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problem: A connectionist account of normal and

impaired performance
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Planning is a fundamental cognitive function frequently employed in common daily activities. The
Travelling Salesperson Problem (TSP), in which participants decide what order between a number
of locations optimizes total travel distance, is a paradigm that allows the study of planning and strategy
choice. In the TSP, subjects adopt visuo-spatial heuristics to perform the task and operate a continu-
ous monitoring to adapt their behaviour. We present a connectionist model of the TSP that simulates
bottom-up and top-down influences observed in the execution of the task. The model accounts for the
continuous monitoring observed in healthy participants, and, after a simulated lesion, it also accounts
for the decrease of heuristic switching observed in frontal patients and in normal subjects under repeti-
tive transcranial magnetic stimulation (rTMS) over frontal lobe.

Planning is a fundamental cognitive function that
is frequently employed in common daily activities.
It involves the ability to produce mental represen-
tations of future behaviour prior to acting and to
reason about its consequences in order to properly
choose among the possible courses of action
(G. Cohen, 1988). As a complex form of human

problem solving, planning requires the
cooperation between several cognitive processes,
including strategy formation, coordination of
mental functions, recognition of goal attainment
and storage of representations that can guide beha-
viour from the initial to the goal state (Carlin
et al., 2000).
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Planning is often carried out in small units
during task performance, rather than in a distinct
stage devoted to building an entire plan before
its execution (e.g., Basso, Bisiacchi, Cotelli, &
Farinello, 2001; Phillips, Wynn, McPherson, &
Gilhooly, 2001). Planning requires an incremental
process in most real-world situations due to limit-
ations in working memory and control processes.
The incremental aspect of planning implies that
the plan made before the execution is mainly
incomplete or inconsistent (e.g., Hayes-Roth &
Hayes-Roth, 1979). Initial decisions can be later
modified to develop an efficient strategy—that is,
an opportunistic combination of simple schemas
that can be activated or inhibited when needed.
Indeed, human planning is based on cognitive
heuristics (Hayes-Roth & Hayes-Roth, 1979;
Hirtle & Gärling, 1992; Murakoshi & Kawai,
2000) that can be defined as behavioural schemas
that approximate the correct solution using fewer
cognitive resources than does performing an
exhaustive algorithm. An efficient strategy requires
continuous monitoring during task performance in
order to allow for on-line changes of heuristic.

The Tower of Hanoi (ToH), since its introduc-
tion as a task to study planning from the infor-
mation-processing perspective (Simon, 1973),
and the Tower of London (ToL; Shallice, 1982)
are the most widely used tools to assess planning
in cognitive studies. The ToH is a complex
problem-solving task that has demonstrated sensi-
tivity to prefrontal lobe function and dysfunction
(e.g., Goel & Grafman, 1995). The specific execu-
tive processes recruited for successful performance
(or, conversely, impaired in prefrontal dysfunc-
tion) have been a subject of debate, but it is gener-
ally agreed that this task taps planning, working
memory, and inhibition (e.g., Goel & Grafman,
1995; Roberts & Pennington, 1996). The ToL,
derived from the ToH, has gained high popularity
among neuropsychologists. Indeed, the results
obtained with the ToL led Shallice and his col-
leagues (Norman & Shallice, 1986; Shallice,
1982) to the development of their influential
theory of executive functions. The ToL has
proved extremely valuable for investigating execu-
tive functions and their disorders following brain

damage, and it has been employed in a wide
range of studies. However, a number of potential
shortcomings of the ToH/ToL have emerged in
the recent years with regard to the planning com-
ponent of the task. First, although sensitive to
frontal lobe damage, the ToL has been questioned
with regard to its ability to reliably measure plan-
ning skills (Kafer & Hunter, 1997). Second,
instructions and cueing given to the participants
(e.g., on-line planning vs. full mental plan, or
prior information about the minimum number of
moves; Phillips et al., 2001; Unterrainer, Rahm,
Leonhart, Ruff, & Halsband, 2003), forward-
thinking (Owen, Downes, Sahakian, Polkey, &
Robbins, 1990; Ward & Allport, 1997), and
problem structuring (Goel & Grafman, 1995,
2000; Kaller, Unterrainer, Rahm, & Halsband,
2004) seem to strongly influence task performance.

A task that strongly involves planning and is
also representative of many real-world situations
is the Travelling Salesperson Problem (TSP):
Given a space in which a set of interconnected
towns is represented by locations on a map, the
task consists in finding an itinerary that visits
each town exactly once, returning to the starting
town, ensuring that total travelled distance is as
short as possible. The TSP is a paradigmatic
example of nonpolynomial combinatorial optimiz-
ation (Lawler, Lenstra, Rinnooy Kan, & Shmoys,
1985) that has been extensively studied by mathe-
maticians and computer scientists but much less by
psychologists. Nevertheless, there has been a
growing interest in the analysis of human perform-
ance in TSP-like problems (Cadwallader, 1975;
Gärling, 1989, 1994). The TSP task is thought
to be a suitable tool to investigate planning because
it can be solved with multiple close-to-optimal
solutions that can be evaluated with respect
to the single perfect solution (MacGregor &
Ormerod, 1996). More specifically, it is reasonable
to assume that the TSP involves spatial planning, a
type of problem solving that requires optimizing
the performance against several constraints, based
on spatial elements in the environment. In compari-
son with other planning tasks, spatial planning
requires a stronger interaction between central and
peripheral processes: Visual, attentional, and motor
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issues play a fundamental role, in addition to reason-
ing, for determining the final behaviour.

Previous studies employing a visually presented
TSP (MacGregor & Ormerod, 1996; Polivanova,
1974; Vickers, Butavicius, Lee, & Medvedev,
2001) have revealed that human performance is
determined by global perceptual properties to
which the visual system is naturally attuned.
These properties have been shown to influence
the choice of spatially based heuristics that are
used to perform TSP tours (Barr & Feigenbaum,
1981; Hirtle & Jonides, 1985; MacGregor &
Ormerod, 1996; McNamara, 1992). A variant of
the TSP, first proposed by Hirtle and Gärling
(1992), introduces a distinction between start- and
end-point so that participants have to perform an
open path instead of a loop. Behavioural data col-
lected using a computerized version of the open-
ended TSP, the Maps Test (Basso, 2005; Basso
et al., 2001), showed that three distinct spatially
based heuristics are mainly used by human partici-
pants to perform the TSP task: the nearest neigh-
bour (NN) heuristic (Barr & Feigenbaum, 1981),
the straight-line heuristic (Hirtle & Gärling,
1992), and the direction heuristic (Basso et al.,
2001). The first states that each location is recur-
sively chosen on the basis of the minimum local dis-
tance from the current position. The straight-line
heuristic states that a set of collinear points will be

taken in order along the line, rather than starting
in the middle. This heuristic has been observed in
specific partial configurations, in which points
approximately formed a line; it has been frequently
observed in conjunction with heuristics based on
following a specific direction, such as the direction
heuristic. The latter takes place when subjects
start from a location placed on a border and reach
the next locations following one of the main
spatial axes (horizontal or vertical) and a direction
(up or down for vertical axis, left or right for hori-
zontal axis). It has been introduced as a modifi-
cation from the zig-zag heuristic described by
Hirtle andGärling (1992), because a definition pro-
vided on the basis of human reference points has
been proven to be more suitable in the description
of the performance (Bryant, Tversky, & Franklin,
1992). In the Maps test (Basso et al., 2001), the
starting city is located typically in the upper left
corner, and the end city is located in the bottom
right corner. Thus, the horizontal movement was
described as representative of a direction right heur-
istic (DR), whereas the vertical movement was
described as a direction down heuristic (DD). The
same configuration of TSP is used in the present
study to allow us a direct comparison with the beha-
vioural data. Figure 1 shows an example of appli-
cation of the three heuristics (NN, DR, and DD)
considered in the present study.

Figure 1. The figure shows three different tours of the same TSP pattern. Each tour is representative of the use of a unique heuristic along the

whole pathway. These heuristics have been implemented in the model using three different saliency maps that bias the choice of the order in

which cities are visited.
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The fundamental role of planning in the TSP is
confirmed by studies that investigated the effect of
lesions or transient neurodisruption of the pre-
frontal cortex upon performance in the Maps test
(Basso et al., 2001; Basso et al., 2006). One key
aspect of the TSP task regards the coordination
of different heuristics. The use of a single heuristic
is inappropriate for most of the maps, and a change
of heuristic is necessary to obtain a close-to-
optimal solution. Indeed, this is what Basso et al.
(2001) observed in the performance of healthy par-
ticipants. However, the ability to change heuristic
during the pathway to optimize performance was
markedly impaired in frontal traumatic brain
injured (fTBI) patients. A similar pattern of
impaired performance was shown by healthy
adults under inhibitory repetitive transcranial
magnetic stimulation (rTMS) stimulation on the
prefrontal cortex (PFC; Basso et al., 2006). Both
frontal patients and healthy participants under
rTMS did not show the normal pattern of con-
tinuous planning: Instead of switching heuristic
during the execution of the task, they seemed to
apply simple strategies based on only one heuristic
(see Figure 2). These results are consistent with

the notion that the PFC is a crucial brain area
for planning processes and strategy formation
(for recent neuroimaging evidence, see Fincham,
Carter, van Veen, Stenger, & Anderson, 2002;
Newman, Carpenter, Varma, & Just, 2003) and
that its lesion is associated with planning deficits
(Grafman, 1989, 1995; Lezak, 1995; Shallice,
1982, 1988).

One possible explanation for the finding that
lesion or reversible neurodisruption of the PFC
leads to a planning deficit in the Maps test is
that this region would be crucial for the inhi-
bition of the current heuristic (Basso et al.,
2001) whenever a change is necessary to achieve
a close-to-optimal performance. That is, the
heuristic chosen at the beginning of the task
was likely to be kept until the end with no signs
of any further consideration of the possible
alternative options. These findings are consistent
with the presence of perseverative behaviour in
frontal patients (Duncan, 1986; Luria, 1980).
This behavioural rigidity has been explained in
the attention to action (ATA) model by
Norman and Shallice (1986; see Cooper &
Shallice, 2000, for a computational model) as a

Figure 2. (a) Percentage of strategies used in the open version of the TSP task (data replotted from Basso et al., 2001). From left to right:

normal subjects, traumatic frontal lobe brain-injured patients ( f TBI), and healthy participants under repetitive transcranial magnetic

stimulation (rTMS). Flexible strategies imply the use of at least two different heuristics to perform a given tour. Rigid strategies are the

result of using a single heuristic for the whole tour. The results highlight that while normal subjects often use flexible strategies, subjects

under rTMS and traumatic frontal lobe brain injured patients use rigid strategies more often than flexible strategies. (b) An example of

the open-version TSP.
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disruption of the supervisory attentional system
(SAS). The SAS is thought to perform the inhi-
bition of the behavioural schema automatically
selected for the execution and the switch to
another schema that emerged as more suitable
to the actual situation. In the study of Basso
and colleagues (2001), the impairment observed
in fTBI patients was interpreted as a failure in
controlling and modifying the plan in the
execution phase, rather than pure lack of plan-
ning. According to this account, patients
achieved an acceptable solution because the con-
tention scheduling process was preserved. They
therefore selected an appropriate heuristic based
on the initial spatial analysis of the TSP configur-
ation. However, a SAS failure did not allow them
to modify the initial plan to optimize the
execution of the task. As a consequence, their
performance was far from optimal because the
behavioural rigidity prevented heuristic switches.
Therefore, the main drawback of this deficit is a
lower level of optimization, which is indexed by
longer tours in comparison to the performance
of healthy controls.

In summary, there are three fundamental
aspects of the TSP task that deserve consider-
ation: (a) the incremental aspect of spatial plan-
ning, (b) the presence of visuo-spatial heuristics
triggered by bottom-up processes that influence
behaviour during the execution of the task, and
(c) the crucial role of the frontal lobe to
endorse flexible performance. The goal of the
present work was to develop a computational
model to simulate the cognitive mechanisms
underlying the human performance in the TSP
task. The main aim was to replicate in the
model the incremental aspect of planning, with
the interaction of bottom-up and top-down pro-
cesses, and its disruption following a simulated
lesion. A challenging aspect of our modelling
enterprise was to implement all these features
in a connectionist model that dispenses with
the use of explicit rules to guide behaviour.
The descriptive adequacy of the model was
tested in terms of its fit to the behavioural data
from both healthy participants and patients
with frontal lobe lesions.

A CONNECTIONIST MODEL
OF THE TSP

The computational model is composed by three
interconnected modules, with a broad hierarchical
organization and feedback connections, which
loosely simulate the occipito-parieto-frontal
circuit involved in the TSP task (see Figure 3).
These components comprise: (a) a visual module,
in which the input pattern is processed by Gabor
filters (Jones & Palmer, 1987) to simulate the pro-
cesses responsible for visuo-spatial analysis and
perceptual grouping; (b) a competitive selection
module that simulates the internal dynamics for
the choice of the heuristic; (c) a spatial module
encoding the to-be-visited locations and control-
ling the execution of the pathway in a sequential
manner. Moreover, the presence of saliency
maps, recurrent connections, and inhibitory mech-
anisms allows us to simulate the incremental
aspect of visuo-spatial planning and the inter-
action of bottom-up and top-down processes.

Descriptive overview

In building the model we adopted a nested incre-
mental modelling approach (see Perry, Ziegler, &
Zorzi, 2007). This strategy, often neglected in psy-
chology, consists in building a new computational
model by combining the best features of previous
models. Therefore, two main components of our
model, the visual module and the spatial module,
were simply taken from state-of-the-art compu-
tational models of vision and action (Di
Ferdinando, Casarotti, Vallar, & Zorzi, 2005;
Lee, 1996; Pouget & Snyder, 2000). One advan-
tage of this approach is that, in spite of the com-
plexity of the model, most of the parameters are
predetermined and do not influence the ability of
the model to fit the human data in this particular
task.

Input to the model consists of a digital image
displaying the points that constitute the TSP con-
figuration. The patterns reproduced those used for
the computerized version of the TSP task (the
Maps test; Basso et al., 2001), where the starting

198 COGNITIVE NEUROPSYCHOLOGY, 2008, 25 (2)
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point is located in the top-left corner, and the end-
point is located in the bottom-right corner of the
display. The output consists in a sequence of
spatial commands, each encoding the next goal
position in space (that is, the position of the next
point to be visited). Thus, the model simulates
both spatial and temporal aspects of task
execution.

One important component of our modelling
enterprise was to provide a computational
account of the generation of spatial heuristics
and of their influence on the planning process.
Perceptual mechanisms clearly assume a critical
function as the source of bottom-up influence in
the generation of spatial heuristics and their suc-
cessful use. MacGregor and Ormerod (1996)
argued that the detection of the minimum path
is an innate and natural tendency determined by
the human visual system. Along with their sugges-
tion, we hypothesized that the selection of the
most appropriate heuristic for a given pattern is
highly determined by its spatial configuration. A
pattern elicits a particular response depending on

contextual information, such as the strength of
spatial relationships between the constitutive
elements. This hypothesis is therefore linked to
perceptual organization. Perceptual organization
can be defined as the ability to impose structural
organization on sensory data, so as to group
sensory primitives arising from a common under-
lying cause (Carreira et al., 1998).

The neural substrates of perceptual grouping
reside in the primary visual areas of the cortex.
Simple cells in area V1 respond as linear spatio-
temporal filters, and their receptive fields have
been successfully modelled with Gabor filters
(Daugman, 1988; Jones & Palmer, 1987; Lee,
1996), a set of Gaussian kernels modulated by a
sinusoidal planewave. In our model the input pat-
terns are processed with a set of Gabor filters to
provide a computational account of the neural
mechanisms involved in perceptual grouping
(also see Carreira et al., 1998). Gabor filter proces-
sing provides the extraction of the salient features
of the patterns, in particular their orientation.
Humans solve the visually presented TSP

Figure 3. The architecture of the model. The figure shows the different modules as well as their connectivity.
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essentially by applying spatial heuristics to the rep-
resentation of the problem during the execution of
the task. Therefore, we have assumed that the
information deriving from the salient directional
features extracted with the Gabor filters plays a
crucial role in the selection of the heuristics.
However, it is important to point out that the
visual module is not specifically tied to the
current model of the TSP. In fact, it is simply a
general-purpose model for simulating low-level
vision.

Visual processing provides information regard-
ing the spatial-directional characteristics of the
pattern formed by the points that constitute the
TSP configuration. However, directional infor-
mation provided by different visual orientation
maps must be somehow compared to compute
the principal axis of orientation. This has been
achieved through a competitive selection process,
implemented with a self-organizing, competitive-
learning network. Competitive learning
(Rumelhart & Zipser, 1985) sorts patterns
sharing similar properties into the same category,
and it can be viewed as a clustering technique.
The network, presented with the input features
detected by the visual-processing module, discov-
ered three main categories of input images. The
final version of the competitive network had there-
fore three output nodes, each encoding one
specific image category. Each category was then
associated to one of the three spatial heuristics.

Heuristics are selected by the competitive
process based on bottom-up, salient perceptual
information, but they must be turned into a
signal that biases the execution of the pathway.
The biasing signal in the model is provided by a
saliency map, which is simply a gradient of acti-
vation influencing the spatial target map. Thus,
the three heuristics (NN, DR, and DD) have
been implemented in terms of different saliency
maps. Activation of the spatial target map is
driven by the retinal (input) image but it is modu-
lated by the saliency map, so that a particular area
is enhanced according to the selected heuristic: the
upper region for DD heuristic, the left region for
DR heuristic, and the space surrounding the last
city visited for the NN heuristic. Spatial locations

are represented on the spatial target map by
Gaussian-shaped hills of activity (i.e., population
coding; Pouget, Dayan, & Zemel, 2000, for a
review). Lateral connections ensure that only one
hill of activity, encoding the location of the next
city to be visited, becomes fully active on the
spatial map during processing. Note that the
spatial map was not specifically designed for
the TSP model, but it was taken from a previous
computational model of visually guided move-
ments (Di Ferdinando et al., 2005; also see
Pouget & Snyder, 2000, for a similar approach);
accordingly, no parameters of the spatial map
were manipulated to implement the TSP model.

Every time a city is visited, the corresponding
population code is subsequently suppressed in
the spatial target map so that it will not be selected
again during the sequential selection process.
Moreover, inhibition spreads to the input map
via a feedback connection to decrease the saliency
of the visited city (i.e., its activation in the input
map is reduced to 50%). As a consequence,
Gabor filter reprocessing at the next time-step
has the potential of triggering a different heuristic.

The sequential behaviour of the model arises
from the competitive dynamics that are intrinsic
in the spatial map, whereas the specific order in
which cities are selected depends on biasing the
competition through an activation gradient (i.e.,
the saliency map). The idea that sequentially
ordered behaviour involves a stage of parallel acti-
vation of a set of responses has a long history and
indeed was central to Lashley’s (1951) influential
arguments against associative chaining (see
Houghton & Hartley, 1995, for discussion).
Note that biased activation competition is central
to the competitive queuing approach to serial
order (Houghton, 1990), which has proven very
effective to simulate sequentially ordered beha-
viour in both normal and pathological conditions
(see Houghton & Hartley, 1995, for a review,
and Botvinick & Plaut, 2004, 2006, for an alterna-
tive approach).

The capacity to change heuristic during the
execution of the task—and thus to produce flexible
behaviour—is guaranteed by the top-down con-
troller (TDC), which simply has the ability to
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reset the activation of the three heuristic units in
the competitive selection module. There are at
least two competing hypotheses regarding the
on-line control of heuristic choice. The first
hypothesis is that participants adopt a constant
replanning approach, in which a new heuristic is
chosen at each step regardless of the past choices
(e.g., Koenig, Furcy, & Bauer, 2002). The
second hypothesis is that the switching is driven
by a mismatch detection mechanism that triggers
replanning only if the currently selected heuristic
is making poor progress (e.g., Onaindía, Sapena,
Sebastia, & Marzal, 2001). We tested the two
accounts in different versions of the model to
assess whether one of them would provide a
better fit to the human data. Thus, in the constant
replanning model the competitive selection
module (i.e., the active heuristic) is reset after
each step during the execution of the pathway.
In contrast, the mismatch detection model per-
forms a new step based on the heuristic used in
the previous step, and the TDC resets the com-
petitive selection module only when a mismatch
between the current heuristic and the optimal
heuristic (determined by reprocessing the visual
input up to the level of the competitive selection
module) is detected.

Implementation of the model

Visual processing of the TSP patterns
The input to the visual module consists of a 161 �
161 pixels image representing the pattern. Each
city is represented by a black circle with a diameter
of 8 pixels coded with ones, whereas empty space is
coded with zeros. The image is then processed by a
family of Gabor filters (see Appendix for math-
ematical details). Gabor filters are band-pass
filters with tuneable centre frequency, orientation,
and bandwidth, which can model the response of
simple cells in the primary visual cortex (Lee,
1996). A set of eight Gabor filters tuned to differ-
ent orientations was used to convolve the input
image to obtain eight orientation maps. The use
of a small number of filters was motivated by the
nature of the task and by the need of simplifying
the model (see Appendix for further discussion).

To calculate the strength of the directional fea-
tures extracted by the different filters, we collected
the highest value from each orientation map. This
corresponds to a nonlinear MAX operation (see
Riesenhuber & Poggio, 1999) over the units
belonging to the same map, which effectively pro-
vides orientation information that is invariant of
spatial position. Moreover, the structure of the
visual module is consistent with the hypothesis
of Field (1994) that oriented edge detectors con-
stitute a sparse representation of the images.
This means that for any image, only a few of the
features are needed to represent that particular
image, and that over an ensemble of images a par-
ticular feature will seldom be significantly active.

Competitive selection among heuristics
The output of the visual module is sent to a com-
petitive network (Rumelhart & Zipser, 1985) that
provides an unsupervised categorization of the
input pattern based on its visuospatial (i.e., direc-
tional) properties. The input layer, composed of
eight units, encoded the normalized highest
value of the eight visual maps—that is, the
strength of a particular orientation axis. The
output layer encodes the categories discovered in
the training data by the competitive learning
algorithm (see Appendix for details). Each
output unit of the competitive network sends
inhibitory connections to all other output units
and one excitatory connection onto itself. This
implements a winner-takes-all mechanism ensur-
ing that only one output unit becomes active for
a given input. The output units of the competitive
network are named “heuristic units” because each
unit is later associated to one specific spatial heur-
istic (see below).

The training set consisted of 100 images with
patterns of 6 to 10 cities; each pattern was gener-
ated using a pseudorandom procedure that pro-
duced a structure consistent with the TSP
configurations used by Basso et al. (2001). The
network discovered three categories of input
images. Inserting more than three units in the
competitive layer did not produce substantial
changes in the results, as most of the patterns
(95%) were still classified by three units. We
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associated each category (i.e., output unit) to one
specific spatial heuristic. We observed that most
of the participants executing the TSP task
tended to select the direction right (DR) heuristic
when the cities were principally distributed along
the diagonal axis from top-left to bottom-right,
while the direction down (DD) heuristic was
often chosen when the cities were principally dis-
tributed along the opposite diagonal axis. In inter-
mediate or ambiguous situations, subjects tended
to use the nearest-neighbour (NN) heuristic.
Notably, two output units of the competitive
network after learning were mainly driven by the
visual maps tuned to 458 and 1358, respectively.
The 458 orientation corresponds to a top-left to
bottom-right direction, whereas the 1358 orien-
tation corresponds to a top-right to bottom-left
direction in the input image. Accordingly, we con-
nected the two units to the DR and DD heuristics,
respectively. The last output unit was not driven by
any specific orientation map, suggesting that the
patterns that it responds to are not characterized
by a predominant orientation axis. Accordingly,
it was connected to the NN heuristic, which is
typically used by participants when confronted
with TSP configurations whose spatial layouts
lack a clear directional component.

Saliency maps
The three heuristics are implemented by different
saliency maps that bias the execution of the
pathway with a specific gradient of activity. Each
saliency map has the same size as the spatial map
(see below), and each unit in the spatial map is
activated by the corresponding unit of the saliency
map. The saliency map of the NN heuristic is
implemented as a Gaussian-shaped hill of activity
centred on the last visited city, whereas the sal-
iency maps of the DR and DD heuristics consist
of linear gradients that cover the entire visual
space (Figure 3). The effect of a saliency map on
the spatial map is to relatively enhance the acti-
vation of one city by reducing (in accordance
with the specific gradient) the activation of the
other cities on the map. The competition among
units in the spatial map (see below) produces a

single winning location that corresponds to the
most salient city, which constitutes the next target.

All saliency maps consist in a gradient of acti-
vation with a value of 0.3 in the position of
maximum enhancement. Thus, the DR saliency
map has a value of 0.3 at the extreme left side
that decreases linearly to zero at the extreme
right side. The DD saliency map employs an
equivalent gradient from the upper to the lower
side of the spatial target map. Finally, the NN sal-
iency map is represented by a broad Gaussian-
shaped hill of activity centred on the last visited
city, with a peak of 0.3 and a width of 158.

Human participants in the open-ended TSP
used by Basso and colleagues (2001) were
instructed to start with the top-left point and
finish with the bottom-right point. This constraint
is implemented in the model through a small gra-
dient of activation that provides a “default” bias to
the spatial map. That is, the upper left corner is
enhanced by 0.05, and the biasing activation
decreases linearly to 0 at the bottom right corner.
This small bias ensures that the tours performed
by the model always start with the top-left point
and finish with the bottom-right point but it is
completely orthogonal to the (stronger) biases
caused by the heuristic saliency maps.

Spatial target map
The spatial target map is composed of 21 � 21
units with lateral connections. Activation of the
spatial target map is driven by the retinal (input)
image but it is modulated by the saliency map
(see Appendix for mathematical details). Spatial
plans are represented at population code level
(see Figure 4). Each city is represented by a
Gaussian-shaped hill of activity, and the compe-
tition between units belonging to different popu-
lations is resolved over time in favour of one
single population. The next city to be visited is
therefore represented by the winning population.
Its exact location is decoded through a simple
vector method (Salinas & Abbott, 1995).

Note that goal locations are coded in retinal
coordinates on the spatial map. This frame of
reference, appropriate only for eye movements,
was chosen for the sake of simplicity. A coordinate
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transformation into a head-centred or hand-
centred motor system would simply require the
addition of one intermediate layer of “basis func-
tion” units that combine, in a multiplicative way,
the retinal signal with the posture signals encoding
the position of the eye and the hand (see Pouget &
Snyder, 2000, for a review).

Top-down controller
The top-down controller (TDC) provides the
required flexibility of the model to make it
capable of a change of heuristic during the
execution of the task. In the constant replanning

version, the TDC resets the competitive selection
module after each step. This means that a “new”
heuristic must be selected before each step. In
contrast, the mismatch detection version of the
TDC triggers a reset only when the heuristic
used to perform the last step is not optimal.
More specifically, a change of heuristic is made
possible only after the execution of one step in
which the active heuristic did not match the
optimal heuristic indicated by visual analysis.
Thus, the mismatch detection TDC can switch
the heuristic at least one step later than the con-
stant replanning TDC.

Figure 4. The activation of the spatial map for one 8-point TSP pattern resulting from the retinal input only (i.e., a biasing signal from the

saliency map is not present). Each location activates a population of units that is defined by a broad Gaussian-shaped hill. The different

populations compete until there is only one winning population (while all the others are inhibited). This is the next location to be visited.
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Parameters of the model
Table 1 lists all parameters of the model. As pre-
viously mentioned, most of the values are identical
to those used in the studies that describe a specific
component of the model. The parameters of the
visual model were not manipulated and simply
reflect the minimal set of visual filters (cf.
Riesenhuber & Poggio, 1999) at a medium-scale
spatial resolution. The spatial target map was
entirely taken from the work of Di Ferdinando
et al. (2005) without any parameter change. The
lateral connections in the competitive network
were simply set to values that resulted in efficient
winner-takes-all behaviour, and the learning rate
was set to 0.1 without any manipulation. Thus,
only one parameter is specific to the current
work, which is the peak of activation in the sal-
iency maps. However, this parameter was not sys-
tematically manipulated but it was simply set to a
value that ensured a proper biasing of the competi-
tive selection between targets in the spatial output
map. In summary, it is important to stress that no
parameter was manipulated for data-fitting
purposes.

Simulations of normal performance

The model operates in a sequential manner, and it
performs the task by choosing one city at every
step. For each TSP configuration presented as

input to the model, the visual image is analysed
with Gabor filters to detect the most influential
spatial features, and then the competitive selection
module selects the heuristic that is most appropri-
ate for the input pattern. The winning heuristic is
implemented in terms of a saliency map, whose
activation influences the spatial map determining
the city to be visited. The spatial map represents
all the locations to be visited through population
codes; competition at the spatial level results in
selection of the most activated population code,
which corresponds to one particular goal location
(the forthcoming city that will be visited), and in
the inhibition of the other populations codes
(all other locations). At the end of each step,
the units in the spatial map corresponding to the
selected (visited) city are inhibited, and the acti-
vation of the same city in the visual pattern is
reduced via the inhibitory feedback loop (see
Figure 3). This allows a possible change of heuris-
tic: Indeed, the visual input is processed again, and
a different heuristic might emerge from the com-
petitive selection. This process takes place at
every single step; therefore, heuristics may be
changed several times during the execution of a
single path.

However, the switching process requires the
intervention of the TDC, which has the role of
resetting the currently selected schema (i.e., the
specific heuristic). A top-down influence

Table 1. List of the parameters used in the model

Parameter Value Taken from

Visual module x 0 Riesenhuber & Poggio, 1999

y 0 Riesenhuber & Poggio, 1999

vo (radial frequency) .57 radians per unit length

u (wavelet orientation) 0, 1/4p, 1/2p and 3/4p radians Riesenhuber & Poggio, 1999

k K � p Lee, 1999

Competitive selection

module

h (learning rate) 0.1

Spatial module s (width of the Gaussian) 58 Di Ferdinando et al., 2005

AE 10 Di Ferdinando et al., 2005

sE 15 Di Ferdinando et al., 2005

AI 9 Di Ferdinando et al., 2005

sI 105 Di Ferdinando et al., 2005

Saliency maps Peak activation of 0.3

Note: See text for explanation.
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becomes clearly visible in the most difficult tasks
(i.e., for a large number of cities) where it provides
flexibility to the behaviour. If the previously
selected heuristic is not appropriate on the basis
of the spatial analysis of the remaining unvisited
locations, the TDC allows an on-line change to
the plan. As previously mentioned, we evaluated
the performance of the model using the two differ-
ent versions of the TDC (constant replanning vs.
mismatch detection). Moreover, to investigate
whether the incremental aspect of planning is a
necessary component to adequately describe
human performance, we evaluated a version of
the model in which one single heuristic was used
for the execution of the entire path. In summary,
we compared five different versions of the model:
(a) constant replanning model, (b) mismatch
detection model, (c) fixed DD model, (d) fixed
DR model, and (e) fixed NN model.

These five models were tested on eight different
TSP patterns. These were the most frequently
tested maps across several experiments performed
by Basso et al. (2001) and Basso (2005), so that
the performance of each model could be compared
with the behavioural data. We collected the tours
executed by the model in its different versions
for a comparison with those executed by the
healthy adults (the number of participants used
for this analysis was 140). We chose to inspect
the tours at a global level, instead of analysing
the single movements during the execution of
the tour. Note that the comparison between
model and human data at the level of single step
is not a stringent one because the likelihood of
finding the same single step is much higher than
the likelihood of finding the same whole
pathway. For each pattern, we compared the tour
produced by the model with the tours performed
by human participants and ranked the model’s
tour according to the frequencies observed in the
human data.

Results
Table 2 reports the ranks for each tour and model
version. A rank of 1 indicates that the tour per-
formed by the model corresponds to the most fre-
quently observed tour across human participants.

Some pathways were not classifiable (N.C.)
because they did not match any of the tours
observed across our sample of human participants.
In the case of Pattern 8, none of the models was
able to provide a classifiable solution. It is worth
noting, however, that the human solutions to
Pattern 8 (constituted by 11 locations) was so
widely variable that their ranking would be unreli-
able. The number of possible solutions increases
exponentially with the number of locations to be
visited; this turns into a greater variability of per-
formance because there is also an increased
number of close-to-optimal solutions. This con-
tention is supported by a strong positive corre-
lation (r ¼ .83, p , .005) between the number of
points in a map and the number of different sol-
utions provided by human participants.

Inspection of Table 2 reveals that most of the
pathways chosen by the constant replanning
model correspond to the most frequently observed
tours in the experiments of Basso and colleagues
(2001; Basso, 2005). For half of the patterns, the
tour executed by the constant replanning model
matched the most frequent tour observed in
healthy participants. Overall, six out of eight path-
ways were the first or second most frequent tour in
the human data. This is a valuable result, consider-
ing that the open-ended TSP is a (non polynomial)
NP-complete problem, which has an exponential
increase of possible solutions in relation to the
number of points. A nonparametric Friedman
analysis of variance (ANOVA) on the rank of the
tours produced by the fivemodels revealed a signifi-
cant effect of model version, x2(4) ¼ 13.143;
p , .05. The mean ranks were 1.94, 2.94, 2.88,
4.31, and 2.94 for constant replanning, mismatch
detection, fixed NN, fixed DR, and fixed DD,
respectively. Pairwise comparisons showed that per-
formance of theDRmodel wasworse than any other
model, but no other comparison reached the signifi-
cance level. However, it is worth noting that the
constant replanning model showed the best mean
rank. The mean rank of the mismatch detection
model was identical to that of the fixed DD model.

A qualitative analysis of the tours performed by
the different models confirms that the constant
replanning model offers the best fit to the human
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performance. Specifically, both the mismatch
detection and the fixed NN models produced two
crossed tours, whereas the constant replanning
model did not produce any crossed tour (note that
the fixed DD and fixed DR cannot, by definition,
produce any crossing). The occurrence of crossings
in the tours produced by human participants is
extremely rare. Indeed, van Rooij, Stege, and
Schactman (2003) hypothesized that humans try
to avoid crossed lines when solving the TSP
because they are sensitive to the fact that tours
with crossed lines are nonoptimal (or, alternatively,
that optimal tours have no crossings). Although this

position has been criticized by MacGregor,
Ormerod, and Chronicle (2004), it is generally
agreed that optimal solutions have no crossings.

In summary, the constant replanning model is
superior to the simpler models based on single
heuristics, as well as to the model that allows for
heuristic changes through a mismatch detection
mechanism. Thus, having established that the
constant replanning model provides the best fit
to the data on healthy human participants, we
investigated the effect of a lesion to the TDC to
assess its ability to account for the impaired per-
formance shown by fTBI patients.

Note: Each pattern depicted in the first column. A rank of 1 indicates that the pathway chosen by

the model corresponds to that most frequently observed across human participants. N.C. (not clas-

sifiable) indicates that the tour performed by the model has never been observed across the sample

of human participants. NN ¼ nearest neighbour. DR ¼ direction right. DD ¼ direction down.

Table 2. Ranks and frequencies of the tours chosen by all versions of the model for each pattern in a

comparison with the human data of Basso et al., 2001; Basso, 2005
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Simulations of impaired performance

Simulation of the impaired performance of frontal
patients was obtained by lesioning the TDC in the
constant replanning model. The TDC was
impaired by lowering its capacity to reset the com-
petitive selection module. Lesions of different
degrees of severity were simulated by progressively
increasing the inefficiency of the top-down con-
troller from 10% to 70%. A set of 10 frontally
damaged networks was obtained by setting the
lesion severity to 10%, 15%, 20%, 25%, 30%,
35%, 40%, 50%, 60%, and 70%.

The tours performed by the lesioned model
were compared with those observed in fTBI
patients. Tour rankings were computed as for the
simulations of unimpaired performance.
Moreover, we carried out an analysis of the
degree of flexibility exhibited by the model by
looking at the selection of heuristics during the
execution of the task. In previous studies the
classification of the heuristic used to move from
one city to the next at each step in the pathway
was obtained considering the distance between
that city and all other unvisited cities (see Basso
et al., 2001). If the next selected city was the
closest on the horizontal axis, the move was con-
sidered as the result of a DR heuristic.
Alternatively, if the next city was the closest on
the vertical axis, the move was considered as the
result of a DD heuristic. Finally, if the next city
was the closest in terms of absolute distance (i.e.,
regardless of the direction), the move was con-
sidered representative of a NN heuristic. In the
model, the choice of heuristic was directly assessed
by recording the winning unit in the competitive
module at every step. The presence of multiple
heuristics in solving a given TSP configuration

was taken as an index of flexible behaviour.
Specifically, a flexible strategy was defined as a
problem solution in which the participants (or
the model) operated at least one heuristic switch;
otherwise, the strategy was classified as rigid.
Therefore, we assessed the flexibility of the
lesioned model in comparison to the unimpaired
model and its effect on tour optimization.
Performance of 10 different “normal participants”
was obtained by introducing some variability in the
competitive process that leads to heuristic selec-
tion for both the simulations. Gaussian noise
(mean 0, variance .05) was added at each proces-
sing step to the heuristic nodes. Performance on
each map was therefore collected for each of the
10 different runs of the model.

Results
Each tour performed by the model after TDC
lesions was ranked according to the patients’
data, and the modal rank was calculated for each
pattern. The tours of the impaired model were
generally consistent with the performance of the
frontal patients (see Table 3).

A comparison of the type of strategy (flexible vs.
rigid) employed by the normal model and the
lesioned model revealed a significant difference,
x2(1) ¼ 13.97, p , .001. Rigid strategies were
more frequent than flexible strategies in the
lesioned model, whereas the unimpaired model
showed the opposite trend. Overall, this pattern
mirrors the results obtained by Basso et al.
(2001) in their study of healthy participants and
frontal patients (see Figure 5).

Figure 6 presents a comparison of two repre-
sentative pathways performed by the constant
replanning model and the lesioned model (30%

Table 3. Ranks and frequencies of the tours performed by the lesioned model, for each pattern (depicted in the first column) in a comparison

with the human data of frontally damaged patients (Basso et al., 2001)

Note : Each pattern depicted in column head.
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Figure 5. Overall strategy chosen by the normal models and by the lesioned models, compared to the strategies of healthy participants and

frontal patients. A strategy was classified as flexible if the heuristic was changed at least once during the execution of a given pathway.

Figure 6. Tours performed by the model on Maps 4 and 8. The left panels (A and C) show the performance of the normal model, whereas the

right panels (B and D) show the pathways executed by a 30% lesioned model. Note that the tour depicted in D contains a crossing, which is a

classical sign of nonoptimization and is rarely observed in neurologically intact participants.
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lesion). As can be noted, the pathways were mark-
edly different because of the lack of heuristic
changes. The tour executed by the lesioned
model contains a crossing, which is a clear sign
of nonoptimal performance (as discussed in the
previous section).

Another fundamental difference between
normal and impaired model is revealed by their
different levels of optimization. As suggested by
Graham, Joshi, and Pizlo (2000), an appropriate
measure of the level of optimization is the ratio
of the tour length (RTL), which is the ratio
between length of the tour performed by the
subject and the length of the shortest tour. In
the present study (as in Basso et al., 2006), the
RTL index for a given pathway X was computed
as the ratio of excess tour length to optimal tour
length:

RTL(X ) ¼ ½tour length(X )

–optimal tour length(X )�=optimal tour length(X )

Mean RTLs for normal versus impaired model
were significantly different (0.051 vs. 0.117,
respectively; t ¼ –26.84, p , .001), showing that
TDC damage results in a lower level of optimiz-
ation. These result mirror those of Basso et al.
(2001), who found that the optimization level of
frontal patients was significantly inferior to that
of healthy controls (see Figure 7).

GENERAL DISCUSSION

The TSP is a famous problem-solving task which
gained notoriety about two centuries ago among
mathematicians and physicists as one of themost fas-
cinating optimization problems (for a review see
Schrijver, 2005). Nevertheless, in the latest years
there has been a growing interest for the TSP
among cognitive scientists. Mathematicians and
computer scientists have developed a large number
of algorithms for solving the TSP that give an
approximation of the optimal solution in a reason-
able amount of time. Our model differs fundamen-
tally from these studies in its purpose, because we

have focused our attention on the simulation of the
human cognitive processes involved in the solution
of the TSP rather than on the optimization aspects
of the problem. Indeed, humans facing the TSP
problem carry out the task in a sequential manner,
showing the ability to change heuristic during the
pathwaywhen needed to optimize their performance
(Basso et al., 2001).

The simulations presented in this paper closely
mirrored human performance in both normal and
pathological conditions. This suggests that the
model is able to capture the basic cognitive pro-
cesses involved in the human solution of the
TSP. The core of the model’s ability to perform
visuospatial planning resides in the bottom-up
selection of a visuospatial heuristic in the
competitive selection module. The spatial analysis
performed by Gabor filters is the source of
bottom-up influences in the model. The competi-
tive network receives input from the visual
module, and it provides an unsupervised categoriz-
ation of the input pattern based on the spatial-
directional characteristics of the pattern formed
by the points that constitute the TSP configur-
ation. Categorization into three classes emerged
spontaneously during learning (through an unsu-
pervised Hebbian learning algorithm) as a result
of the exposure to a sample of TSP patterns.

Figure 7. Mean ratio of the tour length (RTL) for model and

human participants, indexing the optimization level achieved in

the TSP task. From left to right: normal model (dark grey),

lesioned model (light grey), neurologically intact participants

(dark grey), and frontal patients (light grey). Human data from

Basso et al., 2001.
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Thus, the directional features of the input pattern
are the main determinants of the heuristics
selected in the particular path used to solve the
TSP. The remarkable similarity between model
and humans in choosing a movement path
suggests that perceptual grouping and sensitivity
to the spatial-directional characteristics of the
visual pattern is a fundamental component of
visuospatial planning in the TSP.

From a behavioural point of view, the key to the
model’s ability to generate plausible pathways
resides in two main features: the selection of the
most appropriate heuristic given the contextual
information and the incremental monitoring
process, which allows a change of heuristic when
the ongoing one fails to fit to the sensorial infor-
mation. Indeed, the most intriguing characteristic
of the model regards its capacity to switch between
heuristics. This is a fundamental characteristic that
gives psychological plausibility to the model.
Human participants execute the TSP in an iterative
manner; the incremental process is less resource
demanding than global planning because subjects
do not need to generate a comprehensive plan
resolving the entire situation but only the next
appropriate action.

The hypothesis that the performance of neuro-
logically intact participants is crucially dependent
on incremental planning and on the interaction
of bottom-up and top-down processes is high-
lighted by the comparison between five versions
of the model that differed only for the strategic
component. First, the use of a single, fixed heuris-
tic proved to be inadequate for the solution of the
most complex problems. Fixed-heuristic versions
of the model performed plausible tours when con-
fronted with maps containing a small number of
points, but their performance broke down as the
number of points increased. Specifically, we
observed pathways that did not match any of the
tours produced by human participants. This
result confirms that a flexible use of heuristics is
a fundamental aspect of human performance in
the TSP (cf. Basso et al., 2001).

Flexible behaviour, however, requires a moni-
toring system that allows for heuristic switches.
We contrasted two alternative hypotheses

regarding the operation of the top-down control-
ler: constant replanning versus mismatch detec-
tion. The first hypothesis is that a new heuristic
is chosen at each step regardless of the past
choices (e.g., Koenig et al., 2002), whereas the
second suggests that the switching can take place
only if the currently selected heuristic is making
poor progress (e.g., Onaindía et al., 2001). The
two different implementations of the TDC pro-
duced a markedly different performance. First,
the pathways executed by the constant replanning
model provided a better match to the tours that
were most frequently observed across a large
number of human participants. Second, and
more important, the constant replanning model
did not produce any crossed tour, whereas the mis-
match detection model executed two crossed tours.
The latter indicate a nonoptimal performance and
are rarely observed in human performance
(MacGregor, Chronicle, & Ormerod, 2004; van
Rooij et al., 2003). This suggests that a continuous
monitoring process, which allows for on-line
changes of heuristic whenever the current one is
not suitable, is a more viable model of the incre-
mental planning ability displayed by neurologically
intact participants.

The importance of flexible, incremental plan-
ning is also supported by the empirical data on
patients with frontal traumatic brain injury
(Basso et al., 2001) as well as normal subjects
under rTMS over the frontal lobe (Basso et al.,
2006; see Figure 2a). Both the lesion and the
reversible neurodisruption of the frontal cortex
caused a conspicuous decrease of flexible strategies
that incorporate heuristic switches. The same
pattern was observed in the simulations when the
TDC of the constant replanning model was
lesioned in a way that decreased its ability to
reset the competitive selection module. Note that
the frontal patients still produced acceptable sol-
utions of the TSP in the Basso et al. (2001)
study. The damaged model performed in the
same way because of the preserved bottom-up
mechanism: The simplest TSP problems often
do not require a change of heuristic, and thus
the performance of the lesioned model is indistin-
guishable from that of the normal model.
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However, in the most complex patterns the intact
model efficiently switched heuristic when a change
was appropriate, whereas the damaged model
often perseverated by keeping active the heuristic
selected at the beginning of the pattern. Thus,
TDC damage caused a loss of flexibility and adap-
tivity in the behaviour that turned into a poorer
level of optimization.

It is worth noting that the remarkable flexibility
of human cognitive control was simulated in the
model solely by the interaction between the com-
petitive selection module and the TDC. This
reflects the functional role of the PFC hypoth-
esized by J. D. Cohen, Braver, and O’Reilly
(1996), who suggest that the PFC maintains the
relevant features in an activation-based working
memory, providing a top-down support (or
biasing) of the corresponding perceptual proces-
sing and action selection pathways (also see
O’Reilly, Noelle, Braver, & Cohen, 2002).

However, there is an alternative explanation for
why heuristic switching might fail after frontal
lobe damage. If monitoring is seen as a parallel
process that could interrupt behaviour before the
application of a heuristic, a monitoring failure
would prevent the system to invoke the TDC.1

This would cause the same loss of flexibility that
we attributed to (and modelled as) impaired inhibi-
tory function of the TDC. Thus, further empirical
work is necessary to distinguish between these two
alternative accounts of the rigid behaviour exhibited
by fTBI patients (or healthy participants under
rTMS) in the TSP. Notably the monitoring
failure account would predict a loss of flexibility in
neurologically intact participants when the atten-
tional demands are increased by simultaneously
performing a secondary task.

Relation to other models

The most important previous computational
model of TSP from a psychological point of view
was developed by MacGregor et al. (2000). Their

model focuses on the human solution of the
closed version of the TSP (see Introduction): It
performs the task with a sequential procedure,
and it is basically designed to conform in a
general way to a convex hull approach. The
model of MacGregor and colleagues is entirely
driven by conditional rules implemented at each
step. One example of its operations is provided
by the following list of steps: “Apply the insertion
criterion to identify which unconnected interior
point is closest to the current arc—apply the inser-
tion criterion to check whether the closest node is
closer to any other arc—if not, proceed to Step 5—
if it is, move to the end node of the current arc.”
Although this model represented a great develop-
ment with respect to the previous conventional
attempts to model human performance on TSP,
some aspects still seem to require an improvement.
Even if the results show a good fit between the
model and the human solution, the model of
MacGregor is unlikely to produce a particularly
good fit to human solutions to highly patterned
TSPs. This is because the model does not incor-
porate a mechanism that is sensitive to factors
such as proximity of interior points and regularity
of their arrangement. Moreover, recent evidence
suggests that the heuristics used to solve the
closed version of TSP cannot explain the human
performance in the open-ended TSP (Chonicle,
MacGregor, Ormerod, & Burr, 2006). Thus, the
model of MacGregor et al. (2000), at least in its
present form, could not be used to account for
the human data on the Maps test of Basso et al.
(2001).

It is important to note that a fundamental
difference between our model and the model of
MacGregor et al. (2000) resides in the nature of
the computational mechanisms leading to the sol-
ution. In our model, there are no explicit rules that
guide the performance, and the perceptual mech-
anisms simulated with Gabor filters allowed us
to account for the perceptual components of
the human solution of TSP. To the best of our

1 We thank Rick Cooper for suggesting this view of monitoring as well as the account of rigid behaviour based on a monitoring

failure.
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knowledge, there is no other model that has suc-
cessfully simulated human performance in TSP
without using explicit rules.

Our model shares several conceptual properties
with the attention to action (ATA) model of
Norman and Shallice (1986) and the compu-
tational model of action planning developed by
Cooper and Shallice (2000). The competitive
selection module operates in a way that is similar
to the contention-scheduling mechanism,
whereas the TDC could be regarded as a sort of
supervisor attentional system (SAS). In our
model, the role of the TDC is to inhibit the pre-
viously selected heuristic to promote a flexible
behaviour. Notably, a lesion to the TDC resulted
in performance characterized by a rigid strategy
that lacked heuristic changes, with a pattern that
mirrored the behaviour exhibited by frontal
patients.

Limitations of the model and future
directions

Overall, the model provides a good match to both
normal and impaired human performance in the
TSP task. One possible criticism, however, is
that the complexity of the model and the
number of parameters outstrip the complexity of
the data to be explained. This is far from being
the truth. First of all, the complexity of the
model is the result of the assembly of components
taken from other computational models that are
unrelated to the TSP but are necessary to build a
comprehensive model of the task. Indeed, the
complex nature of the TSP and the number of
different cognitive processes involved called for a
nested modelling approach (see Perry et al.,
2007). Therefore, two main components of our
model, the visual module and the spatial module,
were simply taken from state-of-the-art compu-
tational models of vision and action (Di
Ferdinando et al., 2005; Lee, 1996; Pouget &
Snyder, 2000). As a result of this, most of the par-
ameters in the model are not free (see Table 1),
and they have an effect only at the module level
(i.e., they are not determinant for an optimal sol-
ution of the TSP). In fact, the combination of

the visual and spatial components simply forms a
model of visually guided movements towards visu-
ally salient stimuli. Two other components, the
competitive selection module and the TDC, are
required to produce a solution of the TSP and
form the core of the model’s ability to perform
incremental visuospatial planning.

A second possible criticism regards the com-
plexity of the data to be explained. At a first
glance, an analysis of the tours at a global level
would seem less accurate than an analysis of the
single movements during the execution of the
tour. What should be kept in mind, however, is
that the overall solution is much more meaningful
than the single movements. Indeed, looking at the
match between model and human data at the level
of single step is not very fruitful, because the prob-
ability of finding a matching movement is much
higher than the probability of finding the same
pathway in its totality. In fact, for a tour with
rank “1”, the overall pathway of the human partici-
pants and that of the model is exactly the same,
indicating a maximum concordance between the
two solutions. Thus, this approach provides a
rigorous and fine-grained analysis of the
performance.

Nonetheless, a limitation of the current model
is that it cannot capture the variability of human
solutions to a single TSP pattern. Modelling indi-
vidual differences was clearly beyond the scope of
the current work, but this issue could now be
tackled by combining behavioural and compu-
tational investigations. Simulations suggest that
the observed variability of human solutions
cannot be accounted for by simply adding noise
during processing. Thus, individual differences
might be captured in the model only by consider-
ing different “cognitive styles” (e.g., Witkin &
Goodenough, 1981), such as predispositions
towards using a particular heuristic (Bisiacchi,
Basso, & Cotelli, 1999).

The last possible criticism to the current model
concerns its limitation to the open-ended TSP
task. In this regard, we note that the extension
to the closed-TSP would require minimal modifi-
cations of the model. In particular, the two ver-
sions of TSP seem to involve different types of
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heuristics (Chronicle et al., 2006). Moreover,
although the model was specifically designed to
provide a solution of the TSP, it could be extended
to other tasks that require sequential visuo-motor
scanning. For example, the Trail-Making Test B
(TMT-B: Reitan, 1958) requires alternately con-
necting digits (1–13) and letters (A–L) that are
randomly located on a sheet of paper. The
TMT-B is frequently used in neuropsychology to
assess the executive function of mental set shifting.
A simulation of the TMT-B test would require
only few modifications of our model. Finally, the
competitive selection and TDC components of
our model could be used to simulate other nonspa-
tial tasks that involve cognitive control. One
advantage of our nested incremental modelling
approach (see Perry et al., 2007) is that these com-
ponents can be easily untied from the other parts
of the model and reused in a different context.
Note that only the competitive selection module
and the TDC would be essential to account for
the rapid switching in dynamic categorization
tasks, as in the Wisconsin Card Sorting Test
(WCST; Grant & Berg, 1948). However, exten-
sion to the WCST would clearly require substan-
tial modifications that range from the nature of
input and output representations to the structure
of the learning phase (Rougier, Noelle, Braver,
Cohen, & O’Reilly, 2005).

CONCLUSIONS

The present work is an effort to simulate the
nature of the computational mechanisms under-
lying the human performance on visually pre-
sented TSP. Consistent with the connectionist
approach to human cognition, our model dis-
penses with the use of explicit rules to guide beha-
viour in a complex problem-solving task. The
simulations highlighted the fundamental role of
perceptual grouping and sensitivity to the spatial-
directional characteristics of the visual pattern in
visuospatial planning while performing the TSP.
Moreover, the model allowed us to assess the
role of incremental planning and to test different
hypotheses regarding the on-line monitoring of

performance. The behaviour of the model seems
to capture the fundamental aspects of human
skilled performance and to mirror the impairment
and behavioural rigidity typical of frontal lobe
patients after a simulated lesion. We believe that
the model provides a useful platform for designing
new empirical studies that aim at a more fine-
grained analysis of human performance in the
TSP task because it can be used to make predic-
tions regarding both healthy subjects and clinical
populations.
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APPENDIX

Mathematical details of the model

Visual module

Visual processing is based on the family of Gabor filters derived

by Lee (1996), which satisfies both mathematical and neuro-

physiological constraints:

c(x,y,vo, u) ¼
voffiffiffiffiffiffiffiffiffi
2pk

p � exp
v2
o

8k2

� ��

� ½4(x � cos uy � sin u)2 þ (� x � sin uþ y � cos u)2�

�

�

�
exp½i(vo � x cot cos uþ vo � v cot sin u�

� exp
k2

2

� ��
1

where x and y represent the centre of the wavelet, vo is the

spatial frequency in radians per unit length, and u is the

wavelet orientation in radians. K is a constant set to p (Lee,

1996). The real and imaginary parts of the complex function

produce two filters, referred to as odd and even. In the

present work, we varied only the wavelet orientation (0, 1/4;p,

1/2;p, and 3/4;p) for a total of eight filters (four even and four

odd), while the spatial frequency was fixed at 0.57 radians. Four

orientations constitute the minimal set of filters and are suffi-

cient to provide rotation and size invariance (Riesenhuber &

Poggio, 1999). We use a single, low-frequency bandwidth

because it is more suitable to detect the main directional

features of the entire stimulus. Note that adding more spatial

frequencies, and thus more Gabor filter maps, did not

improve the performance of the model.

Competitive selection module and top-down
controller

Activation of each heuristic unit yi at time t in the competitive

selection module is obtained by summing the feedforward acti-

vation from the input layer Ii (visual module) and the recurrent

input from the lateral connections in the heuristic layer.

yti ¼ Ii þ
�X

k

y(t�1)
k �wik

�
2

where yt21 is the activation of the kth heuristic unit (including

itself) at the previous time step (t 2 1), and wik indicates the

weight of the corresponding lateral connection. The latter are
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fixed to the values of 0.2 and 2 0.1 for self-excitatory and

lateral inhibitory connections, respectively. The feedforward

activation from the visual module to each ith heuristic unit is

calculated as follows:

Ii ¼
X
j

wij xj 3

where xj is the activation of the jth input unit, and wij is the

weight of the corresponding connection.

The activation equations are run iteratively until one heur-

istic unit wins the competition. Note that the relaxation is

driven by the lateral connections because Ii remains constant.

To speed up the relaxation process we terminate the compe-

tition whenever one unit reaches a value of 0.9 (instead of the

maximum of 1.0). At that point, the winning unit is set to 1,

whereas all other units are set to 0.

During the learning phase, the feedforward weights

between jth input units and the winning heuristic unit y are

updated according to a Hebbian learning rule (Brown &

Chattarji, 1995):

Dwj ¼ h(xjwj )y 4

where h is the learning rate (set to 0.1). Note that competitive

learning (Rumelhart & Zipser, 1985) sorts patterns sharing

similar properties into the same category, and it can be

viewed as a clustering technique.

The effect of the TDC is simply to reset to zero the acti-

vation of all heuristic units in the competitive selection

module. The efficiency of the TDC in resetting the heuristics

nodes is decreased after a simulated lesion. That is, a residual

activation (proportional to the severity of the lesion) persists

in the heuristic nodes. For example, for a 20% lesion the

residual activation of the winning heuristic unit corresponds

to 80% of the activation at t ¼ 1. The residual activation y of

the winning unit is calculated as follows:

y ¼
Ii � L

100
5

where L is the severity of the TDC lesion expressed as a percen-

tage. Thus, when L is set to zero there is no residual activation.

Spatial module

Activation of each unit in the spatial target map is calculated as

follows:

O ¼ f Ri(1� Si)þ
X
j

WijOj

" #
6

where Ri is the input from retinal (input) units (see below) and

Si is the activation value of the ith unit in the saliency map. The

rightmost term of the equation computes the recurrent input

resulting from the lateral connections W with the other units.

Finally, f(x) is a squashing function that bounds the activation

in the [0, 1] range:

f (x) ¼

2

1þ e�x
� 1 if x . 0

0 otherwise

8<
: 7

The retinal input Ri to each unit in the spatial target map is

calculated as follows:

Ri ¼ exp �
d2
ri

2s2

� �
8

where dri is the distance between the centre of the retinal recep-

tive field (rxi, ryi) of the spatial unit and the retinal coordinates

(rx, ry) of the visual target—that is, dri
2 ¼ (rx 2 rxi)

2
þ (ry 2

ryi)
2; s is the width of the Gaussian (set to 58). The receptive

field centres were spread uniformly between 2 408 and

þ 408 on both x and y axes, with increments of 48.
The spatial target map contains symmetric lateral connec-

tions with fixed-value inhibitory weights that depend on the

distance between neurons:

Wij ¼ min 0,AE exp
d2
ij

2s2
E

 !"

� A1 exp �
d 2
ij

2s2
I

 !# 9

where dij is the distance between the two neurons. The connec-

tions weights cannot have a positive value. AE and sE are always

higher than AI and sI, respectively.

The exact location represented by the spatial target map is

decoded through a simple vector method (Salinas & Abbott,

1995):

(Ox, Oy) ¼

P
i

OiOxiP
i

Oi
,

P
i

OiOyiP
i

Oi

0
@

1
A 10

where (Ox, Oy) is the location of the planned movement, Oi is

the activation value of the ith unit in the spatial target map,

and Oxi and Oyi are the field centre coordinates of the ith unit.
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