0.043 R2¼ 0.88
m¼ -0.91� 0.053 R2¼ 0.82
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networks displayed very similar results on the modes of controllability of
the different RSNs (see Table 3 and Fig. 3), as also attested by a signifi-
cant Pearson correlation ρ ¼ 0:762. In other words, we found that RSNs
cannot be attributed to specific control roles based on the present
controllability framework.

Controllability of the C. Elegans connectome

We finally investigated the controllability of the anatomical brain
networks of C. Elegans data recently presented in Yan et al. (2017). In
that case, the authors aimed at understanding the neural path involved in
the control of a given activations or tasks, using target control analysis
(Gao et al., 2014).

Using the same data, we can also properly calculate the minimum
number of nodes ND to control the brain of C. Elegans (see Section 2.4)
using rigorous analytical results based on maximum matching (see Sec-
tion 2.1 and Liu et al., 2011). For the two individuals analyzed in this
work we found that ND is around 20 nodes (ND ¼ 18 and ND ¼ 21 to
control the N2U and L4 individuals, respectively). Therefore, even for
simple organisms like the C. Elegans we found that ND is much greater
than 1. Unfortunately, the current structural controllability framework
does not allow one to infer the associated energy needed to control the
system using the ND driver nodes.

Discussion and conclusions

The idea to apply network controllability to brain resting state ac-
tivity is a remarkable contribution to neuroscience, opening up many
fascinating avenues. The seminal work of Gu and collaborators (Gu et al.,
2015) has been an inspiration for many subsequent studies in the attempt
to better understand and master brain network controllability. But in
science, progress goes in hand with understanding limits and inaccura-
cies of previous theories. Our work aims to help the progress in under-
standing how network control theory can be applied in neuroscience by
highlighting some warnings and caveats in the current theoretical
framework.

In order to study single node controllability (in Kalman sense), Gu and
collaborators (Gu et al., 2015) calculated the controllability Gramian
from each node of a network derived from average anatomical connec-
tivity (DTI/DSI) data (as we have done in section 2.1). Their first finding
was that the brain network can be theoretically controllable by a single
region/node, i.e., the smallest (in absolute value) of the eigenvalues of
the controllability Gramian λmin(WK) from each brain region taken as a
control node was greater than zero. However, in agreement with our
results, they found that the energy needed to control the system is so
large (i.e., εmin ¼ λ�1

minðWKÞ ¼ 10�23) that in practice the system is not
controllable. Indeed, as the same authors recognized in a subsequent
paper (Menara et al., 2017), in order to assess the controllability of the
Table 3
Each element of the table includes the node number, and the normalized percentage in
the averaged randomized network (keeping fixed the degree sequences) is ρ¼ 0.762
controllability as this number maximizes the correlation between the results of the c

Auditory Cingulo-Opercular Default Dorsal

Data 1/0.078 4/0.155 6/0.349 0/0
Random 1/0.064 3/0.096 7/0.338 1/0.193
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brain network from one region in a proper way, it is not necessary to
compute λminðWKÞ (which may also be not statistically different from
zero, as in our cases and in Gu et al. (2015)), but one has to prove that
existence of a Hamiltonian path from each control region. That is, one has
to prove that the brain network is Hamiltonian-connected (Menara et al.,
2017). This is a NP hard problem (Alspach, 2012), so it may not be trivial
to infer that the brain network is controllable from one single region.

A second important result of Gu et al. (2015) is that average
controllability was strongly correlated with the weighted degree,
whereas modal controllability was strongly anti-correlated with the
weighted degree. From these results they concluded that single brain
regions have different control roles due to their different centrality in the
brain network, suggesting a relation between the specific brain network
topological structure and the control role of the different brain regions.

Finally, Gu et al. also evaluated the control contribution of different
brain sub-networks associated with known cognitive process (i.e., resting
state networks (RSNs)), and found that different RSNs have different
control roles. In particular they suggested that 30% of average control
hubs laid in the default mode system, while 32% of modal control hubs
laid in the front-parietal cingulo-opercular cognitive control systems,
supporting the hypothesis that the average andmodal controllability deal
with different control role. However, the present study shows that the
same results hold for random computer-generated networks without
biological realism. Indeed, we also found that the relationships between
average/modal controllability and weighted degree also hold for ran-
domized data, which implies that this method cannot be used to attribute
specific control roles to different RSNs. In other words, the results of the
controllability analysis do not reveal a specific or optimized network
organization in the brain, but are simply a consequence on the definition
of average and modal controllability, which in their definitions encap-
sulate also a correlation with the node degree (positive and negative,
respectively). The positive correlation between average controllability
and weighted degree can be explained analytically.

Though theoretically intriguing, our understanding of the relation-
ship between controllability and anatomical brain network remains
elusive. In particular, using high precision data on C. Elegans con-
nectomes (Yan et al., 2017), we have shown that even small connectomes
cannot be controlled from a single node. This is highly probably true for
the human brain, although current numerical analysis cannot confirm
this result. Indeed, directionality of the anatomical brain connectivity is
an important information to perform rigorous analysis for structural
controllability. Nevertheless, as we have shown in this work, developing
reliable methods for estimating directed resting state effective connec-
tivity (Gilson et al., 2016; Jobst et al., 2017; Saggio et al., 2016), which
yields to accurate directed graphs is only but one aspect of the resolution
of the underlyingmodel formulation problem. Moving to a controllability
framework beyond linear models, where the dynamical complexity is
effectively captured, is also a fundamental gap in the current literature.
a given cognitive system. Additionally, the correlation between the real data and
. In this analysis we have considered the first 20 nodes with the highest average
onfiguration model with respect to the corresponding Hagmann dataset.

Fronto-Parietal Other Somatosensory Ventral Visual

4/0.186 0/0 0/0 0/0 5/0.233
2/0.077 1/0.039 0/0 0/0 5/0.193
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Another future step of crucial importance is to move from one node to
multiple nodes controllability analysis of the brain network. Indeed, as
we have shown, results obtained with one-node controllability Gramian
have no or very limited practical (e.g., clinical) applicability. In fact,
many experimental results suggest that Network-Based Statistic (NBS)
techniques are unlikely to change brain states from one node. It is hard to
modify fMRI connectivity using Transcranial Magnetic Stimulation
(TMS), as long as only a single region is stimulated (Capotosto et al.,
2014; Fox et al., 2014). On the other hand, concurrent stimulation of
several locations on the scalp may be feasible in the near future (possibly
synchronized with electrical activity in a given frequency band) (Baker
et al., 2017; Vosskuhl et al., 2016) and developing a theoretical frame-
work to understand the multi-node controllability of brain network is an
primary and timely objective for future studies.

Controllability is not a monolithic concept, nor is the notion of a brain
network (which can be defined at multiple spatial and temporal scales).
Attempting to understand the controllability of the brain in some all-
encompassing sense is ill-defined. In this work we have highlighted
many critical issues that must be tackled in its specificity if we want to
move from a purely theoretical approach to experimental applications to
real brains. We believe that the potential of theoretical tools based on
control theory are of inestimable value for neuroscience and that further
development of this framework might bridge the gap between theoretical
brain controllability and possible application in translational
neuroscience.
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