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Visual sense of number vs. sense 
of magnitude in humans and 
machines
Alberto Testolin1,2 ✉, Serena Dolfi1, Mathijs Rochus3 & Marco Zorzi1,4 ✉

Numerosity perception is thought to be foundational to mathematical learning, but its computational 
bases are strongly debated. Some investigators argue that humans are endowed with a specialized 
system supporting numerical representations; others argue that visual numerosity is estimated using 
continuous magnitudes, such as density or area, which usually co-vary with number. Here we reconcile 
these contrasting perspectives by testing deep neural networks on the same numerosity comparison 
task that was administered to human participants, using a stimulus space that allows the precise 
measurement of the contribution of non-numerical features. Our model accurately simulates the 
psychophysics of numerosity perception and the associated developmental changes: discrimination 
is driven by numerosity, but non-numerical features also have a significant impact, especially early 
during development. Representational similarity analysis further highlights that both numerosity and 
continuous magnitudes are spontaneously encoded in deep networks even when no task has to be 
carried out, suggesting that numerosity is a major, salient property of our visual environment.

It is widely believed that the cognitive foundations of numerical competence rest on basic numerical intuitions, 
such as the ability to discriminate sets with different numerosity or to rapidly estimate the amount of items in 
a display1–3. Discrimination between two numerosities is modulated by their numerical ratio, and the individ-
ual psychometric function provides an index of “number acuity” representing the internal Weber fraction, w4. 
Numerosity perception is shared with many animal species5–7 and in the primate brain it is supported by an 
occipito-parietal network4,8. Even human newborns and infants appear sensitive to numerosity9,10, although the 
improvement of number acuity throughout childhood suggests that learning and sensory experience play an 
important role in refining our numerical representations11. Moreover, individual differences in number acuity 
have been related to mathematical learning performance both in typical and atypical development12–14.

Nevertheless, the nature of the mechanisms underlying numerosity perception is still hotly debated. 
According to the “number sense” hypothesis, visual numerosity is a primary perceptual attribute15, spontaneously 
extracted16,17 by a system yielding an approximate representation of numerical quantity. However, it has been 
repeatedly pointed out that numerosity judgments can be modulated by non-numerical perceptual cues that usu-
ally co-vary with number, such as cumulative surface area18, total item perimeter19 and convex hull20, over which 
it is impossible to exert full experimental control and which can hinder numerosity discrimination when carrying 
incongruent information21,22. These findings have led to the proposal that numerosity is indirectly estimated from 
non-numerical visual features, thereby calling into question the existence of a dedicated system for numerosity 
perception23. Moreover, the influence of non-numerical cues is stronger in young children24 and in children with 
mathematical learning deficits25. In a classic “number sense” view, the developmental improvement of numer-
osity estimation entails progressive sharpening of the internal representation (i.e., increasing representational 
precision), but an alternative hypothesis is that it simply reflects the increasing ability to focus on the relevant 
dimension and filter out (or inhibit) irrelevant non-numerical features22,26.

Here we shed light on the theoretical debate regarding the mechanism supporting numerosity perception – 
and how it is shaped by learning and visual experience – by means of computational modeling based on deep 
neural networks. Besides driving the contemporary artificial intelligence revolution27, deep networks are being 
increasingly proposed as models of neural information processing in the brain28,29. In contrast to the mainstream 
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supervised deep learning approach, which has been criticized for its limited biological and psychological plausi-
bility30,31, our computational model is based on “deep belief networks”, which implement unsupervised learning 
through Hebbian-like principles32. In line with modern theories of cortical functioning, learning in these net-
works can be interpreted as the process of fitting a probabilistic, hierarchical generative model to the sensory 
data33,34. This corresponds to a form of learning by observation, where connection weights are changed according 
to the statistical regularities in the sensory input; it also dispenses with the implausible assumption that learning 
requires labeled examples, since the only objective is to discover efficient internal representations of the environ-
ment30. Notably, it has been shown that unsupervised deep learning can give rise to extremely high-level, abstract 
representations (for example, face detectors35 and letter features36).

The importance of unsupervised representation learning is particularly evident in the context of numerosity 
perception, which develops in infants and naive animals without explicit feedback37,38. Previous work has shown 
that deep belief networks can indeed simulate basic numerical abilities39. However, in the original model only 
cumulative area was taken into account as possible confound, and subsequent simulations presented anectod-
ical evidence that stronger congruency manipulations can affect model’s responses40. Here we push this mod-
eling approach one step further. We adopted a recently proposed “stimulus space”41 that allows a systematic, 
multi-dimensional manipulation of the non-numerical features to create images of visual sets that were used 
to train and test a large number (N = 144) of deep networks (which varied in number of neurons and initial 
weight values to ensure robustness and reproducibility of results). Crucially, for the very first time we tested 
human observers and deep networks on a numerosity comparison task using exactly the same visual stimuli, 
thus allowing for accurate simulations of psychophysical data and fine-grained assessment of the contribution of 
non-numerical visual features, using the methods developed in41. We also compared deep networks at different 
time points during unsupervised learning to assess how visual experience shapes the interplay between numer-
osity and non-numerical visual features, validating our simulations against existing developmental data collected 
on children using the same stimulus space24. Finally, we used representational similarity analysis42 to investi-
gate the encoding of numerosity and continuous visual features in the deep networks’ internal representations, 
thereby shedding light on whether spontaneous sensitivity to number emerges (from unsupervised learning) in 
the absence of any explicit task.

Results
Image stimuli containing clouds of dots were sampled from a multidimensional space defined by three orthogonal 
dimensions, representing the degrees of freedom used to generate all possible combinations of numerosity and 
non-numerical features in a visual display41. Numerosity corresponds to the discrete number of dots in the image, 
Spacing jointly encodes for variations in field area and density of the dots, while Size jointly encodes for varia-
tions in dot surface area and total surface area (see Fig. 1A–E for graphical representation and sample stimuli, 
and Supplementary Information for details). Humans and machines were probed using a standard numerosity 
comparison task that required indicating which of two images had more dots. Behavioral choices were modeled 
using a generalized linear model (GLM) with regressors for the log of the ratio of each orthogonal dimension (see 
Methods). Besides offering a better estimate of number acuity compared to traditional measures41, this method 
returns coefficients describing the contribution of each non-numerical feature in behavioral performance. For 
example, a large Numerosity coefficient would reflect the ability to discriminate difficult numerical ratios, while 
large coefficients for Size and Spacing would highlight strong biases on the participant’s choices due to changes 
in non-numerical features.

Human behavioral performance.  Discrimination accuracy was well above chance (mean 83%, 
range: 69–91%). The GLM fit at individual level was significant (mean adjusted R2 = 0.55, mean chi-square 
value = 191.14, all p < 0.001). Coefficient fits for each orthogonal dimension were significantly different from zero 
for βNum (t(39) = 23.54, p < 0.001) and βSpacing (t(39) = 7.21, p < 0.001), but not for βSize (t(39) = 1.37, p = 0.18). 
Coefficient estimates are shown in the scatter plots of Fig. 2A, along with the axes representing individual fea-
tures. Numerosity was by far the dominant dimension in shaping participants’ choices. Nevertheless, most of 
the participants were also influenced by Size, Spacing, or both; only 5 participants out of 40 showed an unbiased 
performance (all ts < 1.35, p > 0.10 for βSize, and all ts < 1.45, p > 0.15 for βSpacing). Model fits for two representative 
participants are shown in Fig. S1, with black curves representing the model fit on the full dataset and colored lines 
representing model predictions on two subsets of congruent and incongruent trials with extreme values of Size 
and Spacing ratios. The offsets of the colored lines from the black lines highlight that these participants were influ-
enced by Size (panel A) or both Size and Spacing (panel B), resulting in better discrimination for congruent trials 
and a decrease in performance for incongruent trials. These psychometric curves also highlight that, as expected, 
accuracy was much lower for hard trials (i.e., with ratio closer to 1) compared to easy trials.

In the 3-dimensional space, the coefficients estimated for the orthogonal dimensions define a discrimination 
vector whose projection on each individual axis indicates the strength of the influence of the corresponding 
feature (left panel in Fig. 2C). Paired t-tests revealed that the projection on the Numerosity dimension was sig-
nificantly larger than the projection on all other individual features (all t(39) > 5.45, all p < 0.001), replicating 
the findings of DeWind et al. (2015). The overall pattern was confirmed by angle analysis (left panel in Fig. 2D), 
in which Numerosity resulted the dimension closest to the discrimination vector (10.79 deg) followed by Total 
Perimeter (18.39 deg); the angle between these two axes was significantly different (Z = 4.14, p < 0.001).

Deep networks behavioral performance.  The same numerosity comparison task was simulated with deep 
neural networks. Deep networks (N = 144) with varying architectures and initial weights (see Methods and SI) 
were first trained in a completely unsupervised way, using as input individual images sampled from the stimulus 
space1. The objective of unsupervised deep learning was to build a generative model of the data, that is, to maxi-
mize the likelihood of reproducing samples from the input distribution. This corresponds to a form of learning by 
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observation, where connection weights are changed according to the statistical regularities in the sensory input; 
no information about item numerosity was provided at this stage.

As a second step, a supervised linear network was stacked on top of the deep network: in analogy with training 
procedures used in animal studies, this read-out layer allowed to carry out an explicit discrimination task even 
in the absence of explicit (verbal) instructions. The classifier was fed with the deep network’s internal representa-
tions of two image pairs, with the objective of choosing which image had the larger numerosity (see Fig. 1F for a 
graphical representation of the model architecture). Testing was carried out on a separate set of images that were 
never seen during training and it took place at two different developmental points of the unsupervised learning 
phase. In the “Young” condition the network was trained for only one pass (epoch) through the entire image 
dataset, whereas in the “Mature” condition training was prolonged for 200 epochs: one epoch simply marks the 
completion of the first cycle through the training images, whereas 200 epochs represent a stage where learning has 
clearly converged (as indexed by asymptotic behavior of the training loss function)2.

As shown in Fig. 2B, the GLM coefficients for the 144 individual deep networks were aligned with those of 
human observers, highlighting the primary contribution of Numerosity but also the impact of Size and Spacing 
in biasing the numerosity judgments. All coefficient fits were significantly different from zero both for Young 
networks (βNum all t > 66, p < 0.001; βSpacing all t > 17.9, p < 0.001; βSize all t > 32, p < 0.001) and Mature networks 
(βNum all t > 66, p < 0.001; βSpacing all t > 6.9, p < 0.001; βSize all t > 2.6, p < 0.001). It is important to emphasize that 
variability across networks was limited, thereby showing that the modeling results are robust to changes in archi-
tecture and initial state. GLM fits for representative Young and Mature networks are shown in Fig. 3A; as for the 
human participants reported in Fig. S1, the offsets of the colored lines from the black lines highlight that model 
choices were influenced by Size and Spacing, resulting in better discrimination for congruent trials and worse 

Figure 1.  Stimulus space and model architecture. (A) The 3D stimulus space defined by the Numerosity, Size 
and Spacing orthogonal dimensions (adapted from41). Non-numerical features are represented as arrows to 
indicate the direction in which they increase, and each stimulus image can be represented as a point in this 
space. Example of stimuli pairs are shown below, where Numerosity can be fully congruent for Size and Spacing 
(B), congruent for Spacing but not for Size (C), congruent for Size but not for Spacing (D), or fully incongruent 
for Size and Spacing (E). The model architecture is depicted in panel (F). At the initial stage, unsupervised deep 
learning adapts the connection weights of the first two layers (undirected edges) by capturing the statistical 
distribution of active pixels in the images. During task learning, a supervised linear classifier adapts the 
connection weights of the final layer (directed edges) in order to minimize discrimination error.

1Although these stimuli do not incorporate the complexity of natural images, which would more faithfully reflect the raw stimuli over which 
our visual system develops, we argue that such a simplified input could be considered as a fair approximation of the kind of visual representa-
tions propagated through the dorsal visual stream, where most of the fine-grained features of the image are discarded but spatial properties of 
the objects are retained72.

2Note that we are primarily interested in comparing the relative change over development; these two stages might not necessarily correspond 
to specific points in human development.
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discrimination for incongruent trials, especially for Young networks. Note also how the psychometric curve is 
much steeper for the Mature network, reflecting the increase in number acuity.

As shown in Fig. 2C (right panel), for Young networks the vector projection on the Numerosity dimension 
was larger than the projections on the other individual features (all Z > 10.40, all p < 0.001) except for Total 

Figure 2.  Psychophysics of numerosity comparison in humans and deep networks. Scatter plots of Numerosity, 
Size and Spacing coefficients for humans (A) and all deep networks (B), also showing the axes of individual 
features as done in41. (C) Differences between the projection on the Numerosity dimension and the projections 
on all individual non-numerical features for humans (left) and deep networks (right). Positive values indicate 
that number was a better predictor of behavior than the specific feature. Negative values would indicate that the 
considered feature had greater impact on discrimination choice. (D) Angles between the discrimination vector 
and all non-numerical features (the discrimination vector is on the y axis) for humans (left) and deep networks 
at two different developmental stages: Young (middle) and Mature (right).
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Perimeter, whose projection resulted higher than βNum (Z = −10.41, p < 0.001). For the Mature networks, the 
vector projection on Numerosity was larger than all other projections (all Z > 10.41, all p < 0.001). This pattern 
was confirmed by angle analysis (Fig. 2D): in the Mature networks Numerosity was the dimension closest to the 
discrimination vector (4.49 deg) followed by Total Perimeter (15.96 deg), and the angle between these two dimen-
sions was significantly different (Z = 10.41, p < 0.001). However, in the Young networks the closest dimension was 
Total Perimeter (11.69 deg), followed by Numerosity (15.61 deg), and the angle between these two dimensions 
was significantly different (Z = −10.41, p < 0.001).

Unsupervised learning thus seems to have strengthened the encoding of numerical information in the 
deep networks, supporting higher accuracy in the numerosity comparison task: Although explicit numerosity 

Figure 3.  Maturation of number acuity in deep networks. (A) GLM fit for one Young (left panel) and one 
Mature (right panel) network, visualized as in41. Black lines indicate the model fit for all data (black circles). 
Red color shows data and model fits for the trials with extreme Size ratio, while green color shows data and 
model fit for trials with great Spacing ratio. Dashed lines indicate that Size or Spacing were congruent with 
numerosity, while dotted lines indicate incongruent trials. (B) Left panel: Differences in Numerosity, Size and 
Spacing coefficients, measured separately for the Young and Mature networks. Right panel: Differences in angles 
between the discrimination vector and the most relevant non-numerical features, measured separately for the 
Young and Mature networks. (C) Comparison between angle and coefficients changes in humans (data replotted 
from24) and deep networks. Note that angle differences for both humans and networks have been scaled by a 
factor of 10 for visualization purposes.
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judgments in the model are affected both by unsupervised representation learning and supervised task learn-
ing, the supervised layer was exactly the same for Young and Mature models, implying that changes in coef-
ficients derive from a refinement of the internal representations. As shown in Fig. 3B (left panel), βNum was 
much higher for the Mature network compared to the Young network (U = 713, p < 0.001), while the influence 
of both Size (U = 20535, p < 0.001) and Spacing (U = 20393, p < 0.001) significantly decreased. At the level of 
individual features (right panel in Fig. 3B) we also observed a large difference in angles with the discrimination 
vector: the angle with Numerosity significantly decreased in the Mature network (U = 20736, p < 0.001), while 
there was a significant increase of the angles with Total Perimeter (U = 2623, p < 0.001) and Total Surface Area 
(U = 142, p < 0.001). These results are well aligned with recent human developmental data collected using the 
same stimulus space24: the comparison between 4-year-old children (the youngest group tested) and adults 
reveals a marked increase in the Numerosity coefficient and a moderate decrease of Size and Spacing coeffi-
cients, as well as a significant reduction in angle with Numerosity (see Fig. 3C). This developmental change is 
very similar to that observed in the deep networks between Young and Mature states. Overall, these findings 
suggest that numerosity is the primary feature driving numerical comparison both in children and adults, 
but with a different non-numerical bias that depends on the amount of sensory experience (which affects the 
quality of the learned generative model).

Nevertheless, it is well-known that numerosity discrimination performance can also be modulated by feed-
back43 and by the history of preceding trials44. In particular, numerosity discrimination improves when starting 
with easier trials and gradually progressing to harder ones, compared with the reverse (an effect known as per-
ceptual hysteresis44; in the machine learning literature, progression from easy to hard training samples is instead 
known as curriculum learning45,46). We investigated whether the hysteresis effect can be linked to classifier train-
ing in our model, that is, to the read-out of numerical information during task execution. We implemented an 
iterative version of the classifier and manipulated the training sequence to reflect an increase or decrease of task 
difficulty during learning (see SI). This manipulation yielded a small but reliable effect in the Mature network, 
which achieved higher number acuity (lower Weber fraction) when classifier training started from the easiest 
trials (see Fig. S2 and Supplementary Table S2). However, the effect was not observed for the Young network, 
suggesting that further modeling work is required to account for the hysteresis effect observed in children and 
infants44,47.

Deep networks internal encoding.  We systematically analyzed the deep networks’ internal rep-
resentations to disentangle the contribution of unsupervised deep learning in numerosity perception from the 
(supervised) task-driven decoding of information supporting numerosity judgments. To this aim we investi-
gated how numerosity and non-numerical features were spontaneously encoded in the activation patterns of 
hidden neurons in response to individual images, in the absence of an explicit task that requires focusing on 
numerical information as a salient dimension to guide overt behavior (i.e., without considering the discrim-
ination layer).

We performed a Representational Similarity Analysis (RSA)42 to assess which features were encoded in 
the network’s internal representations. As a first step, Representational Dissimilarity Matrices (RDMs) of all 
deep networks were fitted with a GLM, using as predictors the three orthogonal features defining the stimu-
lus space. In line with the task-driven simulations, the coefficient for Numerosity was far greater than those 
for Size [Young: t(11) = 117.87; Mature: t(11) = 10.84, ps < 0.001] and Spacing [Young: t(11) = 59.33; Mature: 
t(11) = 11.98, ps < 0.001]. This analysis highlights an overall decrease for the Numerosity coefficient over the 
course of unsupervised learning, which might be due to a more explicit encoding of other co-varying mag-
nitudes (e.g., Total Perimeter) in Young networks. We thus compared the RDM obtained from the best per-
forming deep network architecture with conceptual RDMs reflecting specific categorical models (Fig. 4A): The 
correlations between simulated RDMs and individual categorical models can be visualized as a second-order 
correlation matrix (Fig. 4B). The Young network exhibited a stronger correlation (Kendall Tau alpha, see 
Fig. 4C) with the RDM produced using Convex Hull (τA = 0.69), followed by Total Perimeter (τA = 0.52), 
Numerosity (τA = 0.51) and Field Area (τA = 0.47); correlation with all other categorical models was smaller, 
but significant in a one-sided signed rank test, thresholded at FDR < 0.01. The Mature network, instead, had 
stronger correlations with the RDMs for Numerosity (τA = 0.33), Total Perimeter (τA = 0.33) and Convex Hull 
(τA = 0.30), and significant correlations also with all the other categorical models (FDR < 0.01). Pairwise com-
parisons are shown in Fig. S3, highlighting the primary role of Convex Hull during early developmental stages, 
but an increase in the contribution of Numerosity later in development. The increase in correlation with all cat-
egorical models suggests that the representational space become more disentangled, thus allowing for a better 
factorization of all the latent features of the stimulus space. Control simulations (see Supplementary Table S1) 
indeed showed that linear decoding of Size also improved as a result of unsupervised learning; decoding of 
Spacing was already accurate at the Young stage.

Overall, RSA showed that numerosity information was spontaneously encoded as a salient dimension in the 
representational geometry of the deep network, even when no explicit numerosity judgements had to be carried 
out. A compatible result was obtained using t-SNE, which is a technique commonly used for visualizing the 
high-dimensional representational space of deep networks (see Fig. 5 and SI). When t-SNE was performed on 
the internal representations of images where Numerosity, Size and Spacing were all congruent, the algorithm was 
able to project patterns corresponding to small and large magnitudes into clearly separated clusters. When either 
Size or Spacing information was incongruent with number, the separation was still possible, but more evident in 
Mature networks. When both Size and Spacing were incongruent with number, the internal representations of 
Young networks did not support the formation of separate clusters.

https://doi.org/10.1038/s41598-020-66838-5


7Scientific Reports |        (2020) 10:10045  | https://doi.org/10.1038/s41598-020-66838-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
The computational investigations presented in this article reconcile two contrasting perspectives about the nature 
of our visual number sense. On the one hand, numerosity turned out to be the primary driver of both humans’ 
and deep networks’ responses in a numerosity comparison task, even when non-numerical visual cues were 
included as predictors of behavioral choices. Numerosity was also a critical factor in shaping the internal rep-
resentations emerging from unsupervised deep learning, showing that number was spontaneously encoded in 
the model even when no number-related decision had to be carried out (and indeed, in the absence of any task). 
These results support the characterization of numerosity as a primary perceptual attribute17 and are aligned with 
the hypothesis that animals are endowed with a number sense1,3. On the other hand, continuous visual features 
had a significant impact both on humans’ and deep networks’ responses, thus confirming that numerosity estima-
tion is modulated by non-numerical magnitudes that usually co-vary with number23,48. This was particularly the 
case for Total Perimeter, which was the most influential non-numerical feature modulating human judgements 
and models’ responses, especially at the initial learning stage. Although this effect might be partially due to the 
fact that the axis for Total Perimeter is particularly close (and thus correlated) to the axis for Numerosity in the 
current stimulus space, this finding supports the hypothesis that the ability to perceive and evaluate sizes might 
play an important role in the development of numerical processing49. Moreover, most of the continuous magni-
tudes were also spontaneously encoded in the representational space of the model, suggesting that non-numerical 
features are equally important for capturing the latent factors of variation underlying the sensory data.

According to our model, the influence of non-numerical features might be seen as the concurrent processing 
of other dimensions carrying magnitude information, but without necessarily implying that numerosity is con-
structed out of those dimensions. In our stimulus space Numerosity, Size and Spacing varied within the same 
range, in order to make sure that one dimension was not statistically more salient (i.e., of higher variance) than 
the others. However, an interesting research direction could be to investigate how the representational space 
might change under different distributional properties, for example by creating stimuli that match the statistical 
distribution of visual features in natural environments50.

Figure 4.  Representational similarity analysis. (A) Representational dissimilarity matrices for the best deep 
network architecture (distance measure: 1 – Pearson correlation) and the most relevant categorical models 
(distance measure: log distance between stimulus features). Each RDM was separately rank transformed and 
scaled into [0,1]. (B) Second-order correlation matrix showing the pairwise correlations between RDMs. (C) 
Relatedness between the model’s RDM and the categorical RDMs, measured as the Kendall rank correlation 
between dissimilarity matrices. Asterisks indicate significance in a one-sided signed rank test, thresholded at 
FDR < 0.01. Error bars indicate the standard error of the correlation estimate. Grey horizontal lines represent 
noise ceiling (i.e., the highest correlation that could be achieved considering the data variability).
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Our simulations show that numerosity processing can be carried out using generic low-level computations, 
such as those emerging in multi-layered neural networks that learn a hierarchical generative model of the sen-
sory data. Previous modeling work has shown that high-frequency spatial filtering of the image is the building 
block for computing numerical information at higher levels in the neural processing hierarchy39,40. This is con-
sistent with a psychophysical modeling approach based on spatial filtering51 and with recent electrophysiologi-
cal evidence suggesting that numerosity-sensitive responses are present at early stages of visual processing52,53. 
Numerical information in the deep neural network is best conceived as a population code over the hidden neu-
rons39,40, as also shown here by the representational similarity analysis. It should be emphasized that these results 
do not necessarily imply the existence of a system that is fully dedicated to numerosity: rather, our analyses show 
that numerosity can emerge as a partially disentangled factor in the latent representational space of deep net-
works, which is nevertheless also modulated by non-numerical magnitudes. Although sensitivity to numerosity 
has been found at the level of individual neurons in deep networks39,40,54, with tuning functions resembling those 
of real neurons in the dorsal visual stream of non-human primates55, the modulatory effect of non-numerical 
features in the response profiles of single-neurons awaits systematic examination both in neurophysiological 
studies and deep learning simulations. Moreover, one important question for future computational investigations 
is whether learning to count and the interactions with number symbols56 could promote the emergence of fully 
disentangled numerical representations.

It should be noted that, in accordance with previous experimental paradigms, in our setup visual exploration 
(i.e., eye movements) was prevented by the short display duration, which is aligned with our modeling approach 
based on pure parallel processing. Nevertheless, a recent study showed that approximate estimation of large 
numerosities can benefit from the deployment of serial accumulation mechanisms57, which could in principle 

Figure 5.  Manifold projection using t-SNE. Stimuli with a small or large numerosity (respectively in the ranges 
7:12 and 16:28) were first selected from the complete image data set. In the top panels, Numerosity, Size and 
Spacing are all congruent, which means that images with a small number of dots also have low Spacing and 
Size values. In the second-row panels, Numerosity and Size are congruent, but Spacing is not. In the third-row 
panels, Numerosity and Spacing are congruent, but Size is not. In the bottom panels, both Spacing and Size are 
incongruent with Numerosity. Results show that in the Mature model the representations are mostly clustered, 
with a distance gradient often proportional to number. In the Young model, when number is incongruent with 
Size the clustering almost disappears, especially when also Spacing is incongruent.
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be simulated by implementing more sophisticated, sequential network architectures58. However, it should also be 
noted that converging evidence points to the presence of separate mechanisms for perception of numerosity and 
texture/density when displays might contain a large number of items59,60.

The comparison between Young and Mature deep networks showed an overall improvement in number acuity, 
in line with developmental studies. This improvement reflected the increased weighting of numerical informa-
tion and the concurrent down-weighting of the non-numerical dimensions24. Such developmental change might 
be interpreted in terms of an improved ability to focus on numerosity and to filter out task-irrelevant features, 
so that the discrimination boundary gets progressively aligned to the task-relevant dimension26. However, in 
our simulations the discrimination layer received identical training when applied to both Young and Mature 
networks, thereby suggesting that the improvement stems from a refinement of the internal representations fol-
lowing unsupervised learning. In other words, a sharper internal encoding allows a better disentanglement of 
numerosity from other dimensions defining the statistical structure of the visual environment. The sharpening 
hypothesis is also supported by our representational similarity analysis, which shows that numerosity is indeed 
spontaneously encoded even in the absence of a task, and it becomes better factorized in the Mature state. In light 
of this, an interesting prediction put forward by our model is that also in children we should observe a develop-
mental refinement of numerosity representations (e.g., by RSA), even when there is no task requiring to focus on 
number. Along this line, a promising venue for future research would be to apply RSA to compare deep networks 
with human neuroimaging data (for a recent fMRI study on adults, see8).

The finding that supervised deep networks trained in visual discrimination tasks may show idiosyncratic 
(non-human) behavior61 has raised concerns about their capacity to faithfully mimic human vision. Here we 
observed an impressive match between human performance and deep neural networks, which suggests that neu-
rocomputational models based on unsupervised deep learning represent a powerful framework to investigate the 
emergence of perceptual and cognitive abilities in learning machines that emulate the processing mechanisms 
of real brains (also see36). Furthermore, our exploration of different architectures and learning hyperparameters 
suggests that numerosity comparison is a challenging task for deep learning models, although the present results 
do not exclude the possibility that more advanced architectures (e.g., incorporating ad-hoc pre-processing stages 
or convolutional mechanisms) could achieve higher performance. In this respect, it should be noted that even 
state-of-the-art models, such as those based on generative adversarial networks, have shown unable to explicitly 
represent numerosity as a fully disentangled factor62. The response variability exhibited by the different deep 
learning architectures also suggests that this framework could be used to study the factors contributing to the 
emergence of individual differences in human observers, which is crucial for developing personalized computa-
tional models that may predict learning outcomes (see63 for a recent application to learning to read and dyslexia).

Besides improving our current understanding of the computational foundations of numerosity perception, 
our modeling work has also the potential for technological applications. For example, intelligent machines that 
can perceive and manipulate numerosity in a meaningful way would allow to replace human annotators in tedi-
ous tasks, such as estimating the number of cells in microscopic images, monitoring crowds and traffic congestion 
in automatic surveillance systems or the number of trees in aerial images of forests. Number-related questions are 
also being included in standard benchmarks for assessing intelligent dialogue systems64, but the ability to flexibly 
manipulate numbers and perform quantitative reasoning is still out of reach even for state-of-the-art systems65. 
Indeed, although computers largely outperform humans on tasks requiring the mere application of syntactic 
manipulations (e.g., performing algebraic operations on large numbers, or iteratively computing the value of a 
function), they completely lack a conceptual semantics of number.

The problem of grounding symbolic knowledge into some form of intrinsic meaning is well known in artificial 
intelligence research66, and mathematics constitutes one of the most challenging domains for investigating how 
abstract symbolic notations could be linked to bottom-up, sensorimotor percepts67. We believe that our model-
ling work constitutes a key step towards a better understanding of our visual number sense: a great challenge for 
future research would be to extend this framework to the realm of formal mathematics68, in order to characterize 
the computational mechanisms underlying the acquisition of symbolic numbers, and their impairments in atyp-
ical populations.

Methods
Human participants.  Forty volunteer students (mean age 23.7 years, range 20–28, 32 females) were 
recruited at the University of Padova. All participants gave written informed consent to the protocol approved 
by the Psychological Science Ethics Committee of the University of Padova and did not receive any payment. All 
experiments were performed in accordance with relevant guidelines and regulations.

Visual stimuli.  Images of size 200 × 200 pixels were generated by randomly placing white dots on a black 
background. For the discrimination task there were 13 levels of Numerosity (range 7–28), 13 levels of Size (range 
2.6–10.4 pixels × 105) and 13 levels of Spacing (range 80–320 pixels × 105), evenly spaced on a logarithmic scale. 
Note that the range of variability was the same across each orthogonal dimension. For each selected point in the 
stimulus space 10 different images were generated by randomly varying dots displacement, resulting in a dataset 
of 21970 unique images. For the human experiment we randomly selected images from the dataset to create 300 
image pairs with different magnitude ratios, oversampling the more difficult numerosity ratios (10% with ratio 
between 0.5 and 0.6; 20% with ratio between 0.6 and 0.7; 30% with ratio between 0.7 and 0.8; 40% with ratio 
between 0.8 and 0.9). For simulations, 15200 image pairs were created by randomly choosing among all patterns 
in the dataset. We also created an independent dataset of 65912 images, containing all numbers between 5 and 32, 
which was used only for unsupervised learning.
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Procedure for the human study.  Stimuli were projected on a 19-inch color screen. Participants sat approx-
imately 70 cm from the screen and placed their head on a chin rest. Participants were verbally instructed to select 
the stimulus with more dots, responding with the left and right arrows of the keyboard depending on its side of 
appearance (feedback was given only during few practice trials). The task consisted in 3 blocks of 100 trials each, 
for a total of 300 trials. Each trial began with a fixation cross at the center of the screen (500 ms), followed by the 
simultaneous presentation of two stimuli (250 ms), one at the right and one at the left of the cross with eccentricity 
of ~12 visual degrees, and then by two masks of black and white Gaussian noise in the same positions (150 ms). 
A black screen was then displayed until response, without time limit. After response, a pseudorandom inter-trial 
interval between 1250 and 1750 ms occurred. Participants also performed a sequential version of the same task, 
whose outcome was aligned with the simultaneous version and thus it is not further considered (see SI).

GLM analysis.  All responses below stimulus presentation time were considered outliers, as well as response 
times over two standard deviations from the participant’s mean response time in equally difficult trials (based on 
numerosity ratio). A generalized linear model (with probit link function) was then fitted to the choice data of each 
participant41, which was modeled as a function of the three regressors Numerosity, Size and Spacing:
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where rnum, rsize and rspacing represent the Numerosity, Size and Spacing ratios between the two stimuli, and the 
corresponding β coefficients represent the degree to which each orthogonal dimension affects discrimination 
performance. The βSide coefficient accounts for spatial response biases independent from stimuli properties, while 
the term γ represents the guessing factor accounting for occasional random responses due to distraction. The 
individual guessing factor was estimated to minimize the deviance of the model and was set to 0.01.

Projection analysis.  The direction of the discrimination vector defined by the coordinates βNum, βSize and 
βSpacing represents what stimulus features are being mostly used to perform the discrimination, while the magni-
tude of the vector represents the participant’s acuity in discriminating each feature. In the case of a strategy based 
exclusively on numerosity the discrimination vector will coincide with the Numerosity dimension, and the mag-
nitude of the vector will be exactly βNum. When choice is modulated by other dimensions, the contribution of each 
individual non-numerical feature is geometrically characterized by projecting the discrimination vector onto 
each dimension and measuring which one is the closest to the Numerosity axis. Similarly, the most representative 
features can be quantified by measuring the angle between the discrimination vector and each candidate dimen-
sion69. Multiple comparison tests were always corrected using the Bonferroni method. When the assumption of 
normality was violated, non-parametric tests (Wilcoxon signed rank) were performed.

Deep learning.  Deep belief networks were first trained in a completely unsupervised way on the stimulus set 
containing all numbers from 5 to 32 (images were downscaled to 100×100 pixels for computational convenience). 
Deep networks were built as a stack of two Restricted Boltzmann Machines (RBMs) trained using contrastive 
divergence32,70. Each RBM consisted of two layers of stochastic neurons, fully connected with symmetric weights 
and without self-connections (SI for details). Visual stimuli were provided as input by clamping the vectorized 
images on the visible neurons of the first RBM; the subsequent activation of hidden neurons constituted the 
model’s internal representation of the stimulus. A decision layer was then trained by feeding the internal rep-
resentations (i.e., the hidden activations of the top RBM) of two paired stimuli to a linear network with two output 
units, which implemented a binary classification task (note that supervised training did not alter the internal 
representations of the deep network). We tested 12 different architectures (obtained by varying the number of 
hidden units in each layer) with 12 different random initializations of the connection weights, for a total of 144 
networks. The source code of our simulations is available for download on the Open Science Framework, along 
with a copy of the trained networks that can be used to further test our model over different types of stimuli and 
experimental settings3.

Representational similarity analysis.  Results reported in the main text refer to the architecture achieving 
the best numerosity discrimination performance, which had 1500 neurons in the first hidden layer and 1000 neu-
rons in the second layer (control simulations showed that the overall findings hold also if we consider the com-
plete set of architectures). The deep network was probed on a subset of test stimuli created by randomly selecting 
10 instances of each combination of three Numerosity levels (7, 18, 28), three Size levels (2.60 × 105, 6.55 × 105, 
10.40 × 105) and 3 Spacing levels (0.80 × 107, 2.02 × 107, 3.20 × 107), all equally spaced between the minimum and 
maximum values in the original stimulus set, for a total of 270 images. The activation patterns of the deepest hid-
den layer corresponding to instances with the same combination of features were averaged, resulting in 27 mean 
activation patterns. These mean activation patterns were then compared in order to build a Representational 
Dissimilarity Matrix (RDM), whose cells contained a number reflecting the dissimilarity (1–Pearson correla-
tion) between the internal representations associated to each combination of stimulus features. For comparison, 
categorical RDMs corresponding to all possible individual features were built by using as dissimilarity measure 
the difference between feature values on a log scale. The model RDMs were quantitatively compared to the cate-
gorical RDMs using Kendall’s Tau alpha correlation, and their specific relatedness was statistically assessed using 
3https://osf.io/j7dvc
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one-sided Wilcoxon signed rank tests, considering the simulated RDMs as reference and treating the categorical 
models as possible candidates. RSA was performed using a publicly available MATLAB toolbox71.

Data availability
All data needed to evaluate the conclusions are present in the paper. The complete source code of the model is 
available for download at the Open Science Framework: https://osf.io/j7dvc/.
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