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Cross-language comparisons can provide important constraints on our understanding of
how people read aloud. French is an interesting case because it differs from most other
writing systems in that it uses a large number of multi-letter vowel graphemes and conso-
nants that are systematically silent (i.e., do not map to any lexical phonology; e.g., trop).
Here, we developed a French version of the Connectionist Dual Process Model of Reading
Aloud (CDP++) that can handle multisyllabic stimuli (up to three syllables) and has a
large-scale lexicon of more than 100,000 words. We tested the model on extant data and
an additional experiment examining the reading aloud of nonwords with potentially silent
letters. The results from the extant data showed that the model was able to capture a num-
ber of important psycholinguistic effects in the literature and explained between 52% and
67% of the item-specific variance in two large databases. The results of the silent-letter
experiment showed that, contrary to what would be predicted on the basis of lexical data-
base statistics, people generally pronounce ‘‘silent’’ consonants in nonwords. We show that
the French CDP++ model faithfully predicted this effect because it implements a linear
mapping between orthography and phonology. These findings highlight the theoretical
and practical significance of using computational models to help determine the processes
and representations that underlie skilled reading.

� 2014 Elsevier Inc. All rights reserved.
Introduction ‘‘shaped a contemporary reading science preoccupied with
There are now a number of different models of reading
aloud (e.g., Ans, Carbonnel, & Valdois, 1998; Coltheart,
Rastle, Perry, Langdon, & Ziegler, 2001; Perry, Ziegler, &
Zorzi, 2007; Perry, Ziegler, & Zorzi, 2010; Perry, Ziegler, &
Zorzi, 2013; Plaut, McClelland, Seidenberg, & Patterson,
1996; Seidenberg & McClelland, 1989). Most of these
models have been developed for English, which has been
considered by some as an ‘‘outlier’’ orthography that has
distinctly narrow Anglocentric research issues that have
only limited significance for a universal science of reading’’
(Share, 2008, p. 584). While this statement seems overly
harsh given the tremendous progress that has been made
in the area of modelling word recognition (for a review,
see Norris, 2013), it is important to test computational
principles and implementations in other languages to see
whether they are general or idiosyncratic to the language
they have been developed for (for discussions, see Frost,
2012; Share, 2008; Ziegler & Goswami, 2006). In the
context of connectionist learning models, it is crucial to
investigate to what extent the same simple learning
mechanism can produce quite complex and quite different
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behavior that is found in different languages (e.g., Yang,
McCandliss, Shu, & Zevin, 2009). In the present article,
we will describe and test a French version of the latest Con-
nectionist Dual Process (CDP) model. The basic architecture
of the model appears in Fig. 1.
The basic architecture of the CDP++ model

The latest version of CDP, CDP++.parser (Perry et al.,
2013) can be conceptually broken into two main parts, a
lexical route and a sublexical route, which split-off from
each other after the letter representations. The lexical route
provides a simple look-up mechanism whereby words
activate their whole-word entries in an orthographic lexi-
con. These entries then activate entries in a phonological
lexicon, and finally phonemes in a phoneme output buffer.
The sublexical route first selects graphemes from letters, a
task performed by the graphemic parser. These graphemes
are placed in a graphemic buffer, which is the input layer of
the two-layer associative (TLA) network where linear rela-
tionships between graphemes and phonemes are learned.
After this, phonological activation is generated. This activa-
tion is combined with the activation generated by the lexi-
cal route at the phoneme output buffer, and a pronunciation
is derived. At present, both the graphemic parser and the
TLA network learn from corpus data using the delta rule
(Widrow & Hoff, 1960). This rule is formally equivalent to
the Rescorla–Wagner rule (Sutton & Barto, 1981) and has
been used to great success in other language studies (see
e.g., Baayen, Milin, Durdevic, Hendrix, & Marelli, 2011).

One reason for the superior performance of recent ver-
sions of CDP, which differentiates it from the other models,
is the nature of the sublexical route (see Zorzi, 2010). The
use of a graphemic level of representation above individual
Fig. 1. The French C
letters is important both for theoretical and computational
reasons (see Perry, Ziegler, Braun, & Zorzi, 2010; Perry
et al., 2007; Perry et al., 2013). In terms of theoretical rea-
sons, there are a number of neuropsychological disorders
as well as experimental studies suggesting the importance
of graphemes in reading and spelling (e.g., Caramazza &
Miceli, 1990; Cotelli, Abutalebi, Zorzi, & Cappa, 2003; How-
ard & Best, 1996; Rey, Ziegler, & Jacobs, 2000; Tainturier &
Rapp, 2004). In terms of computational reasons, adding a
grapheme level improved the model’s performance on
word and most importantly on nonword reading. This
can easily be seen by comparing the different versions of
CDP. The first version of the model (Zorzi, Houghton, &
Butterworth, 1998) did not use graphemes and its perfor-
mance was much poorer than that of later versions.

If a graphemic representation is used in models of read-
ing aloud, then it is important to specify how graphemes
are selected from letters. The most recent version of CDP,
CDP++.parser (Perry et al., 2013), showed how the mapping
between letters and graphemes could be learnt using a
parser that was constructed from a simple linear network
with a memory. To get the parser to work, a database of
words was first decomposed into their graphemes. After
this, the words were presented to the model as strings of
letters of a fixed length (5 letters for English), where each
string contained a grapheme at the start of it. The model
then learnt to choose the first grapheme in each of the
strings, with the strings being presented to the model in
the order in which the graphemes occurred in words. Thus,
the input to the model was a string of letters and the out-
put was a grapheme. The core idea behind the parser was
that letters occur in a restricted attentional window, and
this window moves from left-to-right across letter strings.
This allows words of any length to be parsed, since all the
DP++ model.
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model has to do is choose the grapheme at the start of the
window at any given time step and this could theoretically
occur indefinitely. For example, the letter strings used with
the word catcher were catch, atche, tcher, and er���, where
the � represents no letter. From these letter strings, the
model learnt to iteratively select the c, a, tch, and er
graphemes.

Apart from just learning to select the graphemes, the
model also learned whether the graphemes occurred in
an onset, vowel, or coda category. This information is
crucial to the model in running mode, where graphemes
are selected online with no information from lexical pho-
nology, because it allows the graphemes to be inserted into
an orthographic template that is syllabically structured,
such as that used with the TLA network used in CDP++
(see e.g., Perry, 2013; Prinzmetal, Treiman, & Rho, 1986;
Taft, 2001, for evidence people may use syllabically struc-
tured orthography). Orthographic syllable boundaries can
be found by categorizing graphemes, because if an onset
grapheme occurs after a coda or vowel grapheme, it means
that there must be a syllable break between them.
For example, with the word catcher, if one knows that
the –tch is an onset grapheme and that the –a is a vowel
grapheme, then there is enough information to infer that
the –tch grapheme should be placed into the onset of the
syllable that occurs after the vowel, rather than in a coda
position of the same syllable. With CDP++.parser, this
information about what category graphemes occur in is
given to the graphemic parser in learning mode, where
the graphemes are aligned with lexical phonology as well
as they can be, and the relationships between graphemes
and the categories they should go in are then learnt. For
the word catcher, the syllabic alignment and hence which
category its graphemes should go in is simple because each
grapheme in c.a.tch.er maps to exactly one phoneme,
although obviously more complex cases exist. Without
knowing whether –tch is a coda or an onset grapheme,
some other method to place the grapheme into the
template would need to be used. An evaluation of
CDP++.parser showed that it performed better than
CDP++ (Perry et al., 2010), a model which used a parser
where graphemes are selected on the basis of simple rules.
The specificities of French orthography

French has a writing system with a fairly complex
orthographic structure. It therefore makes an ideal cross-
language test-case for whether the mapping between
letters and graphemes can be learned. The French orthog-
raphy differs from many others in a number of ways. One
is that long sequences of vowel letters are common (e.g.,
vieux, criaient, coeur). This is potentially challenging for
CDP++.parser because it is not simply given a rule by which
to choose graphemes, but rather needs to learn how to
choose them from letters.

A second peculiar aspect of French is that, like the letter
–e in English which can occur in either a vowel or coda
position (e.g., bet, fate), many graphemes constructed from
vowel letters can have multiple roles, rather than just map
to single vowel phonemes. For example, the grapheme –ou
maps to the semi-vowel /w/ in some circumstances (e.g.,
joua [played] – /jwa/) and a vowel in others (e.g., brouillent
[scramble] – /bRuj/). This pattern is also challenging for
CDP++.parser, because it means that the parser must learn
that the same grapheme needs to be categorized as an on-
set (which is where the semi-vowel needs to be placed in
the sublexical network of CDP++) or a vowel, depending
on the letter context in which it occurs.

A third interesting pattern in the French orthography
that makes it different from many other languages is that
large numbers of letters are silent – that is, they do not ap-
pear to map to any phonology. This pattern is systematic,
rather than something that occurs in an ad hoc manner.
These silent letters do not appear to be restricted only to
the end of words, but they can occur at the end of syllables.
For example, the –p in baptiser [baptize] (/batize/) is silent
(e.g., Chetail & Content, 2013). To confirm this, we per-
formed an analysis of just the first syllable of words in
the database described below. For the sake of simplicity,
we removed bodies with a final silent –ent morpheme
(e.g., ils regardent [they look]) as well as words where a fi-
nal –es was silent after following another /s/ (e.g., caisses
[boxes]). The results showed that there were 1500 ortho-
graphic bodies that exist in French that do not end in the
letter –e and do not just contain vowel letters. Of these,
369 always have the final consonant pronounced (e.g., –
el in tel [such]), 1019 always have at least one silent final
consonant (e.g., -ottes in bottes [boots]), and 112 have at
least some level of ambiguity, where the letters may be
pronounced or may be silent, and these may differ in terms
of how many of the letters are silent when there is more
than one letter. For example, the word est [is] uses no coda
phonemes but est [east] uses two, the body –omp uses one
coda phoneme in the first syllable of somptueux [sumptu-
ous] but none in compter [to count], and the body –ord uses
one coda phoneme in bord [edge] and two in fjord [fjord].
With a model like CDP++, some hypothesis about how
these letters are dealt with needs to be made and its
behavior investigated to see whether it makes interesting
and testable predictions about how human participants
deal with silent letters in nonwords.
The graphemic parser of the French CDP++ model

The graphemic parser of CDP++ is constructed of a sim-
ple two-layer network that takes a string of letters as input
and tries to predict what the most likely grapheme is at the
start of the string as well as its category (i.e., onset, vowel,
coda). The input also has a memory of previous graphemes
that it has chosen, and the categories are determined by
having 3 slots (onset, vowel, and coda) in the output where
the graphemes are duplicated. When the model is run, the
‘winning’ grapheme is the one that is activated the most
across the 3 slots. The current version is parameterized
identically to the English version apart from the number
of letters (37 in the French alphabet plus 1 for the blank
letter) and graphemes (111 were used, including single-
letter graphemes). It uses 5 slots for the letter input, where
any potential letter in the French alphabet can go, and
there are 3 time-steps for the memory of the previous
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graphemes. This means the input into the network is sim-
ply a vector constructed of letters (38 letters � 5 letter
spots) and previous graphemes (111 graphemes � 3
slots � 3 time steps) and the output is a vector of graph-
emes (111 graphemes � 3 slots). The network appears in
Fig. 2.

The French parsing mechanism was developed based on
the same principles as CDP++.parser. This involves con-
structing a training database in which words are seg-
mented into graphemes (see Perry et al., 2010, for a
discussion of issues to do with grapheme selection, and
Appendix A for specifics of how the database of over
100,000 words was developed, more specific details about
the model, as well as an evaluation of the error rates). An
important language specific issue is that that some solu-
tion is needed to represent semi-vowels and silent letters
so that the graphemes in words can be coded.

In terms of semi-vowels, based on the idea of using one-
grapheme–one-phoneme mappings where possible, we
split the vowel letters that contained them so that two
graphemes are represented, one where the letters map to
the semi-vowel and one where the letters map to the
vowel, and the semi-vowel was learnt in the onset
category. In most cases, this means the first letter of the
vowel sequence is used as the semi-vowel, but there are
infrequent cases where more than one letter is used. For
example, with the –oua in joua [played], -ou and –a
graphemes were used, with the –ou being used in the onset
position (mapping to /w/) and the –a as a vowel. This
means that the parser has to be able to categorize the –
ou graphemes as occurring in an onset or vowel position
depending on the letter context in which they occur.

In terms of silent letters, the approach used to code the
graphemes was to use the simplest set of graphemes that
typically map to phonology and then get the sublexical
two-layer associative (TLA) network of CDP++ to try to
learn that certain graphemes do not produce phonology
(see below for further details). The simplest set of
graphemes for each word with silent letters was found
Fig. 2. The graphemic parser. N
by selecting the shortest graphemes that can occur in on-
sets and vowels and by using them in coda-final positions.
So, for example, the graphemes in arrhes [deposit] /aR/
were specified as –a, -rr, -h, -e, -s (where the –e is a coda
and not vowel grapheme) rather than –a and –rrhes, the
latter of which has the same number of graphemes and
phonemes. The –h, -e, and –s were used as they often
map to single phonemes when not at the end of words.
This means that, just like in English, the –e can function
in both a vowel and a coda position. That is, in some words,
it acts as a vowel (e.g., vert [green] – /veR/) whilst in others
it acts as a coda to mark that the final consonant should be
pronounced (e.g., visage [face] – /vizaZ/).
Simulations with a full-blown CDP++ model of
multisyllabic reading in French

The first thing we did in the construction of the new
model was to train and test a new parser. The parser was
identical to that in Perry et al. (2013) except that it used
the set of French letters and graphemes and not the English
ones and was trained on the new database. Since it dis-
played excellent results, we integrated it into CDP++ to
provide a full blown CDP++ model that is capable of simu-
lating French reading aloud (the model is available online).
To do this, a French version of CDP++.parser was con-
structed that was identical to the English one except that
it used the French database and it did not have stress nodes
since French does not have word-level stress (e.g., Dupoux,
Pallier, Sebastián, & Mehler, 1997). See Appendix A for fur-
ther details.
Simulation 1: Quantitative performance of the model

To evaluate the model, all words in its lexicon were first
run with the lexical route turned off (i.e., only sublexical
phonology was generated). Note that, like the English
model, one would not expect perfect performance. This is
ote: t = time; L = Letter.



Table 1
Percentage of variance explained (r2) by CDP++ RTs plus onset coding and a number of regression equations on the Courrieu, Brand-D’abrescia, Peereman,
Spieler, and Rey (2011) and Ferrand et al. (2011) databases.

Data set CDP++ Regression

Onsets+ Onsets+ Onsets+ Onsets
CDP++ RTs Frequency+ Frequency

Length+
Levenshtein distance

Courrier et al. 66.5 68.2 62.5 55.5
Ferrand et al. 52.2 52.7 50.1 44.6

2 This is actually very good because a regression equation with four
variables fits the actual data with 5 free parameters whilst CDP++ was not
tuned to capture the maximum amount of variance in just this particular
database.

3 Apart from comparisons with regression equations, we also examined
the maximum amount of reproducible variance using the method of
Courrieu, Brand-D’abrescia, Peereman, Spieler, and Rey (2011). Using this
method, a value of r = .92 was found by comparing groups of 50
participants that were in the Courrieu et al. database (there were 100
participants in total in the study and this therefore represents the largest
group size that could be compared). This is clearly higher than the
prediction of the model. However, it is not clear to what extent the variance
that is not explained by the model could ever be captured. For example, the
variance could be due to the onset coding scheme being simpler than the
real phonetic properties of words, error in database frequency counts,
factors that are not implemented in the model that might potentially be of
interest, such as age of acquisition, and factors not implemented in the
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because there are unpredictable irregularities in French, as
in most other orthographies, and because the sublexical
route of CDP++.parser only allows linear relationships to
be learnt. This means that it can never learn all of these
irregularities, unlike networks that do allow nonlinear
relationships to be learnt (e.g., Plaut et al., 1996). The re-
sults of the model showed that it produced the correct an-
swer 83.1% of the time.

The next aspect of the model we examined was its
quantitative performance.1 This was done in the spirit of
Spieler and Balota (1997), who argued that a good test of a
model is that the values it produces at the individual item
level should correlate as well as a simple regression using
factors known to be important in reading. To examine this
performance, two large French databases (Courrieu, Brand-
D’abrescia, Peereman, Spieler, & Rey, 2011; Ferrand et al.,
2011) were used. The database of Ferrand et al. has naming
latencies for 1482 monosyllabic words and the database of
Courrieu et al. has naming latencies for 615 disyllabic words.
For the model here, we compared the performance with a
number of regression equations that included the onset cod-
ing scheme used in Courrieu et al., orthographic word fre-
quency, orthographic word length (i.e., number of letters),
and orthographic word neighborhood calculated with
Levenshtein distance scores based on the 20 closest neigh-
bors (see Yarkoni, Balota, & Yap, 2008 – this is a measure
of how many other words are visually similar to a target
word). Like Perry et al. (2013), for these and the other sim-
ulations, we used a feedforward model with only items with
an identical orthography or phonology as the word being
presented in the lexicon. This meant that only the word pre-
sented and words that were homophonous with it were in
the lexicon, and nonwords were run with no items in the
lexicon. The only exceptions to this were made for tasks that
required feedback to capture the effect, which in this case
was only the pseudohomophone effect, where a full lexicon
was used. This was done for practical reasons because, for
most aspects of the model, the performance of the model
without feedback is almost identical (see Perry et al.,
2007; Zorzi, 2010), and the simulations based on a full lexi-
con are exceptionally slow. In terms of further data process-
ing, words with naming latencies more than 2.5 SDs away
from their means were removed from the analysis, with sep-
arate means and SDs being calculated for each cell from the
designs used in the experiments below (e.g., if the manipu-
1 It would of course have been interesting to compare the results of
CDP++ with Ans et al. (1998). Unfortunately, simulations from the Ans et al.
model were not made available to us.
lation included, for example, words and nonwords, the
means and SDs would be calculated for words and nonwords
separately). The results of the databases are displayed in Ta-
ble 1. Further information about the number of errors, out-
liers that were removed, and human means from the
experiments appears in the Supplementary materials.

As can be seen, the model correlated almost as well as a
regression equation with four predictors and higher than
just onsets and frequency alone. This suggests that, like
the English model, the model is able to pass a strong quan-
titative test.2 Interestingly, there was a difference between
the English (see e.g., Perry et al., 2010) and the French data
in that there was in fact less variance to capture that was not
due to variation in the onset characteristics of words in
French.3
Simulation 2: Effects of regularity/consistency

In addition to the quantitative evaluation, there are a
number of factorial benchmark experiments in French that
are also worth testing the model on. One of these is the
regularity/consistency effect, which is well known in the
English literature (e.g., Jared, 2002). The basic idea is to
examine the extent to which spelling–sound correspon-
dences in words that are different to those that could be
determined by a set of rules (regularity) and the extent that
the same spellings map to different sounds (consistency)
affects people’s reading performance. Results from studies
examining this in French (Content, 1991; Ziegler, Perry, &
model and of little interest, such as idiosyncratic properties associated with
individual words. Given this, it is not clear to what extent the model is
really underperforming compared to the maximum amount of reproducible
variance. Nevertheless, it is clear that it may be possible for another model
to perform quantitatively better than the model which is proposed here.



C. Perry et al. / Journal of Memory and Language 72 (2014) 98–115 103
Coltheart, 2003) have found that if a word has a subsyllabic
spelling–sound correspondence that is unpredictable out of
word context, people are slower at reading it aloud than if it
does not, and this occurs with both high and low frequency
words. To simulate these effects, the items in Content and
Ziegler et al.’s experiments were run through the model
using the same set of parameters that were used with the
large databases. The results appear in Fig. 3.

The model showed essentially the same pattern of re-
sults across three experiments. With the Ziegler et al.
(2003) items, the model showed main effects of Regularity,
F(1,51) = 10.75, p < .005, and Frequency, F(1,51) = 10.48,
p < .005, but no interaction, F(1,51) = 2.60, p = .11 (High
Frequency Irregular: 89.4; High Frequency Regular: 77.7;
Low Frequency Irregular: 93.3; Low Frequency Regular:
89.3; Variance Explained: 16.3%). Note that the trend to-
wards there being a significant interaction was actually
caused by the high-frequency items showing a larger effect
than the low-frequency ones. With the items from the first
experiment of Content (1991), the results were very similar
to the Ziegler et al. items, with main effects of Frequency,
F(1,64) = 22.87, p < .001, and Regularity, F(1,64) = 21.41,
p < .001, but no interaction, F(1,64) = 1.23, p = .27 (High
Frequency Irregular: 98.3; High Frequency Regular: 87.9;
Low Frequency Irregular: 114.9; Low Frequency Regular:
98.2; Variance Explained: 11.0%). With the items from the
second experiment of Content, the model again showed
the same pattern, with main effects of Regularity,
F(1,116) = 20.97, p < .001, and Frequency, F(1,116) = 64.1,
p < .001, but no interaction, F < 1 (High Frequency Irregular:
100.7; High Frequency Regular: 90.4; Low Frequency
Irregular: 117.5; Low Frequency Regular: 108.4; Variance
Fig. 3. Performance of CDP++ (mean latency in number of cycles) and skilled read
irregular words used in Ziegler et al. (2003) and the two experiments of Conten
Explained: 32.6%). Given the results of the three experi-
ments, the predictions of the model converge with the
empirical data to suggest that, in French, there are main ef-
fects of regularity and frequency, but no regularity by fre-
quency interaction. The quantitative performance of the
model was also reasonable.

Whilst it appears that the model can produce results
that are similar to those of people, it is also useful to exam-
ine what makes words difficult in French since some forms
of inconsistency that exist may be more common than in
other languages. One type is where a grapheme can map
to more than one phoneme. This is very common in English
where, for example, with a word like chef, an effect of
inconsistency occurs because the –ch grapheme typically
maps to /tS/ and this causes competition with the correct
phoneme /S/ which is generated lexically. This then slows
processing down. This type of inconsistency is also com-
mon in French. For example, the vowel in hall [hall] is /o/
but most words with an –a use /a/ (e.g., mars [March, the
month]). Another type of inconsistency is to do with silent
letters. As noted above, words with inconsistent bodies of
this type might be harder to process, as has typically been
assumed in studies examining the regularity effect in
French. Thus, it is interesting to examine how words with
silent phonemes that use bodies that are not typically si-
lent (e.g., broc [large jug]) are processed and vice versa
(e.g., mars). To do this, we examined the activation pro-
duced by a number of words with these properties that
the model produced slower than average reaction times
on. These appear in Fig. 4.

The first three words in the figure (hall, broc, mars) are
taken from Ziegler et al. (2003). Hall represents a word
ers (mean RTs in milliseconds) on the high and low frequency regular and
t (1991). Note: ms = milliseconds.



Fig. 4. Activation of individual phonemes in a number of different words over time (cycles).
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with an inconsistent vowel, broc a word with a silent final
consonant that would typically be produced, and mars a
word with a final consonant that would typically be silent
(i.e., -s). As can be seen with hall, there is competition be-
tween two different vowels, the incorrect one which is pro-
duced by the sublexical route and the correct one produced
by the lexical route. This competition causes the process-
ing of this vowel to slow down compared to the only other
phoneme (/l/) and hence the word is produced more slowly
than if it had a vowel that was entirely consistent. In terms
of the word broc, as can be seen, the final –c is activated by
the TLA network. This causes a slow-down in processing
because the lexical route must inhibit the phoneme so that
its activation is no longer increasing. Once this happens,
the model knows not to include the phoneme in its final
pronunciation and, since all other phonemes are above
the phoneme naming activation criterion (i.e., the activa-
tion criterion at which phonemes are included in the final
pronunciation), it allows the model to terminate process-
ing. The third word mars is slowed down with the /s/ pho-
neme because, unlike words that use a letter that
consistently activates a phoneme, the TLA network pro-
duces less activation for –s because -s is typically silent
in the 2nd coda position. Thus, rather than having a full
contribution of both lexical and sublexical activation, a full
contribution is produced only by the lexical route. These
three words show that the actual reason a phoneme may
be slowed down within words can differ and there are
two main ways these effects are caused. One is due to
learning where the strength of the connection between a
grapheme and the correct phoneme is reduced when other
words using the same grapheme map to a different pho-
neme, or, in the case of silent letters, when the grapheme
maps to nothing. This makes the strength of activation of
the correct phoneme weaker. The other is because the net-
work can only learn linear relationships and simply pro-
duces the incorrect phonemes with some words. The
activation from the incorrect phoneme then causes inter-
ference with the correct phoneme which can be generated
lexically and, to a lesser extent, sublexically (i.e., both the
incorrect and correct phonemes may be activated sublex-
ically, but the level of activation usually differs).

Apart from just words that were slow to process but
were still used in the analysis, we also examined the 5 un-
ique outliers that occurred across the 248 words in the
above studies (noce, crin, gaie, sonnerie, blairer) as well as
the word saoul which was close to being an outlier and also
showed a pattern of interest. Three main patterns could be
identified in the data. One was when an incorrect vowel
was produced that was later lexically corrected (crin, gaie,
saoul, blairer) and a second similar pattern was when incor-
rect activation was generated from a consonant (noce,
which activated both /k/ and /s/ in the same coda position).
The third pattern occurred when the parser created a pat-
tern of graphemes that caused phonology to be activated in
places that were not aligned with lexical phonology. In
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particular, with the word crin, the graphemes used were
c.r.i.n vs. c.r.in, and saoul was s.a.ou.l vs. s.aou.l (note that
the first parsing appears reasonable, simply not the one
needed for saoul). In this case, placing graphemes in the
wrong places caused problems because it caused the incor-
rect phonology to be activated which then needed to be
lexically corrected. As can be seen in Fig. 4, with crin and
saoul, the actual dynamics causing words to be outliers is
similar to words that are read-aloud more slowly than
average but do not cause outliers, except that outliers al-
most inevitably have large amounts of incorrect phonology
competing with the correct phonology (note that with
saoul, the final /u/ and /l/ phonemes are incorrectly pro-
duced in the second syllable). Thus, like is found in real
data (see e.g., Andrews & Heathcote, 2001), the model
can generate reasonably long tails. This is also true of even
the mean item values in the studies that were simulated. In
Content’s (1991) first experiment, for example, the fastest
low frequency irregular word (opus) had a mean reaction
time of 464 ms and the slowest (gille) had a mean reaction
time of 800 ms. If part of the time it takes to respond is rea-
sonably constant across words of similar length and fre-
quency (e.g., articulation, early visual processing), this
suggests that it is likely that the variance in the amount
of time it takes the other processes to complete may be
quite large.

Simulation 3: Effects of syllable number

Another interesting effect that is particularity relevant
for models of multisyllabic reading is the effect of syllable
number. Ferrand (2000) examined this effect in French and
found that, after controlling for letter length, the more syl-
lables a low frequency word or nonword has, the longer it
takes to read it aloud. Unlike the regularity effect, this ef-
fect does not occur with high-frequency words. In terms
of the word data, the model showed a very similar pattern,
with a significant main effect of Frequency, F(1,73) = 46.1,
p < .001, a main effect of Syllable Number that was not sig-
nificant, F(1,73) = 2.23, p = .14, and a Frequency by Syllable
Number interaction that was significant, F(1,73) = 4.60,
p < .05. Two t-tests showed that the Syllable Number effect
was significant with the low, t(36) = 2.22, p < .05, but not
the high frequency words, t(38) = 1.00, p = .32 (High Fre-
quency 2 syllables: 102.8; High Frequency 3 syllables:
101.8; Low Frequency 2 syllables: 110.2; Low Frequency
3 syllables: 116.0). Unlike the human data, the model did
not show a Syllable Number effect with nonwords, t < 1
(2 syllables: 155.6; 3 syllables: 153.9). The model also
made 3 errors on the nonwords (2.5%), where we consid-
ered errors to be nonword pronunciations that used a
grapheme–phoneme correspondence that does not exist
in real words, excluding very atypical spelling–sound cor-
respondences found in loan words.

The results of the simulations are somewhat surprising
in that the low frequency words showed a syllable number
effect but the nonwords did not, which appears inconsis-
tent with the claim that the syllable number effect might
occur because of differences in the processing of the sub-
lexical route (Ferrand, 2000). In the English model, for
example, one reason a syllable number effect is found is
because the correct segmentations are relatively difficult
to generate, and thus syllable breaks cause ambiguity
which then causes slower processing. In French, however,
the syllable breaks are simpler and easier to find (as seen
by the accuracy of the parser), and thus one would not ex-
pect such a strong effect. An alternative possibility for the
result is that the low frequency items are confounded on
lexical characteristics, and thus there is no sublexical effect
in both cases. This can be seen by running the model with-
out sublexical phonology. When this is done, a significant
difference between the low frequency words with two
and three syllables is still found (126.1 vs. 135.5 cycles),
t(36) = 2.22, p < .05, suggesting that the effect produced
by the model has largely a lexical, not sublexical, origin.
Investigating the words showed why the model produced
this result. At least with the database we used, the log fre-
quency of the low frequency words was confounded, with
the two syllable words having a higher mean log frequency
than the three syllable words (t(36) = 2.54, p < .05, two syl-
lable log frequency: 2.70; three syllable log frequency:
2.18), and the model is very sensitive to this factor.

Assuming that the low-frequency stimuli are con-
founded on lexical characteristics, and thus that the real
results produced by the model would be closer to a null ef-
fect if the low-frequency stimuli were better matched, this
leaves the syllable number effect unexplained by the mod-
el. However, this effect may be out of the scope of the mod-
el, since an alternative explanation is that it may be due to
an articulatory planning effect, which occurs at a level
whose properties are not specified in the model. In this
case, the slowdown in the three compared to two syllable
nonwords may have been caused by differences in the
speed at which articulatory encoding occurs. Support for
this comes from the study of Meyer, Roelofs, and Levelt
(2003), who found that, in some conditions, syllable num-
ber effects emerge with pictures. They suggested that this
occurs because turning a string of phonemes into an artic-
ulatory code does not happen in parallel, but rather seg-
ments are incrementally parsed into syllables. This
means that the more syllables a word has, the longer this
process takes. This explanation has recently been used to
explain data found in a reading aloud task in Italian by Sul-
pizio, Arduino, Paizi, and Burani (2013). They found that
participants read aloud 4 syllable words around 100 ms
more slowly than 3 syllable words. These authors sug-
gested that taking articulatory planning into account was
necessary to explain their results. Part of their explanation
of articulatory planning included the idea that it may differ
based on how well a word is learnt, with high frequency
words potentially benefitting from the use of whole-word
articulatory units. This would reduce the size of the sylla-
ble number effect they would display compared to low fre-
quency words and particularly nonwords that could not
benefit from this at all. If this explanation is correct, then
it would predict the pattern of results found, but, for
CDP++ to capture the data, it would require the implemen-
tation of an articulatory level that currently does not exist
in the model.

Apart from the Italian data, further evidence that the
syllable number effect might be articulatory, or at least
not entirely from phonology generated sublexically, comes
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from a comparison with the regularity effect. With the reg-
ularity effect, all French studies examining it have reported
a similar sized effect with both high and low frequency
words. With the syllable number effect of Ferrand (2000),
however, no effect was found with high frequency words.
If the locus of the effect is the same, where difficulties in
generating sublexical phonology across syllables causes a
slowdown in naming times, then it is not clear why the
pattern of effects should differ. This suggests that an expla-
nation like Ferrand (2000) gave for his data, where it was
assumed that the phonology of high frequency words
could be generated lexically so quickly such that no sub-
lexical effects would be found, is unlikely to be correct.
Thus an alternative explanation, such as that suggested
by Sulpizio et al. (2013), may be better.
Simulation 4: Pseudohomophone and neighborhood effects

A final set of results of interest are those of Grainger,
Spinelli, and Ferrand (2000). They examined two different
effects in the same experiment. One was the pseudohomo-
phone effect (i.e., nonwords that sound like words, e.g., av-
ryl, which is a pseudohomophone of avril [April]) and one
was the effect of orthographic neighborhood measured in
the traditional way (see Coltheart, Davelaar, Jonasson, &
Besner, 1977). The results they found showed that people
named pseudohomophones faster than nonword controls.
They also found that words and nonwords in a high ortho-
graphic neighborhood were faster to read aloud than
words and nonwords in a low orthographic neighborhood.
Using the same items, the model produced a pseudohomo-
phone effect, F(1,201) = 4.00, p < .05 (Pseudohomophone:
125.8; Nonword Control: 128.3), but did not show a neigh-
borhood effect, F < 1 (Low Neighborhood Nonwords: 126.3;
High Neighborhood Nonwords: 128.4; Low Neighborhood
Words: 91.0; High Neighborhood Words: 91.6). The model
also had an error rate of 8.3% on the nonwords and pseud-
ohomophones. Two (.83%) of these errors were legitimate
possible alternative readings of pseudohomophones, 5
(2.9%) were a number of implausible word captures where
a short nonword was lexically captured by a long one (e.g.,
fabricant [a fabricator] for fabri), and 4 (1.6%) occurred be-
cause the letter –j was in a graphemic position where little
was learned (i.e., a dead-node (see Perry et al., 2010)). The
lexical capture results suggests that the level of feedback in
the system might potentially be set more accurately and
also that other lexical routes that do not suffer from this
property might be worth investigating with the model in
the future.
4 We are talking about potential graphemes here, since whilst there is
reasonable evidence that graphemes of some kind exist (see Perry et al.
(2013), for a discussion), and whilst some people have tried to specify the
set of possible graphemes (e.g., Venezky (1970)), the exact graphemes that
people use in particular contexts and why is currently not perfectly
specified.
Experiment

Given that nonword reading is a crucial benchmark for
computational models of reading aloud (see Perry et al.,
2007), it is important to further examine the ability of
the model to generate accurate pronunciations to non-
words. This is important because, as noted in Perry et al.
(2010), parameter fiddling makes it possible to improve
the model’s fit with respect to response latencies, but sub-
tle parameter changes have a very limited effect on the ac-
tual pronunciations that are generated for nonwords. To
examine this, we looked at the way people process letters
that are typically silent when they occur at the end of
words, thereby exploiting the peculiar characteristic of
the French orthography described in the Introduction. The
basic idea of this experiment was to test whether letters
that are typically silent at the end of words are actually si-
lent in nonwords.

The reason this is an interesting modelling issue is be-
cause learning whether letters are likely to be silent allows
two different types of models to be compared: One where
silent consonants are attached to vowels to form graph-
emes, and one where the consonants are separate. Thus,
for example, if consonants are attached to vowels, then
the graphemes in a word like trop [very] (which has a silent
–p) would be t.r.op, whereas if they are separate, the graph-
emes would be t.r.o.p.4 With the French CDP++, we imple-
mented the latter of these schemes.

In terms of predictions, if consonants are attached to
vowels, then, even with a linear network, it should be pos-
sible to learn that a given grapheme with consonants on
the end produces only a vowel phoneme. In this case, there
would only be ambiguity in the selection of graphemes, be-
cause the graphemes at the end of words that overlap at
the letter level would be processed orthogonally at the gra-
phemic level (e.g., ‘‘Produce no phonology for the conso-
nant if there is an –op grapheme that ends a word, but
produce /p/ if there is a –p grapheme’’). Alternatively, if
the consonants are represented separately, then this map-
ping will not be learnt perfectly because CDP++ uses a lin-
ear network to learn relationships between graphemes and
phonemes and the –p would be overlapped by words with
–pe on the end (e.g., pape [pope] – which we assume uses
the graphemes p.a.p.e). The fact that the relationships be-
tween spelling and sound is nonlinear for a letter sequence
like –pe might not be obvious from a rule based account,
which has a very simple solution like ‘‘pronounce /p/ when
there is an –e following the -p but not if there is no –e’’. In
this case, the relationship might appear linear if a simple
additive solution is used and each grapheme contributed
equally to activating the /p/ phoneme (i.e., p + e > e and
p + e > p, meaning that the activation generated by –p.e to-
gether could be higher than –p or –e alone, hence poten-
tially allowing /p/ to be produced for –p.e. but not –p or
–e based on differences in activation). However, using this
solution would mean that –e would need to become asso-
ciated with and hence produce activation for the phoneme
/p/, and indeed every other phoneme where this pattern
appears (e.g., -b.e?/b/, -d.e?/d/, etc.), thus predicting that
every time –e appears, many phonemes would be partially
activated. A logical alternative is that –p generally pro-
duces most of the activation for /p/ except when it is inhib-
ited by other graphemes, such as those in the vowel and
the onset. If this is what occurs, then the model would
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CDP++, and the DRC on nonwords with extant and non-extant bodies.
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need to learn not to produce /p/ based on quite complex
relationships between –p and other letters, such as the
vowels. Given that CDP++ cannot learn complex relation-
ships, it could only do this in cases where this information
is easily obtainable because it exists and is relatively fre-
quent, and this differentiates it from other PDP style mod-
els that allow highly nonlinear mappings to be learnt (e.g.,
Ans et al., 1998; Plaut et al., 1996).

In this Experiment, we examined the extent that people
generate phonology with potentially silent letters using
two types of nonwords: one where the body exists in
words and one where it does not. This manipulation was
used because all versions of CDP++ allow some effects of
letter context to be learnt. Thus, because the phonology
CDP++ produces is affected by units larger than single
graphemes, it may be more likely to produce phonology
similar to words with nonwords that share bodies with
other words than with nonwords with no shared bodies.

Method

Participants
Thirty-two undergraduate psychology students from

the Université de Provence participated in the task. They
came from the same experiment as Ziegler et al. (2003).

Stimuli
Seventy monosyllabic nonwords were used, although

only 28 of them constituted the critical stimuli. Of these,
all were monosyllabic, with 17 using an extant ortho-
graphic body and 11 a non-extant orthographic body. With
the nonwords with extant bodies, all shared their bodies
with words where the final consonant was silent in the
first syllable of all words according to the Lexique 3.62
database (New, Pallier, Ferrand, & Matos, 2001). The only
exceptions made to this were when the bodies existed in
foreign loan words (almost all of which were English). Sta-
tistics for the nonwords appear in Appendix B.

Procedure
The nonwords were presented directly after completing

the word reading task described in Ziegler et al. (2003). Be-
fore that task, the experimental procedure was explained
to each participant. This included telling the participant
what a nonword is and that they should read aloud the
nonwords as quickly and as accurately as possible. In terms
of the individual items, for each trial, a fixation point was
presented for 500 ms which was then followed by the non-
word in lower case letters for 500 ms. All presentation was
done using PsyScope (Version 1.1; Cohen, MacWhinney,
Flatt, & Provost, 2003). Responses were also recorded with
a digital tape recorder for offline scoring.

Results

All pronunciations were first examined by a native
French speaker who, where possible, tried to code them
by hand. A small number of responses (.67%) were lost
due to problems such as the subject coughing, problems
with the microphone, etc. All responses that consisted of
phonemes that did not occur based on typical French spell-
ing–sound relationships were also removed from the anal-
ysis (5.92%). This included responses where the participant
said what appeared to be part of a response and then
stopped or revised themselves.

The results showed that people often gave pronuncia-
tions to letters in nonwords that are typically silent in
words – indeed, they pronounced ‘‘silent’’ letters in non-
words most of the time (Extant body: 57.8%; Non-extant
body: 81.3%). The results of CDP++ showed that it pro-
duced very similar results to people, although somewhat
under-predicted the number of non-silent consonants gi-
ven to nonwords with extant bodies (Extant body: 41.2%;
Non-extant body: 90.9%) (see Fig. 5). Apart from CDP++,
we also examined the predictions of the French DRC (Zie-
gler et al., 2003). That model also predicted a difference be-
tween extant and non-extant bodies, although it did not
produce consonants with nearly enough of the nonwords
with extant bodies (Extant body: 5.8%; Non-extant:
63.6%). Quantitatively, both CDP++ and DRC had only very
weak correlations with the reaction time data, with CDP++
explaining 1.3% of the variance and DRC 4.8%.
Discussion

The results of the experiment are important because the
theoretical debate about reading aloud is largely focused on
effects that occur with words and that reflect the statistical
features of lexical databases. Here, however, we examined a
pattern that does not obviously exist in word data. That is,
we found that nonword pronunciations differed from what
would be expected on the basis of analogies to real words or
lexical databases. This means that we need a theory to ex-
plain why people display non-optimal reading performance
in the sense of deviating from what would be expected on
the basis of lexical statistics. Based on an a priori property
of CDP++ – that it uses a linear network to learn the rela-
tionships between spelling and sound, and hence cannot
learn nonlinear patterns – such a pattern was predicted
and found (the issue of whether CDP++ is really linear will
be addressed in the Section ‘General discussion’). Thus, the
model predicts an effect that diverges from obvious data-
base statistics based on the underlying computations that
are implemented to simulate reading aloud. The results of



Table 2
Proportion of final consonants produced as a function of the phoneme
naming activation criterion.

Phoneme naming
activation
criterion

Proportion of final consonants produced

Extant
body

Non-
extant
body

Extant
body
control

Non-extant
body
control

.47 .5 1 1 1

.52 .41 .91 1 1

.57 .35 .82 1 1

.62 .24 .82 1 1

.67 .18 .55 1 1

.72 .11 .36 1 1

.77 0 .18 .53 1
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the DRC were also interesting as the set of GPC rules imple-
mented by Ziegler et al. (2003) in the French DRC was cho-
sen by hand to try and get the model’s pronunciations as
close as possible to the lexical data, thereby following the
typical DRC modelling strategy. As can be seen, such rules
cannot account well for the nonword data; the discrepancy
between the DRC and human data in terms of pronouncing
the ‘‘silent’’ letters was particularly striking for the extant
body condition (5.8% vs. 57.8% for the DRC and the human
data, respectively). There may be strategies that could
potentially get the model closer to the real data, such as
by choosing the rules of the model probabilistically or by
using algorithms that learn the rules. However, when the
rules of the DRC have been learned in English, the results
have been substantially worse than the hand-picked set
(Pritchard, 2013). Thus, whether such strategies would
work in French without lowering the performance of the
model remains unclear.

It is worthwhile noting that these results were not sim-
ulated by CDP++ as a mixing process between lexical and
sublexical phonology, where the partial lexical activation
of words meaningfully changes the nonword pronuncia-
tions. If this occurred, the results might be potentially de-
scribed as occurring due to a sublexical plus lexical analogy
mechanism. Rather, the results are driven by learning in
the TLA network, where the extent that coda graphemes
activate phonology and the extent that other graphemes
inhibit phonology differs. Thus, running the model with
no items in the lexicon gives almost identical results to
running the model with a full lexicon.

Given that our experiment included only nonwords, one
might wonder whether including word stimuli would
change the present results towards a smaller proportion
of ‘‘silent’’ letters being pronounced. In the CDP model,
nonwords generally produce weaker activation of the out-
put phonemes than words, because they do not get support
from the lexical pathway. Because of this, we have argued
(e.g., Perry et al., 2007) that people are likely to use a lower
phoneme naming activation criterion (i.e., the criterion
which phonemes must go over so that they can be entered
into the final pronunciation) with stimuli sets where only
nonwords are used compared to ones where words are also
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Fig. 6. Individual item activations of the final consonant in nonwords with no
nonwords with non-extant and extant bodies and the dotted lines are the contr
used (see also Kinoshita & Lupker, 2003). This means that if
the nonwords were embedded in a context which forced
this threshold to be higher, the average number of silent
phonemes should increase. To investigate this issue in a
more formal way, we ran all of the items used in the exper-
iment with only the sublexical route for 250 cycles, ignor-
ing the stopping criterion. To test the model, we also
created a set of control nonwords that were identical to
the experimental nonwords with the exception that they
had an –e on the end (e.g., the control for lont would be lon-
te). Note that the latter type of nonwords are almost al-
ways produced with the final consonant (similar
nonwords were used in Ziegler et al., 2003). This allowed
us to compare the amount of activation in potentially si-
lent phonemes for the critical nonwords with respect to
the control items. We also examined the overall mean
number of silent-consonant responses that the model gave
at different phoneme naming activation criterions. The re-
sults of the individual item activations appear in Fig. 6 and
the mean results in Table 2.

As can be seen from the individual item results, com-
pared to the control nonwords, there was less activation
generated with the nonwords with potentially silent conso-
nants, and there was an especially large amount of variabil-
ity with the nonwords with extant bodies. Not surprisingly,
given that CDP++ is affected by consistency (e.g., Perry et al.,
2010), this suggests that whether CDP++ produces a final
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consonant is affected by other words that share the same
body that the model is trained on. This can be seen from a
correlation between the number of shared bodies taken
from the training corpus (counting the nonwords with
non-extant bodies as zero) and the final activation pro-
duced by the network, which had a value of r = �.58. Thus,
the more silent-letter bodies a nonword shared with words,
the more silent-consonants were given by the model. The
same correlation run on the actual data instead of the
CDP++ activations was r = �.56, suggesting that human
readers are indeed affected by this factor. The item results
also show why, in the mean data (see Table 2), whilst the
number of silent final consonants increased as the pho-
neme naming activation criterion increased, this was lar-
gely restricted to the potentially silent consonant
nonwords and not the control nonwords – the final conso-
nant grapheme–phoneme relationships in the control non-
words were so well learned from words in the database that
the activation values they produced were not only rela-
tively homogenous but also relatively high. Thus, it was
only when the phoneme naming activation criterion was
set to a very high level that the model began to start using
silent consonants with those nonwords.

The homogenous activations of the control nonwords
compared to the critical nonwords and the greater activa-
tions found with the critical nonwords with non-extant vs.
extant bodies shows that, as we predicted, final letters will
tend to activate their phonemes, and this will be easier for
the TLA network to learn than keeping them silent. In addi-
tion, as we also predicted, the –e on the end of control non-
words did not cause large amounts of activation across
multiple phonemes. If this did occur, then the control non-
words should not have showed the pattern they did, as the
spurious phonemes would have caused a lot of competi-
tion with the correct ones, and hence it should have been
more difficult and slower for the final consonant to be acti-
vated. These results make a strong prediction, which is that
even with stimuli sets that include very difficult items,
people will still produce the final consonant in nonwords
that end with a consonant-e pattern.

Theoretically, the results are interesting because the
pattern somewhat resembles that of Andrews and Scarratt
(1998) who found that, in English, even nonwords with rel-
atively inconsistent bodies are generally given regular (i.e.,
rule-like) final pronunciations. Alternatively, they were
able to find effects of orthographic bodies in specific in-
stances where the nonwords used bodies that occurred in
words whose pronunciations were never regular. With
these nonwords, some but not all of the time, participants
gave responses that could not be predicted using the most
common grapheme–phoneme relationships. Although
their data suggested that readers relied on a rule-based
method with some exceptions where they used an analogy
mechanism, this pattern was simulated later using CDP+
(Perry et al., 2007) which does not use a set of rules and
an analogy mechanism, but rather a simple two-layer asso-
ciative network. The results were also not driven by a mix-
ing of lexical and sublexical activation, but rather learning
in the sublexical route. The present results show a similar
phenomenon: the network gave very rule-like responses to
the control nonwords (i.e., ‘‘produce the consonant if there
is an –e after it’’), whereas it gave silent consonant re-
sponses to many nonwords that shared their bodies with
words with silent consonants. Combined with the differ-
ence between these nonwords and the nonwords with
non-extant bodies which had no pressure to be silent at
the body-rime level, this suggests that spelling–sound con-
sistency at both the grapheme–phoneme and body-rime
level is important in French.
General discussion

We have developed a French version of CDP++.parser
using the same assumptions as the English model (Perry
et al., 2013) and examined whether the model could be ex-
tended to French. Such a development is important be-
cause the French orthography differs on a number of
dimensions compared to other orthographies like English.
These include it having a greater number of graphemes,
many long sequences of vowel letters, and large numbers
of commonly occurring letter sequences that do not appear
to map to any sounds.

The model was evaluated in a number of domains. First,
it was run on two large databases that exist in French to
examine its quantitative performance. The results showed
that on both databases examined, the model performed al-
most as well as a linear regression model that incorporated
word frequency, orthographic wordlength, and ortho-
graphic neighborhood, although the actual amount of var-
iance left once the articulatory characteristics of words
were taken into account was not especially high. Neverthe-
less, this is an important benchmark (Balota & Spieler,
1998; Spieler & Balota, 1997), and one that only the CDP
model family has yet been able to meet (Perry et al.,
2007; Perry et al., 2010; Perry et al., 2013). Second, when
evaluated on a number of small-scale benchmark effects
using exactly the same parameter set as was used in the
large-scale simulations, the model also performed well. It
was able to capture the results found in a number of exper-
iments examining spelling–sound consistency, as well as
pseudohomophone effects.

One effect that the model failed to simulate was the
orthographic neighborhood effect (Grainger, Spinelli, &
Ferrand, 2000), an effect which has relatively low power
(e.g., Spieler & Balota, 2000) and varies as a function of
tasks, languages, and neighborhood manipulations (e.g.,
Andrews, 1997; Peeremen & Content, 1997; Ziegler & Per-
ry, 1998). In the experiment we examined (Grainger et al.,
2000), for example, neighborhood and RT were negatively
related, but in the French database of Ferrand et al.
(2011), there is a positive correlation with orthographic
neighborhood if orthographic Levenshtein distances are
added to the regression equation or a null effect if they
are not. This effect is also a problem for the English
CDP++. Given this, the best solution to this problem is
likely to be a lexical route with somewhat different proper-
ties to the current one (e.g., Di Bono & Zorzi, 2013; Zorzi,
Testolin, & Stoianov, 2013), and this may also help reduce
the occasional implausible lexical capture the model
makes. A second effect the model failed to capture was
the syllable number effect with nonwords. Since the effect
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of orthographic neighborhood is likely to be at least in part
lexical, the syllable number effect for nonwords is thus the
only effect that the sublexical part of the model was not
able to capture. However, as discussed above, it is actually
possible that the syllable number effect arises at the level
of articulatory planning or articulation (see Sulpizio et al.,
2013), in which case it is beyond the scope of CDP++. Fur-
ther research is needed to clarify this issue.

Finally, in terms of predicting patterns of generalization
in nonword reading, which can be seen as a harder test than
predicting response latencies (Perry et al., 2010), the model
also showed reasonable results. Apart from having a rela-
tively low overall error rate, the model also showed similar
results to those found in an experiment examining the ex-
tent to which people generate phonology for consonants
that lexically do not generally map to phonology. This pat-
tern is peculiar to French, and the results of the experiment
showed that people generally do produce phonology for
these consonants, even when reading extant letter se-
quences where this never occurs in words. This pattern is
interesting because it appears to show a deviation away
from what might have been predicted via a simple statisti-
cal analysis of orthography–phonology relationships in a
lexical corpus. These results provide further support to a
basic tenet of the CDP model family, whereby the activation
of sublexical phonology is the result of a direct (linear)
mapping between spelling and sound that can be learnt
via a simple associative learning mechanism.
Is the generation of sublexical phonology in CDP++ really
linear?5

One of the fundamental differences between CDP++ and
the connectionist models of the PDP family (e.g., Plaut
et al., 1996) is the fact that CDP++ can only learn linear
orthography-to-phonology mappings. It is precisely this
linear learning mechanism which is assigned credit for
explaining the present silent-letter results and also other
aspects of reading (Perry et al., 2010) and reading develop-
ment (Ziegler, Perry & Zorzi, 2014Ziegler et al., 2014).
Whilst we have always claimed that CDP++ can only learn
linear relationships, one could argue that non-linearity is
introduced at the phoneme level by using a nonlinear
squashing function. While this might appear to be a rather
technical issue, it is one that is worth examining in detail
given the importance of the learning mechanism in all of
our simulation work.

In terms of how sublexical phonology is generated with
the TLA (sublexical) network, the first computation is a sim-
ple feedfoward pass of the network. This works by present-
ing a simple vector to the model which represents the
activation in the input nodes. A summed input for each
node in the output of the network is then calculated by
multiplying the strength of each weight by the input con-
nected to the weight and then summing these (see also
e.g., Baayen et al., 2011). This is clearly linear, since the va-
lue at each node is simply the sum of the weights connected
to it multiplied by the input, and the inputs are entirely
5 We thank Dave Plaut for suggesting we consider this.
independent of each other, as are the outputs. This is iden-
tical to the way a simple linear regression works, with the
summed input of a node being the predicted value and each
weight being equivalent to a beta-value. Because of this, it
means that any relationships that are ever learned by the
network can only be linear. Unlike a simple regression
equation, however, where the beta-values are determined
via minimizing a sum of squares, the actual values of the
weights are determined by an iterative learning procedure
that is affected by the way error in the network is computed
over time. In this case, error scores calculated in different
ways, such as by using cross-entropy rather than simple er-
ror differences (e.g., Plaut et al., 1996) or by adding error to
simulate atypical learning trajectories (i.e., dyslexia; see
Ziegler et al., 2014), affect the final weights.

The second computation of the TLA network is how a
response is generated once the summed input for each out-
put phoneme is calculated. The model first puts the sums
at each output node into exactly the same function as de-
scribed in Zorzi et al. (1998, Eq. (2): Oi ¼ 1

1þe�ðneti�1Þs where
neti is the summed input into the function, and s is the
temperature which was set to 3 like all other versions of
CDP). This function takes the summed activation as the
parameter of an S-shaped squashing function that bounds
the input between zero and one, with no input causing no
output (i.e., zero output). Because this function is mono-
tonically increasing, the actual rank order of activations
produced by the network is identical to the rank order of
the activations produced in the first step of the computa-
tion where only summed values were computed. Thus, if
a pronunciation was produced after this calculation had
been done by simply choosing a level at which a phoneme
was considered activated, identical results could be found
(albeit with a different phoneme naming activation crite-
rion, which specifies the level at which a phoneme must
be actived to get into the final pronunciation). The main ef-
fect that this change has is therefore on learning. In this
case, when the activation is produced by the network
and compared to the target activation, the error term is
not computed with a simple linear function, but is instead
computed from a sigmoid function that is of a similar
shape to that used in logistic regression (e.g., Tabachnik
& Fidell, 2001). This means that the final outputs of the
network after being transformed by the sigmoid function
will tend to approximate what a set of logistic regressions
would produce rather than a set of simple regressions.
Thus, the network learns linear relationships between the
predictors (graphemes) and the sigmoid transformation
of the outputs (phonemes). This has very little effect on
what is learned by the network compared to a purely linear
function. In particular, as can be seen from the Supplemen-
tary materials, where we trained and ran a network with-
out a sigmoid function, the results are almost the same as
those the standard network that uses a sigmoid function
produces, including the pronunciations of nonwords at
the individual item level.

Adequacy of representations

One final issue that needs to be considered is the orga-
nization of letters used in the model. In all versions of CDP,
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simple contiguous letter strings have been used. However,
there is some recent evidence (Chetail & Content, 2012;
Chetail & Content, 2013) that the letter level representa-
tions used in French may not be simple contiguous strings
and, in some cases, may not be isomorphic with phonology
either. The evidence that Chetail and Content used to infer
this came from hiatus and schwa words. Hiatus words dif-
fer from most other words in that they have a string of con-
tiguous vowels in them where the vowels map to
phonemes in two syllables. For example, with the word
chaos, there is an –ao vowel sequence where the –a ap-
pears to map to the vowel of the first syllable and the –o
to the second. Across a number of experiments, Chetail
and Content (2012) found that hiatus words were more
difficult to process than control words. They argued that
this was caused by the initial organization of letters, where
letters are grouped into clusters of consonants and vowels,
regardless of the phonological form (see the Supplemen-
tary materials for a simulation of the only naming experi-
ment they did). Thus chaos would be a single orthographic
syllable organized into consonants and vowels even
though it has two phonological syllables (/ka.o/), and this
causes difficulties in processing. In terms of the schwa
words, these were so named because they contain an
orthographic sequence with an –e that often maps to a
schwa (e.g., the first –e in simplement /s~e.pl e.m~A). Chetail
and Content (2013) examined these words except they
used ones that, whilst being of a similar structure to other
schwa words, used an –e that did not obviously map to any
phonological vowel. For example, the –e in biberon (/
bi.bRô/) looks like it is embedded within letters that appear
to represent an onset cluster (i.e., -ber, which maps to the
phonology /bR/). The results Chetail and Content found
from a simple segmentation task where participants
marked where they thought syllable segmentations should
go and a letter search task suggested that that the –e may
in fact form the end of an orthographic syllable, with the
letter after it occurring as an onset. Thus, the word biberon
would use the orthographic segmentation bi.be.ron, which
has three orthographic syllables, even though its phonol-
ogy only has two syllables.

Whilst the data from these experiments may appear
difficult for CDP++ to reconcile with the sublexical route,
which is trained on letters segmented into phonological
syllables, it is in fact within the scope of the model to ex-
plain. This is because the objective of the sublexical route
is to learn the relationships between graphemes and out-
put phonology, which means that data to do with different
types of letter groupings is not in conflict with the model,
and indeed other groupings have been proposed, such as
purely consonants and vowels (e.g., Perea & Lupker,
2004), open-bigrams (Grainger & Van Heuven, 2003), and
non-phonological syllabic structures (e.g., Taft &
Krebs-Lazendic, 2013). In particular, with CDP++, pure let-
ter information is generated at the letter level, and the
model is largely agnostic as to exactly how this occurs,
with the current representations being used largely for
convenience (although consonant/vowel information
about letters could be used by the grapheme parser; Perry
et al., 2010). The main assumption in CDP++ is that letters
at this level are processed quickly and automatically, and
that activation at this level can flow to the orthographic
lexicon or trigger the start of the graphemic parsing pro-
cess. The graphemic parsing process, first introduced in
Perry et al. (2007), selects individual letters from poten-
tially competing alternatives once letter information
becomes available. This is not an automatic process, but
rather requires focused visuo-spatial attention whilst the
parser selects graphemes from the letters and places them
in the graphemic buffer. Assuming letter processing is very
automatic, minor differences in the way different letters
are activated is largely irrelevant to the parser. One reason
for this is because the selection process simply chooses
each letter that has the highest activation amongst poten-
tial alternatives, and thus absolute activation differences
between letters makes essentially no difference. A second
reason is that the graphemic parsing process is relatively
slow compared to letter processing, which means that
letters would almost always be available for the model to
select once the initial letter has triggered the start of the
parsing process.
Conclusions

We have implemented and tested a full-blown model of
multisyllabic reading aloud for French. The model learns to
select graphemes and learns grapheme-to-phoneme map-
pings. It was tested on extant data and an additional exper-
iment examining the reading aloud of nonwords with
potentially silent letters. The results of the silent-letter
experiment showed that, contrary to what would be pre-
dicted on the basis of lexical database statistics, people
generally pronounce ‘‘silent’’ consonants in nonwords.
We showed that the French CDP++ model faithfully pre-
dicted this effect because it implements a linear mapping
between orthography and phonology. These findings high-
light the theoretical and practical significance of using
computational models to help determine the processes
and representations that underlie skilled reading.
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Appendix A

The database

The database we used was Lexique 3.62 (New et al.,
2001). This database has 128,918 words in it. From these,
only words of 3 syllables or less were used, and words with
characters that were not in the standard French alphabet

http://www.ccnl.psy.unipd.it/CDP.html
http://www.ccnl.psy.unipd.it/CDP.html
https://www.sites.google.com/site/conradperryshome/
https://www.sites.google.com/site/conradperryshome/
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were removed. This left 101,396 words that were made up
of 37 letters and 38 phonemes.

Deriving the graphemes

To derive the graphemes that are used in words, apart
from as mentioned above about coda graphemes, a very
similar procedure as Perry et al. (2013) was used, where
a set of graphemes were aligned with phonemes in a
one-grapheme–one-phoneme fashion where possible. This
was done in the context of the 111 graphemes that were
chosen to code the database. These appear in the Supple-
mentary materials. The following strategy was used to
code the database so that graphemes in the orthographic
template were placed in the same place as phonemes in
the phoneme output buffer where possible:

(a) When the phonology of two consonants occurred
together in an onset cluster but where the written
form was separated orthographically by an –e
(adopterais - /adOptre/), the –e was placed in an
onset position (i.e., the -t.e.r graphemes were used
as the onset of the third syllable).

(b) The vowels, a, e, i, ï, o, u, ou can function as either
semi-vowels in onset positions or as vowels. These
were coded as being in an onset or vowel category
based on this distinction.

(c) -y was coded as an onset when it mapped to a /j/ in
an onset position (e.g., employait – /A~.plwa.je/) or a
vowel if it did not (e.g., cycle – /cikl/)

After the alignment procedure, there were 329 words
where coding appeared difficult in terms of the strategy
of aligning graphemes with phonemes and the algorithm
used to do it. Many of these were loan words (e.g., beagle),
acronyms (e.g., rna), letter names (e.g., w), and Roman
numerals (e.g., lxiv). This left 101067 words for training.

Training the graphemic parser

From the training words, 707,676 individual training
exemplars representing the way parts of words were pre-
Fig. A1. Performance of the graphemic parser on individual letter–grapheme
sented to the graphemic parser were constructed. These
specified the letter sequences that each grapheme in each
word occurs in as they should be chosen by a parser with
an attentional window of 5 letters (e.g., a word like chef
would create 3 patterns that the parser would learn from
since it has 3 graphemes and hence the parser would need
to learn to select and classify the 3 graphemes (i.e., chef*

(ch, onset), ef*** (e, vowel), f**** (f, coda)).
After the database was constructed, a network that was

identical to that in Perry et al. (2013) excluding the num-
ber of graphemes and phonemes was trained for 15 cycles.
The parameters used were also identical to Perry et al. The
learning rate (.05) of each exemplar was multiplied by the
value created by taking its log word frequency plus 2 and
dividing it by the log word frequency of the highest fre-
quency word in the database (which was 867,041) plus 2.
The plus 2 was used because some words have zero fre-
quency in the database. This was done with all of the
words in the database as well as with a number of smaller
subsets (500, 1000, 2000, and 5000 words) that were sam-
pled in frequency order, where higher frequency words
were chosen over lower frequency words. Once the models
were fully trained, they were tested on all of the patterns.
The results of the model on all individual exemplars (i.e.,
whether the model chose each possible grapheme in each
possible word correctly) and with words, where words
were counted correct only if all graphemes in them were
correctly parsed, appears in Fig. A1.

As can be seen, the model displayed an overall error
rate that was low enough for modelling purposes (.51%
on graphemes; 3.27% on words) – indeed lower than the
English model. The model was also able to perform reason-
ably well even when trained on a very limited number of
exemplars. The model trained on 5000 words (4.93% of
the database), for example, had an error rate after training
of 3.34% and 21.21% when tested on all exemplars and
words in the database.

Apart from the overall error rate, it is also important to
see whether the model makes any systematic errors unlike
those that people do (e.g., choosing graphemes that would
cause phonotactically illegal pronunciations). One likely
source of these are graphemes that are used in different
relationships and words using different numbers of training exemplars.
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categories (i.e., onset, vowel, and coda), because selecting
the correct graphemes needs to be done based on the con-
textual information of other letters around the grapheme.
To investigate this, we examined the following graphemes:
a, e, i, ï, o, ou, u, y. The results showed that the error rate
with the graphemes was still low (.12%, 1.02%, .91%,
4.44%, .41%, .48%, .29%, .91%, respectively). Thus, even
though the way these graphemes are used in French is rel-
atively complex, it did not appear to stop the network
learning the relationships needed to categorize them
correctly.

Apart from the overall results, since the –e may be used
in onset, vowel, and coda positions, it represents an espe-
cially difficult challenge for the model, and so the perfor-
mance of the model was examined in these three
different categories separately. The results showed that
the model had an error rate of .82%, .18%, and .02% on
the onset (e.g., cerise), vowel (e.g., obtenir), and coda graph-
emes (e.g., couennes). This means that the network was
reasonably accurate at categorizing the –e correctly in all
major contextual situations that it occurs in (i.e., in onset
(e.g., adopterais), vowel (e.g., tres), and coda positions
(e.g., visage)). This suggests the model can learn how
graphemes should be categorized based on the letter con-
text they appear in, and that it does not simply default to
the highest frequency alternative (-e is used as an onset
only 6.43% of the time). A similar analysis performed on
the –i grapheme, which commonly maps to phonemes in
both vowel and onset positions, also showed that the mod-
el did not simply choose the most common categorization,
with the error rate being .68% and .23% for the vowel and
onset categories, respectively.
CDP++. details

The lexical route
In terms of the lexical route, to simplify matters, since

there can be 27 slots in the output (i.e., the phoneme out-
put buffer), we also used 27 slots in the input for both the
features and the letters. It would have been possible to use
only 16 slots, since the longest word in the database is 16
letters long and an essentially identical performance could
have been obtained if only 16 letters were used (note that
Nonword Body type N. shared bodies Results (fina

Actual % non

nart Extant 5 65.52
mard Extant 10 50.00
fers Extant 7 36.67
bez Extant 4 89.66
lant Extant 7 56.25
lond Extant 7 21.88
naid Extant 1 79.31
nert Extant 2 57.14
it is possible to create fairly strange looking nonwords that
have more than 16 letters). We make no strong claims
about the theoretical relevance of this, and it is assumed
that, like all of the CDP models, given how crude the front
end of the model is, this simply represents a convenient
starting point for the model rather than something that
we intend to make serious theoretical claims about. Given
this, the features for the feature level of the model were
chosen arbitrarily, although the parameters were set so
that there was essentially no effect of overlap caused by
differences between features in letters and the way they
activate the letter level.

In terms of the other parts of the model, the same fre-
quency counts were used in both the orthographic and
phonological lexicons since the database we used only
had one set of counts. In addition, all of the words use a fre-
quency count of those given in the database plus 2. This
was done because some words have a frequency value of
zero and we take log values of frequencies for some com-
putations. This means all frequency values always end up
being greater than 0.

The TLA network
The TLA network was trained on words organized into

their grapho-syllabic structure based on the graphemes
that the words were initially decomposed into. Thus there
were 101,067 training patterns that specified the graph-
emes in words organized into a syllabic structure, as well
as their phonology. The order of these training patterns
was first randomized, and then the model was trained for
20 cycles. Identical training parameters as the graphemic
parser were used. Like the graphemic parser, the learning
rate of each word was multiplied by the value created by
taking its log word frequency plus 2 and dividing it by
the log word frequency plus 2 of the highest frequency
word in the database.

The parameters used in running mode appear in the
Supplementary materials.
Appendix B

Individual item statistics for the nonwords used, CDP++,
and DRC.
l phonemes) Results (RTs)

-silent CDP++ DRC Actual CDP++ DRC

Prod Silent 593 186 128
Silent Silent 589 166 111
Silent Silent 633 112 103
Silent Silent 605 121 115
Silent Silent 541 113 115
Prod Silent 553 198 113
Prod Prod 662 171 118
Prod Silent 589 170 110

(continued on next page)



Appendix B (continued)

Nonword Body type N. shared bodies Results (final phonemes) Results (RTs)

Actual % non-silent CDP++ DRC Actual CDP++ DRC

mied Extant 2 59.26 Prod Silent 629 148 137
lont Extant 17 41.94 Silent Silent 556 111 113
puid Extant 1 50.00 Prod Silent 600 124 107
noid Extant 1 43.33 Silent Silent 604 197 113
lurs Extant 6 59.38 Silent Silent 617 118 127
lirs Extant 2 53.33 Silent Silent 643 115 107
nuid Extant 1 50.00 Silent Silent 631 196 108
biz Extant 1 100.00 Prod Silent 571 118 109
lint Extant 2 59.00 Silent Silent 591 137 117
taup Non-Extant 0 89.29 Prod Prod 600 114 107
nirt Non-Extant 0 90.00 Prod Silent 609 168 128
nurt Non-Extant 0 55.56 Prod Silent 662 150 128
murd Non-Extant 0 77.42 Prod Silent 621 190 107
mird Non-Extant 0 75.00 Silent Silent 633 198 113
buz Non-Extant 0 96.55 Prod Prod 590 117 102
boz Non-Extant 0 96.77 Prod Prod 606 125 111
lunt Non-Extant 0 83.33 Prod Prod 631 141 118
pind Non-Extant 0 66.67 Prod Prod 659 181 118
pund Non-Extant 0 85.19 Prod Prod 745 138 118
neid Non-Extant 0 78.57 Prod Prod 622 157 118

% Non-Silent

Average (extant body) 57.21 41 6 601 147 115
Average (non-extant body) 81.30 91 64 634 153 115

Note: Prod = Consonant produced; RTs = Reaction Times.
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C. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.jml.2014.01.003.
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