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In the number-to-position task, with increasing age and numerical expertise, children’s pattern of estimates
shifts from a biased (nonlinear) to a formal (linear) mapping. This widely replicated finding concerns symbolic
numbers, whereas less is known about other types of quantity estimation. In Experiment 1, Preschool, Grade
1, and Grade 3 children were asked to map continuous quantities, discrete nonsymbolic quantities (numer-
osities), and symbolic (Arabic) numbers onto a visual line. Numerical quantity was matched for the symbolic
and discrete nonsymbolic conditions, whereas cumulative surface area was matched for the continuous and
discrete quantity conditions. Crucially, in the discrete condition children’s estimation could rely either on the
cumulative area or numerosity. All children showed a linear mapping for continuous quantities, whereas a
developmental shift from a logarithmic to a linear mapping was observed for both nonsymbolic and symbolic
numerical quantities. Analyses on individual estimates suggested the presence of two distinct strategies in
estimating discrete nonsymbolic quantities: one based on numerosity and the other based on spatial extent. In
Experiment 2, a non-spatial continuous quantity (shades of gray) and new discrete nonsymbolic conditions
were added to the set used in Experiment 1. Results confirmed the linear patterns for the continuous tasks, as
well as the presence of a subset of children relying on numerosity for the discrete nonsymbolic numerosity
conditions despite the availability of continuous visual cues. Overall, our findings demonstrate that estimation
of numerical and non-numerical quantities is based on different processing strategies and follow different
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A growing number of studies have demonstrated that humans
and many animal species can represent and operate on approxi-
mate numerical quantities (Agrillo, Dadda, Serena, & Bisazza,
2009; Cantlon & Brannon, 2006). However, numerate humans are
also able to represent numerical quantities in an exact way as a
consequence of learning numerical symbols (Verguts, Fias, &
Stevens, 2005; Zorzi & Butterworth, 1999; Zorzi, Stoianov, &
Umilta, 2005).

A window into the transition between approximate and exact
estimation of symbolic numbers is offered by a numerical estima-
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tion task that requires individuals to map a given numerical value
onto a visual line, widely known as the number-to-position (NP)
task (Siegler & Opfer, 2003). In a seminal study, Siegler and Opfer
(2003) asked children to indicate where a given number (e.g., 25)
should be placed onto a black horizontal line with the left and right
ends labeled as 0 and 100 (or 1000), respectively. Younger chil-
dren displayed a pattern of estimates characterized by overestima-
tion of small numbers and underestimation of larger numbers.
With increasing age and education (in particular, familiarity with
the tested numerical range), children shift from this biased esti-
mates to a formal and linear estimation that entails the accurate
placement of numbers (Berteletti, Lucangeli, Piazza, Dehaene, &
Zorzi, 2010; Siegler & Booth, 2004; Siegler & Opfer, 2003).
Siegler & Opfer (2003) originally argued that the biased pattern of
estimates was well described by a logarithmic function, which is
consistent with the widely accepted notion of logarithmically
compressed representation of numerical magnitude (i.e., the ap-
proximate number system; ANS; Feigenson, Dehaene, & Spelke,
2004; Piazza, 2010; Stoianov & Zorzi, 2012). Accordingly, the
typical pattern of biased estimates in the NP task entails a greater
distance between small numbers compared with larger numbers,
thereby suggesting that young children used the logarithmic and
more biased representation (i.e., the ANS) to accomplish the task.

Although the idea of a developmental shift from a biased to
a linear mapping is widely accepted (Siegler, Thompson, &
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Opfer, 2009), there is a lively debate on the nature of the biased
pattern of estimates, both from a statistical (i.e., best fitting
model) and a theoretical perspective (e.g., Barth & Paladino,
2011; Bouwmeester & Verkoeijen, 2012; Cohen & Sarnecka,
2014; Ebersbach, Luwel, Frick, Onghena, & Verschaffel, 2008;
Moeller, Pixner, Kaufmann, & Nuerk, 2009). For example, the
familiarity model (Ebersbach et al., 2008; Moeller et al., 2009)
assumes that the compressed pattern of estimates is best fit by
two separated straight lines (i.e., a bilinear function), fitting
familiar single-digit numbers separately from less-familiar two-
digit numbers. The proportional model, instead, considers the
pattern of estimates in the NP task as evidence of a proportional
judgment process (Barth & Paladino, 2011, but see Opfer,
Siegler, & Young, 2011 for a convincing confutation; Hollands
& Dyre, 2000; Spence, 1990). Irrespective of the outcome of the
above-mentioned debate, an open issue is whether the develop-
mental shift observed for the NP task is tied to the type of items
to be estimated. Although the same developmental shift from
biased to linear estimation was observed in many different
numerical tasks with different scales (Siegler et al., 2009), as
well as for nonnumerical ordered sequences (Berteletti, Lucan-
geli, & Zorzi, 2012), there is sparse evidence on the estimation
of nonsymbolic quantities. Booth and Siegler (2006) found the
logarithmic to linear shift also when children had to transcode
Arabic digits into continuous (i.e., line length) or discrete (e.g.,
dots) quantities.

Here we question whether the estimation of nonsymbolic
quantities, discrete and continuous, would show a similar or a
different estimation pattern compared with the one showed by
children when estimating symbolic numerical quantities of
equal value. By comparing estimation for different types of
quantities, it will be possible to determine whether the pattern
observed in the symbolic NP task is the consequence of poor
knowledge of the elements of the specified numerical interval,
or whether children rely on common representations for differ-
ent types of quantities (i.e., symbolic, discrete or continuous).
In Experiment 1, we compared the symbolic NP task with two
novel tasks that are directly matched in terms of quantities: a
nonsymbolic discrete task (i.e., sets of objects) and a nonsym-
bolic continuous task (i.e., spatial extent). In Experiment 2, we
tested the same conditions of Experiment 1 (including some
variants) as well as a new line mapping task in which the
quantity was continuous and nonspatial (i.e., shades of gray).
The cross-sectional design allowed us to assess whether the
well-known developmental trajectory in the symbolic NP task
can be observed for the other types of quantity estimations. We
would like to highlight that the ongoing debate about which
model best captures the developmental change in the pattern of
estimates in the NP-task is orthogonal to the aims of the present
study. For this reason, we simply refer to the classic distinction
between logarithmic and linear positioning without assuming
that the selected model is a faithful index of the underlying
representation (Karolis, Iuculano, & Butterworth, 2011;
Moeller et al., 2009). However, the developmental change
should only occur for numerical quantities if it is related to an
increased mastery of the numerical values and the principles
that underlie the numerical system.

Experiment 1

We directly compared three estimation tasks that differed in the
format of the quantities to be mapped onto the visual line: sym-
bolic (i.e., the classic NP-task), discrete (i.e., numerosity), and
continuous (i.e., spatial extent; see Figure 1). In the two latter
versions, children had to position nonsymbolic quantities onto
lines that were bounded at the left end by an empty square—
corresponding to zero—and at the right end by a square that was
either filled with 100 objects or completely black— corresponding
to the maximum possible quantity. In the continuous quantity
estimation, the items to be placed on the line were represented by
a growing black rectangle progressively filling a box; in the
discrete condition, the items were represented by sets of equal size
squares progressively filling a box. Crucially, the discrete quantity
could be processed either as numerosity or as continuous quantity,
because the numerosity of each set was perfectly correlated to its
cumulative surface area (i.e., the sum of the area of all squares in
the discrete condition matched the area occupied by the black
rectangle in the continuous condition). Moreover, the quantities
were exactly the same across the three conditions to make a direct
comparison of the patterns of estimates (e.g., 25% of fullness in the
continuous condition, 25 squares in the discrete condition, and the
number “25” in the symbolic condition).

In the continuous condition, the quantity (black area) had to be
mapped onto another continuous quantity (length of the line).
Thus, we predicted that the estimates would be fairly linear even
for young children because the transformation takes place within

a
I
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° el
&
C
25
C:) 1(:)0

Figure 1. Example of three trials with (a) continuous, (b) discrete, and (c)
symbolic representation of the same quantity (i.e., 25).
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the visuospatial domain (similarly to a simple proportional judg-
ment; Spence, 1990). In the symbolic condition, we expected to
observe the widely observed logarithmic-like pattern with a shift to
linearity as a function of age (Barth & Paladino, 2011; Berteletti et
al., 2010; Booth & Siegler, 2006; Geary, Hoard, Nugent, & Byrd-
Craven, 2008; Moeller et al., 2009; Siegler & Booth, 2004; Siegler
& Opfer, 2003). The discrete condition could yield variable map-
pings depending on how the discrete quantities are processed. If
children use the continuous visual cues (i.e., cumulative surface
area; Clearfield & Mix, 1999, 2001; Mix, Huttenlocher, & Levine,
2002) as input to the estimation process, the type of mapping
should mirror the one observed in the continuous condition. In
contrast, if children automatically encode numerosities (Cantlon,
Safford, & Brannon, 2010; Cordes & Brannon, 2008, 2009;
Stoianov & Zorzi, 2012), we would expect children to display a
pattern of estimates with a marked overestimation of small numer-
osities (Dehaene, Izard, Spelke, & Pica, 2008), more similar to the
symbolic condition (Berteletti et al., 2010; Siegler & Opfer, 2003).
Across grades, the estimation of discrete quantities might become
more accurate, possibly reaching a linear mapping as recently
observed in adults (Anobile, Cicchini, & Burr, 2012, but see
Dehaene et al., 2008; Nufez, Doan, & Nikoulina, 2011). Indeed,
Anobile et al. (2012) using a bounded number line task in which
participants mapped numerosities identical to those used in the
classic study of Siegler and Opfer (2003) but in the discrete format
(i.e., dots), showed that educated adults deploy an accurate linear
mapping in this task, unless attentional resources were diverted by
a dual task manipulation. The direct comparison between different
formats can also shed light on the type of processes used by
children to solve the NP task. Indeed, if children rely on the same
mapping mechanism for estimating nonsymbolic quantities, we
should observe the same pattern of estimates as the one observed
when symbolic quantities are positioned on the line. This would
support the assumption that the pattern observed in the sym-
bolic task is not the consequence of poor knowledge of the
elements to be positioned or the properties of the interval. By
testing children from preschool to Grade 3, we investigated
whether the estimation of nonsymbolic quantities also changes
with development.

Method

Participants. Two hundred and three children from preschool
to Grade 3 were recruited from schools located in northern Italy.
All children spoke Italian as a first language and they were mostly
of middle socioeconomic status. There were 40 preschoolers (17
boys; age range = 5-6), 68 from Grade 1 (30 boys; age range 6—7)
and 95 from Grade 3 (44 boys; age range = 7—8). We selected this
particular age range to maximize the possibility of observing a
developmental change in the NP task (Siegler & Opfer, 2003). In
particular, a recent study on Italian children (Berteletti et al., 2012)
reported a logarithmic pattern for preschoolers, a linear pattern for
third graders, and an intermediate pattern for first graders. A
replication of the typical developmental pattern for the NP task
(i.e., symbolic condition) provides an important baseline for high-
lighting similarities and differences between the different types of
quantity estimation.

Procedure. Children were met individually, in a quiet room,
and completed the three paper-and-pencil estimation tasks. The

SELLA, BERTELETTI, LUCANGELI, AND ZORZI

order in which the children completed the experimental tasks was
determined randomly. The stimuli in each task were also ordered
randomly. The estimation tasks were presented as games, no time
limit was given and items or questions could be repeated if
necessary but neither feedback nor hints were given to the child.
Children were free to stop at any time.

Tasks. The nonsymbolic estimation tasks are adaptations
from the NP task of Siegler and Opfer (2003). For all three
conditions, a 20-cm black line was presented in the center of a half
A4 landscape white sheet (see Figure 1). In the symbolic condi-
tion, the left end was labeled O and the right end was labeled 100.
Children were required to estimate the position of 10 numbers (i.e.,
2,3, 4,6, 18, 25, 42, 67, 71, 86; adapted from Siegler & Opfer,
2003), making a pen mark on the line. For each trial, the number
to be positioned was presented inside a box in the upper left corner
of the sheet. For the continuous condition, an empty box (2 X 2
cm) was placed just below the left end of the line, whereas a full
black box was placed just below the right end. Children were told
that the black box was a box full of liquid (e.g., juice) and the other
one was empty and the horizontal line meant the level of fullness.
The quantity to be positioned was represented by a partially filled
box (i.e., 2%, 3%, 4%, 6%, 18%, 25%, 42%, 67%, 71%, or 86%
full) placed in the upper left corner. For the discrete condition, the
same empty box was placed just below the left end, and a box
filled with 100 small black squares (0.2 X 0.2 cm) was placed just
below the right-end of the line. The quantity to be positioned was
represented by a box filled with a variable amount of randomly
spread small squares (i.e., 2, 3, 4, 6, 18, 25, 42, 67, 71, or 86
squares). Children were told that the squares were chocolate pieces
and the line went from an empty box to a full box of chocolate
pieces. Children were not allowed to count the squares. Instruc-
tions were similar for the three estimation tasks except for specific
changes for each type of stimuli. Symbolic condition instructions
were

We will now play a game with number lines. In this page there is a line
that goes from 0 to 100. In the upper left box there is a number that
I want you to place on the line making a mark using your pencil.

While pointing to the relevant elements on the sheet, the exper-
imenter went on with the question, If 0 is here and 100 is here,
where would you place 25? Discrete/continuous condition instruc-
tions were

We will now play a game. In this page there is a line that goes from
an empty box of chocolate/juice to a full box of chocolate/juice. In the
upper left box there is a quantity of chocolates/juice that I want you
to place on the line making a mark using your pencil.

While pointing to the relevant elements on the sheet, the exper-
imenter went on with the question, If the empty box is here and the
full box is here, where would you place this quantity of chocolates/
Jjuice? To verify whether children had understood the question and
were aware of the interval size, they were asked to place O (empty
box) and 100 (full box) on the line. Only on these two practice
trials the experimenter gave feedback for wrong responses by
saying: “This line goes from 0 (empty box) to 100 (full box), if I
want to place 0/100 (empty box/full box), this is the right place.”
After the two examples, the task started and no other feedback was
given.
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Results

In case of nonsphericity for the analyses of variance (ANOVAs), we
use the Greenhouse—Geisser correction for p values (Field, Miles,
& Field, 2012). We also report the generalized eta-square as a
measure of effect size (Bakeman, 2005; Field et al., 2012). The p
values for planned comparisons are corrected using the Bonferroni
formula. All the analyses were conducted in the R environment (R
Development Core Team, 2013) using ez package (Lawrence,
2013) and ggplot2 package (Wickham, 2009).

Group analysis. Estimation accuracy was assessed using the
percentage of absolute error (PAE) for each participant and con-
dition. This was calculated as follows: PAE = (|Estimate —
Target number or quantity|/scale of estimation) X 100. A mixed
ANOVA was computed with grade as between-subjects factor
(preschool, Grade 1, and Grade 3) and condition as within-subject
factor (continuous, symbolic, and discrete). Mean PAEs, from
preschool to Grade 3, were 19%, 15%, and 11% in the continuous
condition; 21%, 20%, and 13% in the discrete condition; and 24%,
18%, and 9% in the symbolic condition (see Figure 2). The main
effect of condition F(2, 400) = 6.84, mean square error (MSE) =
56.19, p = .001, ~r]§ = 0.01 and the main effect of Grade, F(2,
200) = 29.95, MSE = 175.28, p < .001, m3 = 0.15, were
significant. Given that the interaction was also significant, F(4,
400) = 6.55, MSE = 56.19, p < .001, n} = 0.02, we performed
separate repeated-measures ANOVAs for each grade with condi-
tion as the within-subject factor. Condition was significant for the
three separate ANOVAs showing a difference in precision of
estimation as a function of condition, preschool: F(2, 78) = 5.9,
MSE = 50.21, p = .004, m7 = 0.04; Grade 1: F(2, 134) = 591,
MSE = 80.16, p = .003, 2 = 0.04; Grade 3: F(2, 188) = 8.52,
MSE = 41.59, p < .001, m} = 0.03. In preschool children, planned
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Figure 2. Percentage of absolute error (PAE) as a function of grade and
condition. Bars represent within-subjects 95% confidence interval (Morey,
2008). All ps are Bonferroni-corrected. ** p < .01. ™ p < .001.

t test comparisons (we reported Bonferroni-adjusted ps for 3
comparisons) revealed that preschool children were more accurate
in the continuous condition compared with the symbolic condition,
#(39) = 3.53, p = .001; in Grade 1, pupils were more precise in the
continuous condition compared with both the discrete and the
symbolic condition, #(67) = 3.08, p = .003; (67 = 2.7, p = .009,
respectively); finally, Grade 3 pupils had a better estimation ac-
curacy in the symbolic condition compared with the discrete
condition, #(94) = 4.14, p < .001.

To understand the pattern of estimates for each condition, we
first fit group medians and then the individual data (Siegler &
Opfer, 2003). Because we do not attempt to solve the debate on
which model best describes performance, we use the models that
have traditionally been used to observe the developmental im-
provement of estimation, namely, the logarithmic and the linear
function. Group median estimates and the corresponding best
linear or logarithmic fit are reported in Figure 3. To asses which
model describes performances more accurately in each grade, the
difference between linear and logarithmic models was tested with
a paired-sample ¢ test on absolute distances between children’s
median estimate for each number and the predicted values accord-
ing to the linear and the logarithmic model. If the ¢ test was
significant, the best fitting model was attributed to the group. In
the continuous condition, the linear model had the highest R? and
was significantly different from the logarithmic model for all
groups, preschool: #(9) = 3.5, p = .007, linear R* = 96% vs. log
R? = 73%; Grade 1: 1(9) = 4.23, p = .002, linear R*> = 98% versus
log R> = 75%; Grade 3: #(9) = 4.22, p = .002, linear R> = 98%
versus log R> = 75%). In the discrete condition, for preschool and
Grade 1, the difference between the two models did not reach
significance, indicating an intermediate stage, preschool: #9) =
1.64, p = .135, linear R2 = 97% versus log R? = 91%; Grade 1:
#(9) = 1.61, p = .142, linear R* = 93% versus log R> = 98%. For
Grade 3 children, the linear model showed the best fit, #(9) = 2.52,
p = .033, linear R*> = 98% versus log R* = 92%. Finally, in the
symbolic condition, the logarithmic model had the highest R* for
both preschool and Grade 1 and significantly differed from the
linear model, preschool: #9) = 3.92, p = .003, linear R? = 78%
versus log R> = 98%; Grade 1: #(9) = 2.76, p = .022, linear R* =
88% versus log R?> = 99%). For Grade 3 children, the linear fit was
significantly better, #(9) = 2.35, p = .043, linear R* = 98% versus
log R> = 90%.

Individual analysis. We fit the linear and the logarithmic
model on individual estimates for each condition. Whenever both
models did not reach significance, the child was classified as not
able to complete the task properly (“none” category; Berteletti et
al., 2010). When at least one model was significant, the highest R
determined the type of mapping displayed by the child. Indeed,
when estimates are almost linear, the logarithmic model also fits
very well the data. Table 1 shows the percentages of children with
each type of mapping for each condition. Inspection of the table
reveals that, in the continuous condition, for all the three age
groups a high percentage of children displayed a linear mapping
whereas only few of them showed a logarithmic mapping. In the
discrete condition, there is a slightly higher percentage of children
displaying a logarithmic mapping for preschoolers and first grad-
ers, whereas for the third graders the pattern in reversed. In the
symbolic condition, there is a high percentage of preschoolers and
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Figure 3. Median estimates and best fitting models as a function of grade for continuous, discrete, and

symbolic conditions.

third graders displaying a logarithmic mapping whereas the ma-
jority of third graders are classified as linear.

Overall, at the group level, the symbolic condition showed the
previously described developmental pattern with a progressive
shift from logarithmic to linear positioning. For the continuous
condition, children as young as 5 years old were already able to
linearly map continuous quantities on to the line. For the discrete
condition, both the linear and logarithmic models fit group medi-
ans for preschool and Grade 1 children. Moreover, at individual
subject level, we observed that for both the symbolic and the
discrete conditions, a large percentage of children were classified
as positioning items following a logarithmic distribution whereas
only a very small number of kids were doing so for the continuous
condition (i.e., approximately 6%). In the symbolic condition,
fewer children in Grade 3 showed a logarithmic pattern of re-
sponding than those in preschool or Grade 1, whereas in the
discrete condition, the patterns of responding were similar across
grades. We selected only those children who performed a linear
mapping in the continuous condition and we questioned whether
their mapping remained linear in the discrete condition. These
children achieved a linear mapping in the continuous condition

translating the physical dimension of the target quantity (i.e.,
fullness of the box) into the corresponding position on the line. The
central question is whether they keep on relying on physical
dimension of the stimuli also for the discrete condition. Of the 167
children with a linear mapping in the continuous condition, 7%
were classified as none, 42% as logarithmic, and 51% as linear in
the discrete condition. The same analysis was run separately for
each grade and among children with linear mapping in the con-
tinuous condition, a similar percentage of children across grades
displayed a biased (logarithmic) mapping in the discrete condition,
preschool: 17% none, 38% logarithmic, 46% linear; Grade 1: 12%
none, 50% logarithmic, 38% linear; Grade 3: 1% none, 38%
logarithmic, 61% linear. Within each group, a considerable amount
of children showed a bias in estimation similar to the one observed
in the symbolic task: overestimating small quantities and under-
estimating larger ones.

To further investigate the relation between the type of mapping
in the discrete and the symbolic estimation tasks, we calculated the
percentage of children, separately for each grade (the “none”
category was excluded), deploying either logarithmic or linear
mapping in the symbolic condition as a function of the type of
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Table 1
Types of Mapping in the Three Age Groups for Continuous,
Discrete, and Symbolic Conditions

Type of mapping

Condition and grade None Logarithmic Linear
Continuous
Preschool 27.5 12.5 60.0
Grade 1 10.3 44 85.3
Grade 3 53 53 89.5
Discrete
Preschool 25.0 40.0 35.0
Grade 1 13.2 50.0 36.8
Grade 3 2.1 38.9 58.9
Symbolic
Preschool 22.5 70.0 7.5
Grade 1 5.9 79.4 14.7
Grade 3 1.1 26.3 72.6

Note. Cell values represent percentages of children with row sums equal
to 100%.

mapping observed in the discrete condition. As can be noted from
Table 2, approximately 60% of children across the three age
groups displayed a concordance in mappings between discrete and
symbolic conditions. For preschool and Grade 1 children, this is
shown by the high percentage of children in the logarithmic—
logarithmic intersection, whereas for the Grade 3 children the
pattern is reversed, with a high percentage of children in the
linear—linear intersection.

In summary, individual analyses suggest that children used two
distinct mapping patterns when estimating discrete quantities. Ap-
proximately half of the children who were linear in the continuous
condition deployed the same pattern when processing stimuli in
the discrete condition. The other half showed a pattern of estimates
that mirrored the symbolic condition, suggesting that these chil-
dren might have focused on numerosity rather than spatial extent.

R ? of linear fit. To further investigate the progression toward
a linear mapping with grade in the three conditions, we used the
linear R as index of linearity for all the children who displayed
logarithmic or linear mappings in all conditions (see Figure 4).
There were 23 preschoolers, 51 first graders, and 89 third graders.
We analyzed the linear R* in a mixed ANOVA with grade as
between-subjects factor (preschool, Grade 1, and Grade 3) and
condition as within-subject factor (continuous, symbolic, and dis-

Table 2

Type of Mapping Deployed in the Symbolic Condition as a
Function of the Type of Mapping Observed in the
Discrete Condition

Type of mapping

Grade Discrete Logarithmic Linear
Preschool Logarithmic 53.8 0.0
Linear 34.6 11.5
Grade 1 Logarithmic 49.1 55
Linear 32.7 12.7
Grade 3 Logarithmic 15.2 25.0
Linear 10.9 48.9

Note. Cell values are percentages of children for each grade.

Preschool Grade 1 Grade 3

Linear R?

T T T
(a) LR S,
9, %, 2,

0,
%, o, % S, %
o(/o(/ % 0, % o(/o(/ % %, %
< ®
Condition

Figure 4. Linear R? as a function of grade for continuous, discrete, and
symbolic conditions. All ps are Bonferroni-corrected. * p < .05. ™ p < .01.
7 p < .001.

crete). The main effect of grade was significant, F(2, 160) =
34.69, MSE = 0.02, p < .001, m; = 0.17, as well as the main effect
of condition, F(2, 320) = 13, MSE = 0.01, p < .001, m3 = 0.04.
The interaction Grade X Condition also reached significance, F(4,
320) = 5.44, MSE = 0.01, p < .001, n; = 0.04. We performed
repeated-measures ANOVAs for each grade separately with con-
dition as within-subject factor. The effect of condition was signif-
icant for all three age groups, preschool: F(2, 44) = 3.5, MSE =
0.02, p = .039, n; = 0.08; Grade 1: F(2, 100) = 9.09, MSE =
0.02, p < .001, M2 = 0.09; Grade 3: F(2, 176) = 9.5, MSE = 0.01,
Piac) < 001, mz = 0.06. Planned ¢ test (we reported Bonferroni-
adjusted ps for 3 comparisons) revealed that the linear fit was
higher in the continuous condition compared with the symbolic
condition for preschool children, #(22) = 2.59, p = .05. For Grade
1, the continuous condition was characterized by a higher linear fit
compared with both discrete and symbolic condition, #(50) = 3.69,
p = .002, 1(50) = 4.36, p < .001, respectively. Grade 3 children
displayed a higher linear fit in the continuous and symbolic con-
dition compared with the discrete condition, #(88) = 2.8, p = .019,
#(88) = 3.9, p < .001, respectively.

Discussion

In Experiment 1, we directly compared performances of chil-
dren, from preschool to Grade 3, on three estimation tasks in which
the quantities to be placed were continuous, discrete and symbolic.
Crucially, in the discrete condition children could rely either on the
spatial extent or on numerosity to estimate the position of the item.
If children relied on the former, the pattern of estimates in the
discrete condition should have mirrored those of the continuous
condition. Conversely, if they relied on numerosity, the pattern of
estimates should have resembled that of the symbolic condition.
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Our results highlighted the presence of two distinct strategies:
Approximately half of the children spontaneously encoded discrete
quantities as numerosities despite the availability of continuous
visual cues. The other half of the children seemed to rely on spatial
extent to perform the task, thereby showing a more accurate
mapping that mirrored the continuous quantity condition. For the
continuous condition, children displayed a linear mapping already
in preschool. Indeed, median estimates were better fit by the linear
model than the logarithmic model for all groups, and at individual
level only 6% of children were categorized as logarithmic in the
continuous condition. The accuracy in positioning the items
showed a slight improvement between preschool and Grade 3
children. These results can be explained by the fact that the
continuous condition requires a simple transformation within the
visuospatial domain, thereby yielding an unbiased performance
even in the youngest group. As already observed in proportional
judgments (Spence, 1990), the pattern of estimates for the contin-
uous items presented a slight underestimation of small quantities.
Although the vast majority of children displayed a linear mapping
in the continuous condition, half of them showed a biased (log-
like) pattern of estimation in the discrete condition. It is interesting
that small discrete quantities were overestimated despite the avail-
ability of a strong continuous visual cue (cumulative surface)
which could promote a direct visuospatial strategy. The overesti-
mation of small numerosities strongly suggests that the stimuli
were encoded as numerical magnitudes and then mapped onto the
visual line similarly to their symbolic counterparts. This interpre-
tation is in line with a study by Cordes and Brannon (2009),
showing that numerosity can be more salient than other available
continuous visual cues (also see Cantlon et al., 2010). Results also
show that the proportion of children displaying a linear mapping in
the discrete condition increased between Grades 1 and 3. Although
some studies have found that educated adults still deploy a com-
pressed mapping when estimating discrete quantities (Dehaene et
al., 2008; Nufez et al., 2011), a recent study by Anobile et al.
(2012) reported a linear mapping. In our study, the linear mapping
can also be explained by the fact that spatial extent was perfectly
correlated with numerosity, thereby allowing a much finer estima-
tion of numerosity or even strategic reliance on continuous map-
ping in older children. Although the visuospatial properties of the
discrete condition facilitated estimation, the analysis of the linear
fit showed that even third graders were less linear in the discrete
condition compared with both continuous and symbolic condi-
tions. Discrete quantity estimation was further investigated in
Experiment 2. Accordingly, further discussion of the interindi-
vidual differences in this condition is postponed to the General
Discussion section.

Experiment 2

A limitation of Experiment 1 is that the type of quantity in the
continuous condition was spatial in nature. Therefore, the linear
pattern of estimates observed for continuous condition in Experi-
ment 1 could be related to the spatial nature of the stimuli and
might not be fully representative of continuous quantity estima-
tion.

The main aim of Experiment 2 was to supplement the tasks used
in Experiment 1 (see Figure 5, Panels a—c) with a novel nonspatial
continuous condition to confirm that children deploy a linear

a Continuous
L

bl Discrete

¢ Symbolic

d 5 5

Continuous Non-spatial
€ Discrete + Visual Cues
f - Continuous-Size

Figure 5. Example of six trials with the same quantity (i.e., 25) presented
in the six different conditions: (a) continuous, (b) discrete, (c) symbolic, (d)
continuous nonspatial, (e) discrete + visual cues, and (f) continuous size.
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pattern in the estimation of continuous quantities, even in the
absence of a spatial feature. The new continuous nonspatial con-
dition (see Figure 5, Panel d) required to position different shades
of gray on a line delimited by a white and a black square.
Moreover, we included additional variants of the discrete and
continuous (spatial) conditions to further investigate how the es-
timation strategy is influenced by continuous visual cues. In par-
ticular, we designed a new discrete condition so that numerosity,
cumulative area and perimeter (occupied area) of the target items
represented the same proportion of the full box (discrete + visual
cues; see Figure 5, Panel e). This allowed us to assess whether the
perfect correlation between numerosity and continuous visual cues
(cumulative area and perimeter) would increase the reliance on a
nonnumerical visual strategy, thereby yielding a linear pattern of
estimates. We also designed a new continuous condition (contin-
uous size; see Figure 5, Panel f) that was perfectly matched to the
new discrete + visual cues condition. To this end, target quantities
were black squares or rectangles that were identical in size (both
width and height) to the items of the discrete + visual cues
condition. Given that preschool and Grade 1 children displayed a
similar pattern of estimates across conditions in Experiment 1,
Experiment 2 was administered only to new samples of Grade 1
and Grade 3 children.

We predicted that children from both age groups would display
a linear mapping in the continuous nonspatial condition, even if
their accuracy in placing target quantities might decrease as a
consequence of the lack of spatial landmarks (Vogel, Grabner,
Schneider, Siegler, & Ansari, 2013). Regarding the discrete, con-
tinuous, and symbolic condition, we expected to replicate the
results of Experiment 1. Grade 1 children should show less lin-
earity in the discrete and symbolic conditions, whereas their map-
ping should be linear in the continuous condition. Grade 3 chil-
dren, instead, should globally display a linear mapping across
conditions, as in Experiment 1. Nevertheless, we expected them to
show less linearity in the discrete condition compared with the
continuous and the symbolic conditions. Regarding the discrete +
visual cues condition, we expected children from both groups to
show a linear mapping because the presence of a perfect correla-
tion between numerosity and continuous visual cues (cumulative
area and perimeter) should favor the reliance on a nonnumerical
visual strategy, thereby yielding a linear pattern of estimates.
Finally, the continuous-size condition requires children to compute
the area of squares and rectangles, which vary in width and height,
to provide a correct mapping. Consequently, this condition might
be more difficult compared with the original continuous condition,
in which target quantities only varied in height. Therefore, we
predicted a linear mapping for both age groups, but with a reduced
accuracy in positioning the quantities.

Method

Participants. Sixty-seven children from Grade 1 and Grade 3
were recruited from a school located in northern Italy. All children
spoke Italian as first language and they were mostly of middle
socioeconomic status. There were 27 children from Grade 1 (15
boys, M, ,onms = 79, SD = 3) and 40 children from Grade 3 (18
boys, M, onms = 104, SD = 6).

Procedure. Children completed a computerized version of the
task in the school’s computer room. The six different estimation

conditions were randomly administered except for the symbolic con-
dition which was always presented last. This order of presentation was
intended to prevent children from understanding that the nonsymbolic
items were equivalent to the symbolic numbers. Estimation tasks were
presented as games, no time limit was given and items or questions
could be repeated if necessary but neither feedback nor hints were
given to the child. Children were free to stop at any time. The task
instructions were given by the experimenter before starting the task
and children could ask questions if they had doubts.

Tasks. For all six conditions, a 20.3-cm long black line was
presented in the center of the monitor (15-in. monitors with 1024 X
768 pixel resolution). In all continuous conditions, a white box was
placed just below the left end of the line, whereas a full black box was
placed just below the right end (see Figure 5). Target items were all
presented in the upper left corner of the screen. For the continuous
nonspatial condition, the item to be positioned was represented by a
gray-shaded box in the upper left corner. Shades were calculated as
percentages of black color using the red-green-blue (RGB) parameters
(black: R = 0, G = 0, B = 0; white: R = 255, G = 255, B = 255).
For the continuous condition, the quantity was represented by a
partially filled box (as in Experiment 1). In the continuous-size
condition, the quantity was represented by a black square or rectangle
whose area corresponded to a percentage of the total area occupied by
the reference full black box. In the two discrete conditions, the
right-end reference quantity was a box filled with 100 small black
squares (as in Experiment 1). For the discrete + visual cues condition,
the quantity to be positioned was represented by a box filled with a
variable number of small squares. Numerosity, cumulative area, and
perimeter were perfectly correlated and represented the same propor-
tion of the full box reference quantity. In the discrete condition, the
quantity to be positioned was represented by a box filled with a
variable number of randomly spread small squares. In the continuous-
size, discrete + visual cues, and discrete conditions, each target
quantity was randomly selected among a pool of 10 images. In the
two discrete conditions, the reference quantity of 100 little squares
was randomly selected among a pool of 10 images in which the
spatial arrangement of the squares was jittered. In the symbolic
condition, the left end of the line was labeled 0 and the right end was
labeled 100. The number to be placed was presented in a box in the
left upper corner. In all six conditions, children were required to
estimate the position of the same quantities (i.e., 1, 2, 4, 6, 9, 12, 16,
25, 36, 42, 49, 56, 64, 72, 81). The target quantities were randomly
presented within each estimation condition. Children placed the quan-
tities on the line by moving an arrow using the mouse and clicking a
mouse button to confirm the selected position. The movement of the
arrow was bounded to the horizontal line. After pressing the mouse
button, a red dot appeared on the selected location as feedback. Then,
children pressed the key “s” to start another trial. The experiment was
presented as a game. At the beginning of each condition, the exper-
imenter gave instructions and explained what the child would see.
Two practice trials were then administered to the child to verify that
she had understood the task. The two practice trials in all conditions
were represented by an empty box (0 in the symbolic condition) and
by a full box (100 in the symbolic condition). The experimenter
repeated the instructions if necessary, then each child completed the
entire task without receiving any feedback.

Group analysis. Estimation accuracy was assessed using the
PAE for each participant and condition (see Figure 6). A mixed
ANOVA was computed with grade as between-subjects factor
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Figure 6. Percentage of absolute error (PAE) as a function of grade and
condition. Bars represent within-subjects 95% confidence interval (Morey,
2008). All ps are Bonferroni-corrected. ™ p < .01. ™" p < .001.

(Grade 1 and Grade 3) and condition as within-subject factor
(continuous nonspatial, continuous, continuous size, discrete +
visual cues, discrete, symbolic). Mean PAEs, for Grade 1 and
Grade 3 were 25%, and 16% in the continuous nonspatial condi-
tion, 20%, and 10% in the continuous condition, 22%, and 12% in
the continuous-size condition, 22%, and 12% in the discrete +
visual cues condition, 22%, and 14% in the discrete condition,
23%, and 8% in the symbolic condition. The main effect of
condition F(5, 325) = 7.84, MSE = 34.95, p < .001, mz; = 0.07,
and the main effect of grade, F(1, 65) = 82.38, MSE = 120.45,
p <.001, 2 = 0.34, were both significant. Because the interaction
was also significant, F(5, 325) = 2.32, MSE = 34.95, p = .043,
Mz = 0.02, we performed separate repeated-measures ANOVAs
for each grade with condition as within-subject factor. Condition
was significant only for Grade 3 children showing a difference in
precision of estimation as a function of condition, F(5, 195) =
14.08, MSE = 22.61, p;gg; < 001, mz = 0.21. Planned compar-
isons included the same contrasts performed in Experiment 1 (i.e.,
continuous vs. discrete, discrete vs. symbolic, discrete vs. sym-
bolic) and two additional contrasts involving the new conditions,
that is continuous versus continuous nonspatial and discrete +
visual cues versus continuous size. The 7 test comparisons (we
reported Bonferroni-adjusted ps for 5 comparisons) revealed that
for continuous nonspatial condition the PAE was higher compared
with continuous, #39) = 5.56, p < .001. For the continuous
condition the PAE was higher compared with the discrete condi-
tion, #(39) = 3.71, p = .003 but similar to the symbolic condition,
1(39) = 1.53, p = .673. The continuous-size condition and the
discrete + visual cues displayed a similar PAE, #39) = 0.79, p =
1, whereas the PAE in the symbolic condition was lower compared
with the discrete condition, #39) = 5.02, p < .001.

As for Experiment 1, to understand the pattern of estimates for
each condition, we first fit group medians and then individual data.
The best fitting model was assessed following the same procedure
as for Experiment 1. The linear model was significantly better than
the logarithmic model in both groups for all conditions except for
the symbolic condition. For the symbolic condition the logarithmic
model was significantly better for Grade 1, whereas the linear
model was significantly better for Grade 3 (see Figure 7). In the
continuous nonspatial condition, the linear model had the highest
R? and was significantly different from the logarithmic model for
both groups, Grade 1: #(14) = 2.61, p = .02, linear R*> = 94%
versus log R? = 84%; Grade 3: 1(14) = 6.15, p < .001, linear R*=
99% versus log R> = 81%. In the continuous condition, the linear
model had the highest R? and was significantly different from the
logarithmic model for both groups, Grade 1: #(14) = 4.79, p <
.001, linear R* = 97% vs. log R> = 80%; Grade 3: (14) = 5.31,
p < .001, linear R* = 99% versus log R*> = 76%. In the
continuous-size condition, the linear model had the highest R* and
was significantly different from the logarithmic model for both
groups, Grade 1: #(14) = 2.64,p = .02, linear R? = 93% versus log
R> = 81%; Grade 3: 1(14) = 4.51, p < .001, linear R*> = 98%
versus log R? = 74%. In the discrete + visual cues condition, the
linear model had the highest R*> and was significantly different
from the logarithmic model for both groups, Grade 1: #(14) = 2.52,
p = .024, linear R* = 97% vs. log R> = 82%; Grade 3: 1(14) =
5.49, p < .001, linear R* = 99% versus log R* = 79%. In the
discrete condition, the linear model had the highest R? and was
significantly different from the logarithmic model for both groups,
Grade 1: #(14) = 3.4, p = .004, linear R> = 96% versus log R> =
82%; Grade 3: 1(14) = 3.71, p = .002, linear R? = 98% versus log
R?* = 85%. In the symbolic condition, the logarithmic model had
the highest R? and was significantly different from the linear
model for Grade 1 whereas the linear model had the highest R* and
was significantly different from the logarithmic model for Grade 3,
Grade 1: 1(14) = 2.57, p = .022, linear R*> = 71% versus log R* =
91%; Grade 3: t(14) = 5.07, p < .001, linear R? = 98% versus log
R> = 79%.

Individual analysis. We fit the linear and the logarithmic
model on individual estimates for each condition as for Experi-
ment 1. Table 3 shows the percentages of children with each type
of mapping for each condition. For first graders, the percentage of
children classified as linear tends to be higher compared with the
percentage of those classified as logarithmic, except for the sym-
bolic condition in which the log-like pattern is predominant. For
third graders, linear mapping appears to be predominant across all
conditions. Nevertheless, 35% of the third graders showed a log-
arithmic mapping in the discrete condition. The distribution of
individual patterns of estimation was further analyzed by comput-
ing the R* of the linear fit.

R? of linear fit. We analyzed the linear R for each child who
displayed logarithmic or linear mapping in all the conditions (i.e.,
excluding those classified as “none”). There were 10 children from
Grade 1 and 35 from Grade 3. We analyzed the linear R” in a
mixed ANOVA with grade as between-subjects factor (Grade 1
and Grade 3) and condition as within-subject factor (continuous
nonspatial, continuous, continuous-size, discrete + visual cues,
discrete, symbolic, see Figure 8). The main effect of grade and the
interaction Grade X Condition reached significance, F(1, 43) =
32.85, MSE = 0.05, p < .001, m} = 0.19; F(5, 215) = 3.8, MSE =
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Figure 7. Median estimates and best fitting models as a function of grade
for continuous nonspatial, continuous, continuous-size, discrete + visual
cues, discrete and symbolic conditions.

Grade and condition None Logarithmic Linear
Grade 1
Continuous nonspatial 18.5 25.9 5.6
Continuous 259 18.5 5.6
Continuous size 29.6 11.1 9.3
Discrete + visual cues 29.6 29.6 0.7
Discrete 14.8 29.6 5.6
Symbolic 37.0 44.4 8.5
Grade 3
Continuous nonspatial 0.0 22.5 71.5
Continuous 2.5 7.5 90.0
Continuous size 0.0 2.5 97.5
Discrete + visual cues 75 17.5 75.0
Discrete 0.0 35.0 65.0
Symbolic 2.5 15.0 82.5
Note. Cell values represent percentages of children with row sums equal
to 100%.

0.02, p = .003, mi = 0.06, respectively. Separate repeated-
measures ANOVAs for each grade with condition as within-
subject factor were then run. Condition was significant only for
Grade 3, F(5, 170) = 4.68, MSE = 0.02, p < .001, n; = 0.08. We
then carried out the same set of planned comparisons performed in
the PAE analysis (i.e., continuous vs. discrete, discrete vs. sym-
bolic, discrete vs. symbolic, continuous vs. continuous nonspatial,
discrete + visual cues vs. continuous size). The ¢ test comparisons
(we reported Bonferroni-adjusted ps for five comparisons) re-
vealed that the linear fit was highest in the symbolic condition and
significantly different compared with the discrete condition,

Grade 1 Grade 3

Linear R?

Condition

Figure 8.  Linear R* as a function of grade for continuous nonspatial,
continuous, continuous-size, discrete + visual cues, discrete and symbolic
conditions. All ps are Bonferroni-corrected. * p < .05. ™ p < .001.
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t(34) = 4.09, p = .001. The linear fit was also higher in the
continuous condition compared with the discrete condition,
t(34) = 3.08, p = .02. The other comparisons did not reach
statistical significance.

Discussion

In Experiment 2, children completed the same continuous,
discrete, and symbolic conditions used in Experiment 1. More-
over, children also completed a continuous nonspatial condition
to rule out that the linear pattern of estimates observed in
Experiment 1 was due to the spatial nature of the continuous
quantity task. We also added the discrete + visual cues condi-
tion to investigate whether perfect correlation between numer-
osity, cumulative area and perimeter would increase the reli-
ance on a nonnumerical visual strategy, thereby yielding a
performance similar to the matched continuous-size condition.
The data from Grade 3 children perfectly replicated those of
Experiment 1. In the continuous condition, children displayed a
linear mapping and a high accuracy in positioning (i.e., low
PAE). In the continuous nonspatial condition, 22.5% of Grade
3 children displayed a logarithmic mapping, however, at indi-
vidual level, the R? of the linear fit was comparable to that of
the continuous condition. We conclude that the mapping of the
continuous nonspatial condition is basically linear, despite a
tendency to overestimate all target quantities as indexed by a
lower accuracy compared with the continuous condition. There-
fore, this result demonstrates that the linearity of mapping for
continuous quantity estimation is not tied to the spatial dimen-
sion of the target stimuli. A reduced accuracy in the mapping of
continuous nonspatial quantities has been observed in a previ-
ous study on adult participants using a brightness estimation task
(Vogel et al., 2013). Also in the continuous-size condition the pattern
of estimates was characterized by a linear mapping. In summary, all
conditions that entailed the mapping of continuous quantities onto a
line were performed in a linear manner by the large majority of
children. In the discrete condition, the linearity of estimation was
significantly reduced in comparison to both symbolic and continuous
conditions, thereby mirroring the results of Experiment 1. It is inter-
esting that the discrete + visual cues condition and the matched
continuous-size condition did not differ in terms of linearity, thereby
suggesting that the availability of perfectly reliable visual cues (i.e.,
cumulative area and perimeter) promoted a mapping strategy based
on continuous quantity rather than on discrete numerosity.

In contrast to third graders, our sample of Grade 1 children dem-
onstrated some difficulties in completing one or more conditions of
the estimation tasks. Indeed, only 10 children displayed a meaningful
mapping (i.e., logarithmic or linear) across all conditions. Therefore,
the conclusions that can be drawn for Grade 1 children are limited.
One possible explanation for the discrepancy with Experiment 1, in
which Grade 1 children successfully performed across all conditions,
is presentation format. In Experiment 1, the task was administered
paper-and-pencil as in previous studies (Siegler & Opfer, 2003)
whereas in Experiment 2 tasks were presented on computers. There-
fore it is conceivable that younger children experienced difficulties
with the unfamiliar setting such as coordinating the mouse move-
ments to respond (i.e., mouse pointing and clicking).

General Discussion

Results from the two experiments show that continuous spatially
defined estimation tends to yield linear mapping. These tasks entail
simple visual transformations most likely calling upon a propor-
tional judgment process (Spence, 1990). Children estimated the
size of the target item and then compared its relative size to the full
box by selecting a position on the line. The computation of items
surface and their relative proportional judgment seems to be an
accurate process already in preschool children. In line with this
result, children from 3 to 6 years of age displayed a better perfor-
mance in comparing total area of stimuli (continuous dimension)
than comparing their numerosity (discrete dimension; Odic, Lib-
ertus, Feigenson, & Halberda, 2013). The estimation of nonspatial
continuous quantities (i.e., shades of gray) showed a linear pattern
with higher percentage of error than for continuous spatial quantity
estimation. A possible explanation for the latter difference is that
in the spatial condition the outer box provides a reference for
judging the target quantity and it is relatively easy to identify the
midpoint (i.e., a half-full box). Conversely, the nonspatial contin-
uous condition lacks any explicit cue about the gray level corre-
sponding to the middle of the grayscale. A relatively low estima-
tion accuracy in grayscale estimation was observed in the study of
Vogel et al. (2013) on adult participants.

Regardless of the estimation accuracy, the crucial finding of the
present study is that the pattern of estimates in all the nonnumeri-
cal quantity estimation tasks was markedly linear, which is in
sharp contrast with the nonlinear pattern observed in the numerical
estimation tasks. For example, both preschoolers and first graders
in Experiment 1 showed a linear pattern of estimates for continu-
ous quantities, whereas they displayed a nonlinear positioning in
the numerical conditions, whether symbolic or nonsymbolic/dis-
crete. It is worth reiterating that the target quantities were the same
across all conditions, which implies that the nonlinear pattern
observed in the numerical condition cannot be attributed to con-
founds in the stimuli (e.g., oversampling of small numbers in the
stimulus set, Barth & Paladino, 2011) or to the choice of a specific
fitting function. As noted in the introduction, the present results are
agnostic to the issue of which function best describes the pattern of
estimates in the symbolic condition (Barth & Paladino, 2011;
Cohen & Sarnecka, 2014; Ebersbach et al., 2008; Moeller et al.,
2009; Opfer et al., 2011). Whatever the outcome of the ongoing
debate, our interpretation of the results is based on the different
patterns of estimates observed within subjects between numerical
and nonnumerical quantity estimations. Moreover, the comparison
across age groups clearly confirmed the well-known developmen-
tal trajectory of numerical estimation (Berteletti et al., 2010; Booth
& Siegler, 2006; Siegler & Opfer, 2003), whereas nonnumerical
(i.e., continuous) quantity estimation followed a different trend and
it was not characterized by a drastic change in the pattern of
estimates during the time window investigated in the present study.

With regard to the numerical estimation conditions, we observed
both similarities and differences between symbolic and discrete
quantity estimation tasks. The analysis of individual patterns of
estimates suggested that in the discrete condition some children
spontaneously encoded the discrete stimuli as numerical quantities
despite the availability of visual cues (Cantlon et al., 2010;
Hannula-Sormunen, 2014), in line with the hypothesis that numer-
osity is a primary visual property (Burr & Ross, 2008; Stoianov &
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Zorzi, 2012). These children displayed a biased and less linear
mapping (also see Dehaene et al., 2008; Nufez et al., 2011),
thereby confirming that the encoding of numerical information does
not rely on the same process implemented for continuous quantity
estimation (also see Odic et al., 2013). In line with this result, the
processing of continuous (i.e., area, brightness) and discrete (i.e.,
numerosity) quantities have been found to be processed in adjacent
but distinct brain areas (Castelli, Glaser, & Butterworth, 2006; Vogel
et al., 2013; for a review, Cohen Kadosh, Lammertyn, & Izard, 2008).
Moreover, computational modeling has shown that numerosity is a
higher order summary statistics compared with a continuous quantity
like cumulative area (Stoianov & Zorzi, 2012). Nevertheless, the
estimation pattern appeared to be more linear when the visual cues
(i.e., perimenter and cumulative area) were made more salient by
perfectly correlating with numerosity (i.e., discrete + visual cues
condition in Experiment 2).

Future research might investigate the source of differences in
individual strategy when children estimate discrete quantities char-
acterized by varying physical dimensions (e.g., cumulative area,
perimeter). The ability to accurately extract numerical information in
complex conditions (e.g., when the correlation between physical di-
mensions and numerosity is unreliable) may be crucial in explaining
the relation between numerosity comparison and mathematical skills
(Cappelletti, Didino, Stoianov, & Zorzi, 2014; Fuhs & McNeil, 2013;
Gilmore et al., 2013). It is also worth noting that the tendency of some
children to spontaneously focus on numerosity (Hannula & Lehtinen,
2005; Hannula, Rasanen, & Lehtinen, 2007; Sella, Berteletti, Lucan-
geli, & Zorzi, 2015) is a plausible source of the interindividual
variability observed in the discrete condition. The ability to focus on
numerosity has been reported to be a distinct attentional component as
well as a predictor of mathematical achievement in the early stages of
development (Hannula, Lepola, & Lehtinen, 2010). More broadly,
children who spontaneously focus on numerical aspects of their en-
vironment have more opportunities to refine their number skills (e.g.,
school, home) and they may be more prone to immediately perceive
the discrete stimuli employed in our study as numerosities (Hannula-
Sormunen, 2014; Sella, Berteletti, Lucangeli, & Zorzi, 2015).

In conclusion, our results show that estimations of numerical and
nonnumerical quantities rely on different processing strategies and
follow different developmental trajectories. In a broader context, our
findings speak to the issue of whether numerical quantity is processed
by a common quantity system (Walsh, 2003) or has special status in
the human neurocognitive system (e.g., Zorzi, Di Bono, & Fias, 2011;
Zorzi, Priftis, Meneghello, Marenzi, & Umilta, 2006; see Cohen
Kadosh et al., 2008, for review). Together with a previous study
highlighting the developmental trajectories in the spatial mapping of
numerical and nonnumerical order (Berteletti et al., 2012), the present
study suggests that numerical estimation is indeed a special case of
quantity estimation.
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