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The recent “deep learning revolution” in artificial neural networks had strong impact
and widespread deployment for engineering applications, but the use of deep learning
for neurocomputational modeling has been so far limited. In this article we argue
that unsupervised deep learning represents an important step forward for improving
neurocomputational models of perception and cognition, because it emphasizes the role
of generative learning as opposed to discriminative (supervised) learning. As a case study,
we present a series of simulations investigating the emergence of neural coding of visual
space for sensorimotor transformations. We compare different network architectures
commonly used as building blocks for unsupervised deep learning by systematically
testing the type of receptive fields and gain modulation developed by the hidden
neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are
stochastic, generative networks with bidirectional connections trained using contrastive
divergence, with autoencoders, which are deterministic networks trained using error
backpropagation. For both learning architectures we also explore the role of sparse
coding, which has been identified as a fundamental principle of neural computation. The
unsupervised models are then compared with supervised, feed-forward networks that
learn an explicit mapping between different spatial reference frames. Our simulations
show that both architectural and learning constraints strongly influenced the emergent
coding of visual space in terms of distribution of tuning functions at the level of single
neurons. Unsupervised models, and particularly RBMs, were found to more closely
adhere to neurophysiological data from single-cell recordings in the primate parietal
cortex. These results provide new insights into how basic properties of artificial neural
networks might be relevant for modeling neural information processing in biological
systems.

Keywords: connectionist modeling, unsupervised deep learning, restricted Boltzmann machines, autoencoders,
sparseness, space coding, gain modulation, sensorimotor transformations
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INTRODUCTION

Artificial neural network models aim at explaining human
cognition and behavior in terms of the emergent consequences
of a large number of simple, subcognitive processes (McClelland
et al., 2010). Within this framework, the pattern seen in
overt behavior (macroscopic dynamics of the system) reflects
the coordinated operations of simple biophysical mechanisms
(microscopic dynamics of the system), such as the propagation
of activation and inhibition among elementary processing units.
Though this general tenet is shared by all connectionist models,
there is large variability in processing architectures and learning
algorithms, which turns into varying degrees of psychological and
biological realism (e.g., Thorpe and Imbert, 1989; O’Reilly, 1998).
When the aim is to investigate high-level cognitive functions,
simplification is essential (McClelland, 2009) and the underlying
processing mechanisms do not need to faithfully implement the
neuronal circuits supposed to carry out such functions in the
brain. However, modelers should strive to consider biological
plausibility if this can bridge different levels of description
(Testolin and Zorzi, 2016).

Recent theoretical and technical progress in artificial neural
networks has significantly expanded the range of tasks that
can be solved by machine intelligence. In particular, the advent
of powerful parallel computing architectures based on Graphic
Processing Units (GPUs), coupled with the availability of “big
data,” has allowed to create and train large-scale, hierarchical
neural networks known as deep neural networks (LeCun et al.,
2015, for review). These powerful learning systems achieve
impressive performance in many challenging cognitive tasks,
such as visual object recognition (Krizhevsky et al, 2012),
speech processing (Mohamed et al., 2012) and natural language
understanding (Collobert et al., 2011). However, while the impact
of deep learning for engineering applications is undisputed,
its relevance for modeling neural information processing in
biological systems still needs to be fully evaluated (for seminal
attempts, see Stoianov and Zorzi, 2012; Khaligh-Razavi and
Kriegeskorte, 2014; Giiglii and van Gerven, 2015).

One critical aspect of most deep learning systems is
the reliance on a feed-forward architecture trained with
error backpropagation (Rumelhart et al, 1986), which has
been repeatedly shown to yield state-of-the-art performance
in a variety of problems (LeCun et al, 2015). However,
the assumptions that learning is largely discriminative (e.g.,
classification or function learning) and that an external teaching
signal is always available at each learning event (i.e., all training
data is “labeled”) are clearly implausible from both a cognitive
and a biological perspective (Zorzi et al., 2013; Cox and Dean,
2014). Reinforcement learning is a valuable alternative and
it has already shown promising results when combined with
deep learning (Mnih et al, 2015; Silver et al, 2016), but
there is a broad range of situations where learning seems
to be fully unsupervised and its only objective is that of
discovering the latent structure of the input data in order to build
rich, internal representations of the environment (Hinton and
Sejnowski, 1999). We argue that more realistic neurocognitive
models should therefore also exploit unsupervised forms of deep

learning, where the objective is not to explicitly classify the
input patterns but rather to discover internal representations
by fitting a hierarchical generative model to the sensory data
(Hinton, 2007, 2013; Zorzi et al, 2013). Compared to its
supervised counterpart, this modeling approach emphasizes the
role of feedback, recurrent connections (Sillito et al.,, 2006),
which carry top-down expectations that are gradually adjusted to
better reflect the observed data (Hinton and Ghahramani, 1997;
Friston, 2010) and which can be used to implement concurrent
probabilistic inference along the whole cortical hierarchy (Lee
and Mumford, 2003; Gilbert and Sigman, 2007). Notably, top-
down processing is also relevant for understanding attentional
mechanisms in terms of modulation of neural information
processing (Kastner and Ungerleider, 2000).

A powerful class of stochastic neural networks that learn a
generative model of the data is that of Restricted Boltzmann
Machines (RBMs), which can efficiently discover internal
representations (i.e., latent features) using Hebbian-like learning
mechanisms (Hinton, 2002). RBMs constitute the building block
of hierarchical generative models such as Deep Belief Networks
(Hinton and Salakhutdinov, 2006) and Deep Boltzmann
Machines (Salakhutdinov, 2015). These unsupervised deep
learning models have been successfully used to simulate a
variety of cognitive functions, such as numerosity perception
(Stoianov and Zorzi, 2012), letter perception (Testolin et al.,
under review), location-invariant visual word recognition (Di
Bono and Zorzi, 2013), and visual hallucinations in psychiatric
syndromes (Reichert et al., 2013). A similar approach has been
used to simulate how early visual cortical representations are
adapted to statistical regularities in natural images, in order to
predict single voxel responses to natural images and identify
images from stimulus-evoked multiple voxel responses (Giiglii
and van Gerven, 2014). A temporal extension of RBMs has also
been recently used to model sequential orthographic processing
and spontaneous pseudoword generation (Testolin et al., 2016).

Unsupervised deep learning can be implemented using an
alternative architecture based on autoencoders (Bengio et al,
2007), which are deterministic, feed-forward networks whose
learning goal is to accurately reconstruct the input data into
a separate layer of output units. Single-layer autoencoders are
trained using error backpropagation, and can be stacked in
order to build more complex, multi-layer architectures. However,
despite the common view that RBMs and autoencoders could
be considered equivalent (Ranzato et al., 2007), we note that
their underlying architectural and learning assumptions are
significantly different. In this study we empirically compare
RBMs and autoencoders in terms of the type of internal encoding
emerging in the hidden neurons. Moreover, we investigate how
additional learning constraints, such as sparsity and limitation
of computational resources (i.e., hidden layer size), could
influence the representations developed by the networks. As a
case study, we focus on the problem of learning visuospatial
coding for sensorimotor transformations, which is a prominent
example of how the emergentist approach based on learning
in artificial neural networks has offered important insights into
the computations performed by biological neurons (Zipser and
Andersen, 1988).
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Sensorimotor transformations refer to the process by
which sensory stimuli are converted into motor commands.
For example, reaching requires to map visual information,
represented in retinal coordinates, into a system of coordinates
that is centered on the effector. Coordinate transformations
can be accomplished by combining sensory information with
extra-retinal information, such as postural signals representing
the position of eyes, head, or hand, thereby obtaining abstract
representations of the space interposed between the sensory input
and the motor output (Pouget and Snyder, 2000). Single-neuron
recordings from monkey posterior parietal cortex have shown
that the response amplitude of many neurons indeed depends
on the position of the eyes, thereby unveiling a fundamental
coding principle used to perform this type of signal integration
(Andersen et al., 1985). The term gain field was coined to describe
this gaze-dependent response of parietal neurons, and since then
the notion of gain modulation has been generalized to indicate the
multiplicative control of one neuron’s responses by the responses
of another set of neurons (Salinas and Thier, 2000). Another
fundamental property unveiled by neuronal recordings is that the
encoding of space used for coordinate transformations involves
a variety of different, complementary frames of reference. For
example, although many parietal neurons are centered on retinal
coordinates (Andersen et al, 1985; Duhamel et al, 1992),
others represent space using body-centered (Snyder et al., 1998)
or effector-centered (Sakata et al., 1995) coordinate systems.
Moreover, some neurons exhibit multiple gain modulation
(Chang et al., 2009), suggesting more complex forms of spatial
coding. For example, postural information related to both eye
and head positions can be combined in order to encode “gaze”
direction (Brotchie et al., 1995; Stricanne et al., 1996; Duhamel
et al., 1997).

From a computational perspective, the seminal work of
Zipser and Andersen (1988) showed that gain modulation
could spontaneously emerge in supervised, feed-forward neural
networks trained to explicitly map visual targets into head-
centered coordinates, giving as input any arbitrary pair of eye and
retinal positions. Similar results have been observed using more
biologically-plausible learning settings, such as reinforcement
learning (Mazzoni et al., 1991) and predictive coding (De Meyer
and Spratling, 2011). Note that these learning settings assume
that gain modulation emerges because the task implies to
establish a mapping between different reference frames. However,
it is unclear whether the form of modulation and the distribution
of neuronal tuning functions is influenced by the type of
learning algorithm and/or by the nature of the learning task (i.e.,
learning input-output mappings vs. unsupervised learning of
internal representations). We also note that a popular alternative
framework for modeling sensorimotor transformations is not
based on learning, but rather stipulates that parietal neurons
represent a set of basis functions that combine visual and postural
information (for review, see Pouget and Snyder, 2000).

In summary, space coding represents an interesting case
study for testing the adequacy of different neural network
architectures and learning algorithms, because it provides a
wealth of neurophysiological data (both at the population and
single-neuron levels), and it departs from the classic problem of

visual object recognition investigated in the large majority of deep
learning research.

MATERIALS AND METHODS

In this section we describe the space coding tasks used in our
simulations, including training and test stimuli, the different
learning architectures, and the procedures for analyzing the
emergent neural representations.

Space Coding Tasks

In this study we consider a visual signal in retinotopic coordinates
and two different postural signals, one for eye position and
another for a generic “effector,” which might represent, for
example, the position of the hand. We do not consider
the integration between different modalities (see Xing and
Andersen, 2000, for a computational investigation of multimodal
integration in several coordinate frames). We implemented
three types of space coding tasks to test the different learning
architectures.

Unsupervised Learning with No Coordinate
Transformation

The first learning architecture is depicted in Figure 1A.
Unsupervised learning is represented by undirected arrows,
which connect the sensory input to a separate layer of hidden
neurons. The input signal to the network consists of a visual map,
which represents target location in retinotopic coordinates, and
two postural maps, which represent eye and effector positions.
The learning goal is only to build a compact representation of
these input signals in the hidden layer, which is later read-out by
a simple linear associator in order to establish a mapping with
the corresponding motor program. Details of input and output
representations are provided in Section Dataset and Stimuli. The
unsupervised learning phase does not involve any coordinate
transformation because information about the motor program is
not available.

Unsupervised Learning with Coordinate
Transformation

The second learning architecture is depicted in Figure 1B. The
input signal to the network still consists of a visual map and
two postural maps, but in this case we also provide as input the
corresponding motor program. In this setting the unsupervised
learning phase implicitly involves coordinate transformation
(i.e., different coordinate systems become associated). In
order to compare the mapping accuracy of different learning
architectures using the same method, the motor program
is still read-out from hidden neurons via a simple linear
associator.

Supervised Learning with Coordinate Transformation
The third learning architecture is depicted in Figure 1C, and it
corresponds to the model used by Zipser and Andersen (1988).
The input is the same of the unsupervised architecture shown in
Figure 1A, but in this case supervised learning (directed arrows)
is used to establish an explicit mapping between input signals
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FIGURE 1 | Graphical representations of the learning architectures
used to simulate the space coding tasks. Undirected edges entail
bidirectional (recurrent) connections, while directed arrows represent
feed-forward connections. (A) Unsupervised learning with no coordinate
transformation. (B) Unsupervised learning with coordinate transformation. (C)
Supervised learning with coordinate transformation.

and motor programs. As for the previous architectures, accuracy
of the motor program is also tested by read-out from hidden
neurons via linear association.

Dataset and Stimuli

The representation format adopted for the sensory stimuli
was the same used in previous computational investigations
(Zipser and Andersen, 1988; Pouget and Snyder, 2000; De

Filippo De Grazia et al., 2012), which is broadly consistent
with neurophysiological data recorded in animals performing
tasks involving coordinate transformations (e.g., Andersen et al.,
1985).

The visual input to the models consisted in a real-valued
vector representing the position of the stimulus as a Gaussian
peak of activity in a specific location. These visible neurons
simulate the activity of the cortical areas supplying retinotopic
sensory information to the posterior parietal cortex. The
retinotopic map consisted in a square matrix of 17 x 17 neurons,
which employed a population code with Gaussian tuning
functions (standard deviation = 4°). Visual receptive fields were
uniformly spread between —9° and +9° with increments of 3°,
both in the horizontal and vertical dimensions.

Four postural maps, each one consisting of 17 neurons, were
used to represent the horizontal and vertical positions of the eye
and the effector. These visible neurons used a sigmoid activation
function (steepness parameter = 0.125) to represent postural
information between —18 and +18°, with steps of 3°.

The motor program consisted in a real-valued vector
representing the target position of the stimulus. Similarly to
the retinotopic map, it was coded as a square matrix of 25 x
25 neurons, which employed a population code with Gaussian
tuning functions to represent target position in coordinates
centered on the effector (standard deviation = 6°). Motor
programs were uniformly spread between —9° and +9° with
increments of 3°, both in the horizontal and vertical dimensions.

In order to create the stimuli dataset, all possible combinations
of visual input and postural signals were first generated, and the
corresponding motor program (target location) was computed.
We then balanced the patterns to ensure that target locations
were equally distributed across the motor map to avoid position
biases when decoding the motor program. This resulted in a total
of 28,880 patterns, which were randomly split into a training set
(20,000 patterns) and an independent test set (8,880 patterns).
The latter was used to assess the generalization performance of
the models.

Learning Architectures

Despite they differ in several aspects, Boltzmann machines and
autoencoders can both be defined within the mathematical
framework of energy-based models (Ranzato et al., 2007), where
the learning objective is to carve the surface of an energy function
so as to minimize the energies of training points and maximize
the energies of unobserved points. A set of latent variables is
used to learn an internal code that can efficiently represent the
observed data points, and since the number of latent variables is
usually smaller than that of the observed variables the encoding
process can be interpreted as a form of dimensionality reduction
(Hinton and Salakhutdinov, 2006). In this unsupervised setting,
the model learns the statistical structure of the data without the
need for any explicit, external label.

Restricted Boltzmann Machines (RBMs)

Boltzmann machines are stochastic neural networks that use a
set of hidden neurons to model the latent causes of the observed
data vectors, which are presented to the network through a set of
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visible neurons (Ackley et al., 1985). In the “restricted” case, the
network connectivity is constrained in order to obtain a bipartite
graph (i.e., there are no connections within the same layer; see
Figure 2A for a graphical representation). The behavior of the
network is driven by an energy function E, which defines the
joint distribution of the hidden and visible neurons by assigning
a probability value to each of their possible configurations:

e—Ev, h)

vwh) = ———
pv, h) 7
where v and h are the column vectors containing the values of
visible and hidden neurons, respectively, and Z is the partition
function. The energy function is defined as a linear combination
of visible and hidden neurons’ activation:

Ew,h) = —b"v — ¢Th — hTwy

where W is the matrix of connections weights, b and ¢ are two
additional parameters known as unit biases and T denotes the
transpose operator. Since there are no connections within the
same layer, hidden neurons are conditionally independent given
the state of visible neurons (and vice versa). In particular, the
activation probability of the neurons in each layer conditioned
on the activation of the neurons in the opposite layer can be
efficiently computed in one parallel step:

O’(Cj + Zi W,‘]'V,')
PM:HM=0@+§;w@

P(h] = 1|‘V)

where o is the sigmoid function, ¢; and b; are the biases of
hidden and visible neurons (h; and v; respectively), and w;; is
the connection weight between h; and v;. Learning in RBMs can
be performed through maximum-likelihood, where each weight
should be changed at each step according to a Hebbian-like
learning rule:

AW =n(vThT —vTh)

where 7 represents the learning rate, v hT are the visible-hidden
correlations computed on the training data (positive phase), and
v~h™ are the visible-hidden correlations computed according to
the model’s expectations (negative phase). Model’s expectations
have been traditionally computed by running Gibbs sampling
algorithms until the network reached equilibrium (Ackley et al.,
1985). However, more efficient algorithms such as contrastive
divergence (Hinton, 2002) speed-up learning by approximating
the log-probability gradient. The reader is referred to Hinton
(2010) and Zorzi et al. (2013) for more details about RBMs and
for the discussion of hyper-parameters of the learning algorithm.

In our simulations, RBMs were trained using 1-step
contrastive divergence with a learning rate of 0.03, a weight
decay of 0.0002 and a momentum coefficient of 0.9, which was
initialized to 0.5 for the first few epochs. Learning was performed
using a mini-batch scheme, with a mini-batch size of 4 patterns,
for a total of 100 learning epochs (reconstruction error always
converged). Sparse representations were encouraged by forcing

the network’ internal representations to rely on a limited number
of active hidden units, that is, by driving the probability g of a
unit to be active to a certain desired (low) probability p (Lee et al.,
2008). For logistic units, this can be practically implemented by
first calculating the quantity g-p, which is then multiplied by a
scaling factor and added to the biases of each hidden units at
every weight update. When the sparsity constraint was applied,
we always verified that the average activation of hidden units was
indeed maintained below the desired level. All the simulations
were performed using an efficient implementation of RBMs on
graphic processors (Testolin et al., 2013). The complete source
code is available for download!.

Autoencoders

Similarly to RBMs, autoencoders rely on a single layer of
nonlinear hidden units to compactly represent the statistical
regularities of the training data. However, autoencoders
are feed-forward, deterministic networks trained with error
backpropagation (Bengio et al, 2007). The training data is
presented to a layer of input units, and the learning goal is
to accurately reconstruct such input vector into a separate,
output layer. An autoencoder is therefore composed of a set of
encoding weights W' that are used to compute the activation
of hidden h units given the activation of input units v, and a set
of decoding weights W? that are used to compute the network
reconstructions v_rec from the activations of hidden units:

h

v_rec =

oW + ¢
o (W?h + b)

where b and ¢ are the vectors of output and hidden unit
biases, and ¢ is the sigmoid function (see Figure 2B for a
graphical representation). The error function E to be minimized
corresponds to the average reconstruction error, which is
quantified by the sum across all output units of the squared
difference between the original and the reconstructed values:

1 N K

E= N Z Z (v — V_reck)z + ,B*Qsparsity

n=1lk=1

where K is the number of output units and N is the number of
training patterns. Similarly to RBMs, sparse representations can
be induced by adding to the cost function a regularization term
Qgparsity that takes a large value when the average activation value
q of each hidden neuron diverges from a certain desired (low)
value p. In particular, the sparsity constraint was implemented as
the Kullback-Leibler divergence from q to p:

H
Qsparsity = Z KL(P [l ‘Ii)

i=1

where H is the number of hidden units. As for RBMs, when
sparsity was applied we always verified that the average activation
of hidden units was indeed maintained below the desired level.

Uhttp://cenl.psy.unipd.it/research/deeplearning
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FIGURE 2 | Graphical representations of the different learning architectures used in the simulations. (A) Restricted Boltzmann Machine (RBM): the learning
objective is to accurately reconstruct the input patterns presented through the visible layer (v) by relying on a set of hidden units (h), which represent the latent
structure of the data. The reconstruction is performed by using a weight matrix (/) that contains symmetric (i.e., undirected) connections. (B) Autoencoder: as for
RBMs, the learning objective is to accurately reconstruct the input patterns presented through the visible layer (v) by relying on a set of hidden units (h). However, the
reconstruction is performed on a separate layer of units (v_rec) by using two weight matrices (W1 and W2) that contain directed connections. (C) Feed-forward,
supervised network: in contrast to RBMs and autoencoders, the learning objective is to minimize the mapping error between the input patterns presented through the
visible layer (v) and a distinct set of output patterns presented through a dedicated layer (out).

In our simulations, we used an efficient implementation
of autoencoders provided by the MATLAB Neural Network
toolbox (Demuth and Beale, 1993). Learning was performed
using standard scaled conjugate gradient descent (Moller, 1993)
with adaptive learning rate, using a weight decay factor of 0.0002
and a batch processing scheme, for a total of 150 learning epochs
(reconstruction error always converged).

Feed-Forward, Supervised Networks

In order to better assess the impact of the learning regimen,
we compared the unsupervised learning architectures described
above with a standard, supervised architecture implemented
as a feed-forward network with one hidden layer (Zipser and
Andersen, 1988). Similarly to autoencoders, learning can be
performed using error backpropagation (see Figure2C for a
graphical representation). We used an eficient implementation
of feed-forward networks provided by the MATLAB Neural
Network toolbox?. Learning rate was set to 0.05 and training
was performed for a total of 2500 learning epochs (output error
always converged).

Testing Procedure

For each experimental setting, we run 10 different networks in
order to collect simulation statistics. In the results, we therefore
always report mean values along with standard deviations.

Decoding Internal Representations by Linear
Read-Out

Following unsupervised learning, a linear read-out was
performed from the internal (hidden layer) distributed
representations of the networks in order to assess how well

2MATLAB provides several improved versions of the standard backpropagation
algorithm. An extended set of preliminary simulations was used to establish
the best performing variant. In particular, these training functions were
tested: traingdm (gradient descent with momentum); traingda (gradient descent
with adaptive learning rate); traingdx (gradient descent with momentum and
adaptive learning rate); trainscg (scaled conjugate gradient) and trainrp (resilient
backpropagation). The most stable and accurate learning algorithm was resilient
backpropagation (Riedmiller and Braun, 1993).

they could support a supervised mapping to the target motor
program through a simple linear projection (Pouget and Snyder,
2000). The read-out was implemented using a linear neural
network trained with the delta rule (Widrow and Hoff, 1960).
Learning was performed for 250 epochs using mini-batches of
20 patterns. Learning rate was set to 0.07, and weight decay of
0.000001 was used as a regularizer. Classifier performance was
always measured on the separate test set. Test errors always
matched those obtained on the training set, indicating that the
read-out was robust to overfitting.

The output of the classifier was first compared with the
target motor program by computing the Root Mean Squared
Error (RMSE) between the two matrices. However, a more
useful performance measure was obtained by first decoding
the Center Of Mass (COM) of the output distribution, which
was then compared with the actual coordinates of the motor
program. This measure allows to quantify the read-out error in
degrees: following Zipser and Andersen (1988), the mapping was
considered to be successful if the error was below the distance
between the centers of the Gaussian tuning functions in the
retinotopic map (i.e., 3°). If the latter mapping accuracy was
not achieved, we did not consider the network for subsequent
analyses. We found the RMSE and COM measures to be always
consistent with each other, so we only report COM results.

Measuring Single-Neuron and Population Sparseness
An index of single-neuron sparseness was computed using
a well-established procedure employed in neurophysiological
investigations (Rolls and Tovee, 1995; Vinje and Gallant, 2000),
which describes the activity fraction a of each neuron across
stimuli as:

L/’
> (ri2/n)

where r; is the firing rate of the neuron to the i-th stimulus
in the set of n stimuli. This is a useful measure of the extent
of the tail of the distribution, in this case of the firing rates
of the neuron to each stimulus. Mean single-neuron sparseness
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for each network was then calculated by averaging the activity
fraction a across all hidden neurons. A low value (minimum
value is 0, maximum value is 1) indicates that the distribution
has a long tail, which means that, on average, each neuron
has high activation levels only for a small subset of input
patterns. This method for quantifying sparseness has a number
of advantages (Rolls and Tovee, 1995): (a) it results from formal
analyses of the capacity of neural networks using an approach
derived from theoretical physics (Treves and Rolls, 1991); (b)
it can be applied both to binary neurons and to neurons with
continuous (graded) firing rates; (c) it makes no assumption
about the form of the firing rate distribution and (d) it makes
no assumption about the mean and the variance of the firing
rate.

Following Froudarakis et al. (2014) we also computed
an index of population sparseness, on which the activity
fraction is computed over the entire hidden layer, that is,
by considering r; as the firing rate of the i-th neuron
and n as the total number of neurons. Mean population
sparseness for each network was then calculated by averaging
the activity fraction a across all stimuli. A low value of
population sparseness indicates that, on average, each stimulus
elicits high activations only for a small subset of hidden
neurons.

Receptive Fields Emerging in the Hidden Neurons

In order to qualitatively assess the type of visual features
extracted by individual hidden neurons, we first analyzed
the weight matrices by separately plotting the strengths
of the connections between each hidden neuron and all
the visible neurons corresponding to the retinal input.
Weights were plotted on a gray scale, with dark colors
indicating strong inhibitory connections and light colors
representing positive, excitatory connections. This allowed

to assess whether hidden neurons learned location-
specific receptive fields, for example by developing
stronger projections to specific regions of the visual
field.

Gain Modulation Indexes

We then analyzed the response of hidden neurons using a
standard approach adopted in neurophysiological studies to
assess gain modulation in parietal neurons (Andersen et al.,
1985). First, we probed the hidden neurons in order to only select
the “visual” ones, that is, those responding to the portion of input
vectors representing the retinotopic map (De Filippo De Grazia
et al., 2012). To this aim, we first recorded all hidden neurons’
activations when the network received as input only all possible
combinations of eye and effector positions (i.e., the retinotopic
map and, if present, the motor program, were set to zero),
and for each neuron we selected the positions corresponding to
maximum activation. We then probed again each neuron, this
time providing as input all possible retinotopic signals along
with the preferred combination of postural signals. The neuron
was considered as visual if its maximum activity differed by
more than 10% from that recorded in the absence of visual
input. Non-visual neurons were discarded from subsequent

analyses®>. We then computed a gain modulation index (GMI)
for each neuron by recording its response to each target
location as a function of eye and effector position (Pouget and
Snyder, 2000). We first identified the combination of postural
and retinal input producing the maximum neuron activation
value. Starting from this input combination, we systematically
varied each postural variable (one at a time, keeping all the
others fixed) and computed gain modulation as the normalized
ratio between the maximum and minimum activation values.
Therefore, each neuron was characterized by four different
GMIs, representing the gain for each postural variable with
respect to horizontal and vertical axes. We finally sorted all
hidden neurons into four different categories based on the
combination of GMI indexes (using a threshold of 0.5 to establish
modulation): (i) no modulation (i.e., purely visual neurons), (ii)
modulation by eye position only, (iii) modulation by effector
position only, and (iv) modulation by both eye and effector
position.

RESULTS

Learning always converged for all models. For unsupervised
models, convergence was monitored by measuring the mean
reconstruction error on the whole training set. Autoencoders
required more learning epochs to converge, but also achieved a
lower reconstruction error compared to RBMs. This is probably
due to the fact that autoencoders are natively real-valued.
Existing real-valued extensions of RBMs (Cho et al, 2011)
assume that the input values are normally distributed, which was
not our case, so we preferred to use standard RBMs. Learning
in the feed-forward, supervised models required almost 20 times
more epochs to converge (the number of epochs required by each
learning architecture is reported in Table 1).

A first, qualitative analysis shows that RBMs and autoencoders
developed different types of receptive fields. As shown in
Figure 3, autoencoders learned homogeneous, location-specific
receptive fields that uniformly covered the central regions of the
visual input. On the other hand, while some neurons in the RBMs
learned location-specific receptive fields resembling those of
autoencoders, other neurons developed more complex receptive
fields covering larger regions of the visual fields, sometimes
also simultaneously covering symmetrical portions of the input
image.

The quantitative analyses (see Section Testing Procedure)
allowed to group hidden neurons into different categories
according to their response profiles. In line with empirical
findings (Duhamel et al., 1997), there were always some neurons
that did not exhibit any form of gain modulation (i.e., “purely
visual” neurons), that is, they responded to visual stimuli at a
given spatial location regardless of eye- or effector- positions.
However, the majority of neurons developed gain fields, which in
some cases were modulated exclusively by either eye or effector
position (see, for example, top panels of Figure 4), while in other

31t turned out that more than 95% of hidden neurons responded to the visual input,
with a minimum activation value exceeding a threshold of 0.1.
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TABLE 1 | Read-out errors for each learning architecture and space coding task, as a function of hidden layer size.

Space coding task Layer size RBMs Autoencoders Supervised Feed-forward
Read-out Epochs Read-out Epochs Read-out Epochs
No transformation 200 1.59 (0.08) 100 1.05 (0.05) 150
300 1.39 (0.07) 100 0.91 (0.04) 150
400 1.30 (0.08) 100 0.86 (0.04) 150
500 1.25(0.04) 100 0.89 (0.02) 150
600 1.23(0.05) 100 0.90 (0.02) 150
700 1.33(0.04) 100 0.90 (0.03) 150
Coordinate transformation 500 1.55 (0.15) 100 1.45 (0.05) 150 1.46 (0.06) 2,500
600 1.47 (0.12) 100 1.46 (0.06) 150 1.45(0.02) 2,500
700 1.62 (0.11) 100 1.45(0.05) 150 1.46 (0.05) 2,500
800 1.57 (0.11) 100 1.47 (0.08) 150 1.47 (0.08) 2,500
900 1.56 (0.16) 100 1.45(0.07) 150 1.47 (0.04) 2,500

Read-out errors are in degrees, and standard deviations are reported in parentheses. The “Epochs” column shows the number of epochs required by each learning architecture to

converge.

cases were modulated by both eye and effector position, resulting
in multiple gain fields (bottom panels of Figure 4).

Unsupervised Learning without Coordinate
Transformation

In a first set of simulations, the number of hidden units
was fixed to 400%, while the sparsity constraint was varied
between 0.004 (very strong sparsity constraint, requiring low
average activation) and 0.3 (mild sparsity constraint). As shown
in Figure5, the effect of sparsity constraints on the two
unsupervised architectures was markedly different. Levels of
sparsity constraints in the first two rows are represented using
a color scale, where lighter tones indicate stronger sparsity and
dark tones indicate mild sparsity. Gain modulation in RBMs
(Figure 5A) was not affected by imposing sparsity constraints.
In all cases, we found a modest percentage (around 10%) of
purely visual neurons, which were not modulated by any postural
information. A more consistent percentage of neurons (20—
25%) were modulated either by eye or by effector positions,
while the remaining neurons (40-50%) exhibited multiple gain
fields. Read-out accuracy (Figure 5C) was always good, except
for the networks trained with very strong sparsity constraints
(0.01 and 0.004), where learning failed and read-out accuracy
did not achieve a mean error lower than 3°. The lowest read-
out error (around 1.3°) was obtained with a sparsity constraint
of 0.05. In contrast, autoencoders were extremely sensitive to
sparsity constraints: Strong sparsity constraints resulted in a
compressed code where the majority of hidden neurons (60%)
exhibited multiple gain fields (Figure 5B). When the sparsity
pressure was reduced gain fields gradually disappeared, and
the majority of neurons did not exhibit any modulation at
all. Read-out error was generally lower compared to RBMs,
and learning failed only for the networks trained with extreme
(0.004) or without any sparsity constraints (Figure 5D). Notably,
also for autoencoders the lowest read-out error (around 0.9°)

#The initial size of the hidden layer was determined empirically based on a set of
pilot simulations to guarantee reliable and relatively fast convergence of learning.

was obtained with a sparsity constraint of 0.05, which also
resulted in a distribution of gain fields more similar to that of
RBMs.

Interestingly, the objective indexes of sparseness revealed that
RBMs are naturally much sparser than autoencoders (see bottom
panels of Figure 5). Indeed, the level of sparsity constraint turned
out to have a very weak effect on population sparseness in
RBMs (Figure 5E), as also confirmed by linear regression [? =
0.32, b = 0.05, p < 0.001, n = 50]. Single-neuron sparseness
was only affected when the sparsity constraint operated below
a critical level of 0.1. In order to measure what would be
the “spontaneous” index of sparseness in RBMs, we trained
an additional set of networks without imposing any sparsity
constraint, which resulted in a single-neuron sparseness of 0.56
and a population sparseness of 0.28, showing that RBMs naturally
exhibit a remarkable sparseness. In contrast, sparsity constraints
in autoencoders had a marked effect on both single-neuron
sparseness and population sparseness (Figure 5F), suggesting
that this architecture naturally develops extremely distributed
internal representations. In particular, the effect of level of
sparsity constraint on population sparseness for autoencoders
[linear regression: r> = 0.88, b = 0.43, p < 0.001, n = 50]
was almost one order of magnitude higher compared to RBMs.
In order to measure the spontaneous index of sparseness in
autoencoders, we trained an additional set of networks with
a very low sparsity constraint (0.8), which is the borderline
condition that still guaranteed successful learning. The latter
simulations yielded sparseness values indicating non-sparse,
highly distributed representations (single-neuron sparseness =
0.97; population sparseness = 0.98).

In a second set of simulations, the sparsity constraint
for both architectures was fixed to the value leading to the
best performance (0.05), while the size of the hidden layer
was varied systematically between 200 and 700 neurons in
steps of 100. This range allowed to explore the effect of
relatively large increases and decreases of hidden layer sizes
with respect to the previous simulations, without compromising
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RBM

Autoencoder

FIGURE 3 | Visual receptive fields. Samples of receptive fields emerging from RBMs (top panel) and autoencoders (bottom panel) on the unsupervised learning
task that did not require coordinate transformations. Similar receptive fields emerged from the unsupervised learning task involving coordinate transformations.
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FIGURE 4 | Gain field coding. Examples of single (top panels) and multiple (bottom panels) gain fields emerging in the hidden neurons of RBMs (left) and
autoencoders (right). Colors represent the amount of activation, with yellow indicating highest activation and dark blue indicating lowest activation. Single gain fields
are characterized by a modulation of the neuron’s activation that depends only on one postural signal (in the figure, effector position for the RBM and eye position for
the autoencoder). In multiple gain fields, the activation is modulated by both signals.

the learning accuracy. For both architectures, the read-out had different effects for the two architectures (lighter colors
accuracy was not affected by hidden layer size, and the indicate smaller sizes). The type of encoding developed by
mapping error was always below 2° (read-out errors for all ~RBMs (Figure 6A) was affected by hidden layer size: When the
different hidden layer sizes are reported in Table 1). However, number of hidden neurons decreased the network developed
as shown in Figure6, also in this case the manipulation more compressed codes, by increasing the percentage of
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multiple gain fields and reducing the percentage of neurons
modulated by only eye or effector positions. Interestingly,
it turned out that the manipulation of hidden layer size
had a clear impact also on the underlying sparseness of the
representation (Figure 6C). Indeed, both single-neuron and
population sparseness decreased as a function of number of
hidden neurons [linear regressions: single-neuron sparseness,
r? =0.92,b = 0.22, p < 0.001, n = 60; population sparseness,

? =096, b = 021, p < 0.001, n = 60]. This result suggests
that the distribution of gain fields in RBMs might in fact be
modulated by the underlying sparseness of the representation.
This was confirmed by the high correlation between the
percentage of multiple gain-fields and the objective sparseness
indexes [Pearson correlations: single-neuron sparseness: r
—0.85, p < 0.001; population sparseness, r —-092, p <
0.001].
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On the contrary, neuronal tuning functions in autoencoders
were not affected by hidden layer size, as this architecture
always developed uniformly distributed types of gain fields
(Figure 6B). Interestingly, as for RBMs the reduction of hidden
layer size caused a decrease in both single-neuron sparseness
and population sparseness [linear regressions: single-neuron
sparseness, r> = 0.98, b = 0.25, p < 0.001, n = 60; population
sparseness, > = 0.98, b = 0.23, p < 0.001, n = 60]. However,
the sparseness indexes did not correlate with the percentage of
multiple gain-fields [all p > 0.05]. This suggests that similar
changes in the underlying sparseness do not produce the same
effect on the gain field distribution in RBMs and autoencoders.

In order to better clarify if the size of the hidden layer in RBMs
modulates the distribution of gain fields only when sparseness
is externally forced (i.e., when using a sparsity constraint of
0.05), in a subsequent set of simulations the sparsity constraint
was set to a weak level (0.2) and the size of the hidden layer
was manipulated as in the previous condition. In this case
the distribution of gain fields did not systematically change
(Figure 7A) but, notably, also the population sparseness was not
affected (Figure 7C) [linear regression: r? = 0.24, b = 0.03, p <
0.001, n = 60]. Correlation analyses still revealed a correlation
between population sparseness and the percentage of multimodal
gain fields [r = —0.54, p < 0.001], while the correlation with
single-neuron sparseness was not significant [p > 0.05]. These
results show that, for RBMs, population sparseness is a robust
predictor of the distribution of gain fields: if RBMs must rely

only of few active neurons to represent each sensory stimulus,
they will develop more compressed spatial codes, such as those
based on multiple gain fields. The corresponding simulation with
autoencoders was relatively uninformative, because the weak
level of sparsity constraint resulted in the absence of multimodal
gain fields (Figure 7B).

Unsupervised Learning with Coordinate
Transformation

As discussed before, in this learning setting the motor program
was included as input during unsupervised learning. This implies
that two different coordinate systems (i.e., retinotopic and motor)
are implicitly associated during training. For these simulations,
we focused on hidden layer size, which was varied between 500
and 900 neurons in steps of 100. Note that the larger number
of hidden neurons with respect to the previous simulations is
motivated by the increased size and complexity of the training
patterns. The sparsity constraint was fixed to 0.05, which was the
value resulting in more accurate read-outs and more balanced
distribution of gain fields for both RBMs and autoencoders in
the previous set of simulations. For both architectures, read-
out accuracy was always good (mapping error below 2°) and it
was not affected by hidden layer size (see Table 1). As shown in
Figure 8, RBMs generally developed a larger percentage of gain
fields compared to autoencoders. In particular, the number of
multiple gain fields was much higher for RBMs. Interestingly, for
both architectures also in this case the manipulation of hidden
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layer size produced a systematic change in the sparseness indexes
[linear regressions: RBMs single-neuron sparseness, > = 0.98, b
= 0.14, p < 0.001, n = 50; RBMs population sparseness, r?
0.95, b = 0.07, p < 0.001, n = 50; autoencoders single-neuron
sparseness, r* = 0.98, b = 0.10, p < 0.001, n = 60; autoencoders
population sparseness, 2 = 0.98, b = 0.06, p < 0.001, n = 60].
For both architectures, population and single-neuron sparseness
were highly correlated with the percentage of multiple gain
fields [Pearson correlations: RBMs single-neuron sparseness, r
—0.94, p < 0.001; RBMs population sparseness, r = —0.96,
p < 0.001; autoencoders single-neuron sparseness, r = —0.88,
p < 0.001; autoencoders population sparseness, r = —0.88, p <
0.001]. This finding corroborates the hypothesis that, especially
for RBMs, reducing the number of active neurons results in more
compressed codes based on multiple gain fields, which might be
particularly advantageous in the current scenario since learning
involved coordinate transformations. In contrast, fewer neurons
in autoencoders exhibited multiple gain modulation (Figure 8B),
even if also in this case the percentage of multiple gain fields was
proportional to the underlying level of sparseness.

Supervised Learning with Coordinate Transformation
The final set of simulations reproduced the feed-forward,
supervised architecture used by Zipser and Andersen (1988).
As in their original work, we did not enforce sparse coding.
The size of the hidden layer was varied between 500 and

900 in steps of 100. Learning always converged and both
the feed-forward mapping error and the read-out error were
below 3° (see Table1). As shown in Figure9, this type of
learning architecture developed a strikingly lower proportion
of gain-modulated neurons in the hidden layer: Almost 80%
of the neurons did not exhibit any form of gain field. The
remaining ones were almost uniformly distributed across the
three other types (about 8% for either eye or effector position;
10% for multiple gain modulation). Moreover, differently from
the unsupervised architectures, the type of gain modulation was
not affected by changes in the hidden layer size. This result
is remarkable, because it suggests that feed-forward, supervised
architectures are much less prone to develop efficient forms
of space coding based on gain fields. One possible explanation
for this finding is that the type of coding used to represent
the motor program might have affected the efficiency of error
backpropagation, which was not able to properly propagate the
error signals across the hidden layer. Indeed, also Zipser and
Andersen (1988) found some discrepancy between the type of
gain modulations developed when using a monotonic output
format compared to the Gaussian output format (which was
adopted in the present study). However, the previous simulations
with autoencoders showed that backpropagation can give rise to
a variety of strong gain modulations when it is applied within
an unsupervised learning setting. Another, more critical factor
might instead be the absence of sparsity constraints, which were
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not used in the feed-forward models but turned out to be
fundamental with autoencoders.

DISCUSSION

In this study we investigated the role of architectural and learning
constraints in neural network models that learned to encode
spatial information resulting from the combination of visual and
postural signals. Results showed that, compared to the supervised
architecture originally proposed by Zipser and Andersen (1988),
unsupervised architectures like Restricted Boltzmann Machines
(RBMs) and autoencoders discover space codes that more closely
reproduce the distribution of neuronal tuning functions observed
in neurophysiological experiments. In particular, the majority
of hidden neurons of RBMs and autoencoders exhibited gain
modulation, which in some cases only depended either on
eye or effector position, while in other cases depended on
both eye and effector positions, thereby resulting in multiple
gain fields. In fact, all unsupervised models developed a much
higher percentage of gain modulated neurons compared to the
supervised models. Although the precise distribution of gain
field types in the cerebral cortex depends on the exact recording
site (Colby and Goldberg, 1999), our simulations suggest that
this efficient form of encoding emerges more naturally if the
task requires to reconstruct the whole sensory input, rather than
to simply discover a feed-forward mapping to a target motor

program. In other words, gain field coding might be useful
when the goal is to discover “good” internal representations of
the input data, that is, when the aim is to unveil and more
explicitly encode the latent factors underlying the input data
distribution.

As a general principle, the quality of an internal representation
should reflect how well the learned features disentangle as many
factors of variation as possible, at the same time discarding as
little information about the data as is practical (Bengio et al.,
2013). In the specific case of sensorimotor transformations, it
has been proposed that good internal representations should
have a variety of properties, such as the ability to combine
the input signal in a nonlinear way, the ability to fully
cover the range of possible input values, and the ability to
represent multiple reference frames simultaneously within the
same neurons (Pouget and Snyder, 2000). Populations of gain
modulated neurons satisfy these requirements, allowing to
encode visual space using a flexible set of basis functions. Notably,
our simulations showed that this allows to learn coordinate
transformations in two separate stages, by first learning the set
of basis functions in a completely unsupervised way, and then
learning appropriate mappings to target motor commands by
relying on explicit supervision or reinforcement signals (Pouget
and Snyder, 2000).

Our analyses also highlighted several differences in the spatial
codes learned by RBMs and autoencoders, despite the fact
that these two unsupervised architectures are often considered
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similar, if not equivalent (Ranzato et al., 2007; Coates et al., 2011).
Even from a simple, qualitative analysis of the visual receptive
fields, it turned out that these models developed different
internal representations. Subsequent analyses conducted to
investigate the emergence of gain fields further revealed that
the distribution of hidden neurons’ tuning functions in RBMs
and autoencoders was similar only for a very narrow choice
of the hyper-parameters. An important finding was that RBMs
spontaneously exhibited a remarkable level of sparseness, which
made them insensitive to external sparsity constraints, and
which encouraged the emergence of compressed forms of
spatial coding based on gain modulation. The spontaneous level
of sparseness in RBMs could be manipulated only within a
narrow range, by imposing an extreme sparsity constraint and
jointly reducing the size of the hidden layer. This forced the
internal representations to rely on even fewer neurons, and
produced an increase in the percentage of multiple gain fields.
These findings are consistent with the intuition that reducing
the computational resources forces the networks to discover
more complex (and compressed) forms of encoding, such as
those resulting from the combination of many sensory/postural
variables into multiple gain fields. Notably, for RBMs this was
the case even when the task did not involve any coordinate
transformations, which implied that postural variables were
orthogonal. In other words, despite the fact that eye and
effector positions were varied independently across training
patterns, the RBMs with fewer active neurons often combined
these signals together, resulting in an increase of multiple gain
fields. Nevertheless, unlike autoencoders, RBMs always dedicated
some representational resources also to encode eye and effector
positions independently.

Autoencoders turned out to rely on much more distributed
representations compared to RBMs, and were therefore
extremely sensitive to external sparsity constraints. This implies
that, compared to RBMs, autoencoders have an additional
hyper-parameter that must be carefully tuned. Notably, when
the sparsity pressure was reduced hidden neurons in the
autoencoders did not develop any form of gain modulation.
Only for specific values of sparsity constraints autoencoders
could reproduce the variety of gain field types observed in
neurophysiological data (Brotchie et al., 1995; Graziano et al.,
1997; Snyder et al., 1998; Chang et al., 2009), with a distribution
compatible with that of RBMs. However, in autoencoders the
underlying sparseness indexes did not seem to be systematically
related to the complexity of the emergent spatial codes. Though
these findings alone do not allow to adjudicate between models,
they call for a more systematic investigation of these different
learning architectures, possibly spanning other domains
and using a more direct comparison to neurophysiological
data.

A plausible explanation for the striking differences in
the spontaneous level of sparseness between RBMs and
autoencoders can be found when considering the different
processing dynamics embedded in these two neural network
models. Indeed, in autoencoders the activation of each hidden
neuron is deterministic, and simply corresponds to the
(possibly graded) value returned by the non-linear, logistic
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FIGURE 9 | Supervised learning of coordinate transformations.
Distribution of gain field types emerging at the hidden layer of a feed-forward,
supervised neural network similar to that used by Zipser and Andersen (1988)
with varying number of hidden neurons. Lighter tones indicate smaller layers

and dark blue indicates larger layers.

activation function. In RBMs, instead, the value returned
by the logistic function is treated as a probability, and
the final activation of each hidden neuron is obtained by
performing a stochastic binarization step. This important
difference likely produces more sharp neuronal activations,
driving RBMs to develop more sparse representations compared
to autoencoders.

From a broader perspective, we believe that stochastic neural
networks such as RBMs and their extension into hierarchical
generative models will have an increasingly central role in
neurocomputational modeling, because they provide a unique
bridge between high-level descriptions of cognition in terms of
Bayesian computation and low-level, mechanistic explanations
inspired by the biophysical properties of real neuronal networks
(Testolin and Zorzi, 2016). For example, generative neural
networks are compatible with Bayesian approaches based on
probabilistic population codes (Ma et al., 2006), which have
been successfully used to simulate sensorimotor transformations
with basis functions (Pouget and Sejnowski, 1997; Pouget and
Snyder, 2000). RBMs extend the basis function approach by
explaining how learning might shape the emergent neuronal
gain fields, and they could similarly be combined with
attractor dynamics to simulate optimal statistical inference over
multisensory spatial representations (cf. Pouget et al., 2002) and
spatial remapping in attention orienting (cf. Casarotti et al,
2012).

Moreover, the fact that generative networks can simulate both
evoked (feed-forward) and intrinsic (feedback) neuronal activity
makes them particularly suited to investigate spontaneous brain
activity, which has been recognized as a fundamental property
of the brain (Raichle, 2015) but whose computational role is still
largely unknown. An intriguing hypothesis suggests that intrinsic
activity could help with driving the brain close to states that are
probable to be valid inferences once an external input arrives,
thus potentially shortening the reaction time of the system
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(Fiser et al., 2010). Stochastic, generative networks are consistent
with this “sampling-based” framework, and also support the
idea that neuronal noise could play an important role during
sampling (Kirkpatrick et al., 1983), for example by keeping the
system in a metastable state that facilitates flexible settling into
the most appropriate configuration (Kelso, 2012; Deco et al.,
2013). Notably, we are also beginning to better understand how
these powerful models could be implemented with biologically
more realistic architectures, such as those incorporating temporal
dynamics and spike-based communication (Buesing et al., 2011;
Nessler et al., 2013).

In conclusion, we hope that the recent breakthroughs in
neurally-inspired machine learning will attract the interest of the
neuroscience community, as these models hold great promise
for improving our understanding of how learning shapes and
organizes information processing in complex neuronal networks.
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