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The Mental Representation of Numerical Fractions: Real or Integer?

Mario Bonato, Sara Fabbri, Carlo Umilta, and Marco Zorzi
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Numerical fractions are commonly used to express ratios and proportions (i.e., real numbers), but little
is known about how they are mentally represented and processed by skilled adults. Four experiments
employed comparison tasks to investigate the distance effect and the effect of the spatial numerical
association of response codes (SNARC) for fractions. Results showed that fractions were processed
componentially and that the real numerical value of the fraction was not accessed, indicating that
processing the fraction’s magnitude is not automatic. In contrast, responses were influenced by the
numerical magnitude of the components and reflected the simple comparison between numerators,
denominators, and reference, depending on the strategy adopted. Strategies were used even by highly
skilled participants and were flexibly adapted to the specific experimental context. In line with results on
the whole number bias in children, these findings suggest that the understanding of fractions is rooted in
the ability to represent discrete numerosities (i.e., integers) rather than real numbers and that the
well-known difficulties of children in mastering fractions are circumvented by skilled adults through a

flexible use of strategies based on the integer components.
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Fractions, denoted by the ratio between two integer numbers,
indicate numerical quantities that correspond to real numbers and
are a numerical format that is used in many circumstances (e.g.,
proportions and noninteger numbers). Indeed, the acquisition of
rules for dealing with fractions is an important aspect of mathe-
matical education. The most straightforward way for learning and
processing fractions should be to access a mental representation of
the fraction’s numerical magnitude, that is, its real value. This
would allow people to easily categorize, for example, 1/9 as
smaller than 1/5. It is widely assumed that numerical magnitude is
represented on the continuum of real numbers, conceived of as an
analogical mental number line, and that a preverbal system of
analogue magnitudes provides the foundations of human numeri-
cal and mathematical thinking (e.g., Dehaene, Dehaene-Lambertz,
& Cohen, 1998; Gallistel & Gelman, 2000). Indeed, as clearly
stated by Gallistel and Gelman, learning a system based on integer
numbers would be rooted in the magnitude-based system (i.e., real
numbers). Thus, if numerical magnitude were represented on the
continuum of real numbers, then the mental representation of
fractions should pose no challenge to the learner.

However, it is well known that children find fractions very hard
to learn (e.g., Bright, Behr, Post, & Wachsmuth, 1988; Hartnett &
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Gelman, 1998; Mack, 1995; Smith, Solomon, & Carey, 2005). The
difficulty in learning the concept of fraction seems to be related
both to stepping away from the magnitude conveyed by each of the
operands and to learning that a fraction’s value can be bigger or
smaller than the unit, depending on the ratio value (Stafylidou &
Vosniadou, 2004). Many studies have reported these difficulties
and suggested various teaching methods (e.g., Fuson & Abraham-
son, 2005). It is widely agreed that children’s difficulty with
fractions is associated with their whole number (i.e., integer)
knowledge, which represents numbers discretely and may there-
fore interfere with children’s construction of the concept of frac-
tion and rational numbers that are continuous (Ni & Zhou, 2005,
for a review). Indeed, even after instruction, children make errors
that are typically whole number intrusions. For example, they say
that 1/56 is smaller than 1/75 because 56 is smaller than 75 (Smith
et al., 2005). Mack (1995) described students explaining 3/5 as
three whole objects cut into five pieces. Young elementary school
aged children misunderstand fractional notation. For example,
Smith et al. (2005) found that most third and fourth graders could
not order fractions and could not explain why there are two
numbers in a given fraction; moreover, children did not understand
the density and infinite divisibility of number (many denied that
there are any numbers between 0 and 1).

The robust tendency in using the single-unit counting scheme to
interpret fractions and the difficulty in perceiving whole numbers
as decomposable units has been referred to as whole number bias
(Ni & Zhou, 2005). Because the concept of number for children in
preschool and in the early elementary grades is constituted by
relations and operations among positive integers, mastering frac-
tions and rational numbers would seem to require a conceptual
change (Hartnett & Gelman, 1998; Smith et al., 2005; but see Mix,
Levine, & Huttenlocher, 1999, for a different view). Smith et al.
suggested that such conceptual change involves two-way map-
pings between the domains of number and physical quantity, with
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crucial support from the understanding of physical quantity as
continuous and infinitely divisible.

Whatever be the developmental and learning processes that lead
to the concept of rational number, the implicit assumption is that
the difficulty in mastering fractions (whole number bias) is spe-
cific to children and would not be an issue for educated adults.
However, experimental studies exploring the processing of frac-
tions in skilled adults are lacking. If adults can process a fraction
as a whole, its numerical magnitude should be directly and readily
available in terms of its real value; this would index access to
numerical magnitudes represented on the continuum of real num-
bers (Gallistel & Gelman, 2000). In fact, studies of decision
making by Gigerenzer and colleagues (e.g., Gigerenzer & Hof-
frage, 1999) suggest that fractions and proportions are hard to
understand even for adults. One reason for this, as Gigerenzer and
Hoffrage (1999) suggest, is that “humans seem developmentally
and evolutionarily prepared to handle natural frequencies” (p. 430)
but not proportions. That is to say, we find it much easier to think
in terms of discrete numerosities than in terms of fractions, pro-
portions, or rates (Butterworth, 2001; Zorzi & Butterworth, 1997;
Zorzi, Stoianov, Becker, Umilta, & Butterworth, 2006). Thus,
representing the meaning of a fraction in terms of the numerosities
of the numerator and of the denominator implies that the real value
of the fraction is not readily accessible. Skilled adults might
therefore circumvent this problem through the use of strategies that
rely on processing of the integer components. A strong influence
of the size of numerator and denominator would reveal compo-
nential processing and, thus, a reliance on a system based on exact,
integer numbers even for a stimulus that is intrinsically noninteger
(i.e., a whole number bias).

Thus, investigating how fractions are processed by skilled adults
is interesting in its own right because no previous studies have
looked at this issue, but it may also offer an insight into the relation
between real numbers and integer numbers. The present investi-
gation was built upon two classical effects in numerical cognition:
the distance effect (Moyer & Landauer, 1967) and the spatial
numerical association of response codes (SNARC) effect (De-
haene, Bossini & Giraux, 1993).

The distance effect (Moyer & Landauer, 1967) consists in the
increase of reaction times (RTs) in a comparison task with de-
creasing distance between the target and a reference number. RTs
are slower when the distance is small (e.g., 5 vs. 6) and become
faster when the distance increases (e.g., 2 vs. 6). The effect is
robust and widely used in studies of numerical cognition; it has
been described not only for digits but also for patterns of dots and
has also been described in animals (for a review, see Dehaene et
al., 1998). Thus, when the task requires a comparison between
numbers, the distance effect indicates that magnitudes are com-
pared.

Magnitude comparison between two fractions should thus pro-
duce the typical distance effect. That is, if the magnitude of each
fraction is directly accessed and compared, the distance effect
should reflect the numerical distance between the corresponding
real numbers. In contrast, componential processing of the two
fractions should produce a distance effect that is related to the
numerical magnitude of the numerator and denominator, sepa-
rately. The former outcome would indicate a magnitude compar-
ison between fractions, whereas the latter outcome would indicate
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a magnitude comparison between components of the fractions (i.e.,
a whole number bias).

The SNARC effect consists in the association between left
responses and small numerical quantities and between right re-
sponses and large numerical quantities (Dehaene et al., 1993; Fias
& Fischer, 2005, for a review). In a parity judgment task, a small
number (e.g., 2, if we consider the 1-9 interval) is responded to
faster with the left hand than with the right hand, whereas the
opposite is true for a larger number (e.g., 8). This finding suggests
that numbers are represented on a mental number line, spatially
oriented from left to right (also see Zorzi, Priftis & Umilta, 2002).
Because the SNARC effect has been described in tasks in which
the magnitude should in principle not be activated, such as parity
judgment and phoneme monitoring (Fias, Brysbaert, Geypens &
d’Ydewalle, 1996), its occurrence has been widely taken as evi-
dence that numerical magnitude is automatically activated.

The presence of the SNARC effect when responding to a frac-
tion should, in principle, reflect an interaction between the re-
sponse side and the numerical magnitude of the fraction. In con-
trast, componential processing might produce instead an
interaction between the response side and the numerical magnitude
of the numerator and/or denominator. Accordingly, the aim of the
present study was to address the question of whether a mental
representation of the fraction’s magnitude (i.e., a real number),
independent of the magnitude of the operands, is formed and used
by skilled adults. In other words, the question is whether the
processing of a fraction is componential or holistic. Four experi-
ments employing number comparison tasks were designed to ad-
dress this issue.

Experiment 1

In Experiment 1, two groups of students with different skills in
dealing with fractions were asked to compare fractions’ magni-
tude. In this, as in the following experiments, the distribution of
RTs for the different distances from the reference was taken as an
index of how fractions are mentally represented. In Experiments 1
and 2, the numerator was always 1. Therefore, the numerical
distance between fractions was different from the numerical dis-
tance between denominators. For example, the numerical distance
between 1/2 and 1/1 (0.5) is about 35 times greater than the
distance between 1/8 and 1/9 (0.014), although the difference
between denominators is the same.

If the distance effect indexes the nature of the comparison
performed, the direction of the SNARC effect indicates how the
comparison process is spatially associated to magnitude. What
should be noted is that the distance effect and the SNARC effect
are independent. If a target is two units smaller than the reference
and a second target is two units greater, for example, the distance
effect between each of the two targets and the reference would be
identical. This identical difference in magnitude, however, would
nonetheless produce the SNARC effect, which depends on an
asymmetrical association between magnitude and response side.

Method

Participants. There were two groups of participants, one of
psychology students (P Group, n = 10, 9 women and 1 man, one
left-handed, mean age 22.1 years) and one of engineering and
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physics students (E Group, n = 10, all men, one left-handed, mean
age 26.6 years). They all reported normal or corrected to normal
vision. All participants answered a brief questionnaire to ensure
that they were familiar with the notion of fractions. All questions
were answered correctly by every participant.

Stimuli.  Participants were presented with eight fractions with
numerator 1 and denominators varying from 1 to 9 (except for the
fraction 1/5, which was the reference). Fractions were presented as
two vertically displaced digits separated by a horizontal line and
were displayed in white color on a black background. Dimensions
were 18 mm in width and 27 mm in height, for 1.7° and 2.6° of
visual angle. Viewing distance was about 60 cm.

Procedure. Responses were provided by means of a PST
response box (Psychology Software Tools, Inc., Pittsburgh, PA),
with response keys 1 and 5 (extreme left and extreme right)
pressed with the index fingers of the left and right hand, respec-
tively (distance = 6.7 cm). Half of the participants were asked to
press the left key if the fraction was smaller than the reference
fraction 1/5 and the right key if the fraction was greater. The other
participants had the opposite assignment. In a second block, as-
signment for the two groups was reversed. Search block had 96
trials, and it was preceded by a brief practice.

A fixation cross was presented centrally on the screen for 600
ms, followed by a blank screen for 1,000 ms. The target fraction
was then presented in the center of the screen until response or
until 3,000 ms had elapsed. Acoustic feedback was provided in the
case of wrong response.

Results and Discussion

Mean error rate was 1.9%. For each participant and fraction
medians were calculated on RTs for correct responses.

To investigate the distance effect, all median RTs were entered
into a regression model, using either real numerical distance or
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denominator distance from reference (absolute values) as predic-
tor.

Only the absolute distance of denominator from 5 turned out to
be a significant predictor for both groups (P group: R* = .80; B =
—16.27, p < .01; E group: R> = .61, B = —17.42, p < .05; see
Figure 1, Panel A). The model with real numerical distance as
predictor (numerical value of target fraction minus reference, see
Figure 1, Panel B) was not significant for either Group (p > .1).
The distance effect was thus present only between the denominator
of the target and number 5 (reference’s denominator).

An analysis of variance (ANOVA) was then used to investigate
the association between magnitude and side of response. Note that,
when numerical magnitude is task-relevant (Dehaene, Dupoux, &
Mehler, 1990; Fischer, 2003; Fischer & Rottmann, 2005), the
SNARC effect appears to reflect the target’s mere classification as
smaller or greater than the reference. Gevers, Verguts, Reynvoet,
Caessens, and Fias (2006) referred to this as a “categorical”
SNARC effect, in contrast to a “continuous” SNARC effect that is
modulated by magnitude and can be observed when numerical
magnitude is not relevant for the task (and is best analyzed with a
regression analysis).

The ANOVA had Hand (left vs. right), Numerical Magnitude,
smaller than 1/5 (1/9, 1/8, 1/7, 1/6) versus larger than 1/5 (1/4, 1/3,
172, 1/1), and Group (P Group vs. E Group) as factors. The
analysis on error rates (arcsine transformed) did not show any
significant effect. The ANOVA performed on median RTs showed
a significant interaction Hand X Magnitude interaction, F(1, 18) =
12.68, p < .01, indicating an association between the response
“smaller” and the right hand and between the response “bigger”
and the left hand, which is a reversed SNARC effect. Mean RTs
for the left hand were slower when responding to small magnitudes
compared to large magnitudes, 526 ms versus 480 ms, F(1, 19) =
10.43, p < .01. In contrast, for the right hand, mean RTs were
faster to fractions smaller than the reference compared to fractions
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Mean response times (RTs) for each fraction in Experiment 1 as a function of the distance from the

reference (1/5 = 0.2). The x-axis in Panel A (left) follows the magnitude of the denominator, whereas, in Panel
B (right), it follows the numerical value of the fraction. The latter does not provide a good fit to the data, as
shown by the resulting left-skewed function. Separate lines are shown for Group P (psychology students) and
Group E (engineering and physics students).
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larger than the reference, 479 ms versus 524 ms; F(1, 19) = 12,
p < .01). The main effect of Group was not significant, F(1, 18) =
1.93, ns, although a trend for the E Group being somewhat faster
than the P group can be seen in Figure 2. Notably, the three-way
interaction Hand X Magnitude X Group was not significant, F(1,
18) = 0.650, ns, indicating the absence of differences between the
two groups for the SNARC effect. The only significant interaction
involving the Group factor was Hand X Group, F(1, 18) = 4.99,
p < .05, which is of no theoretical interest. No other source of
variance was significant.

The distance effect between the denominator of the target and
the denominator of the reference indicates that a comparison
between denominators, rather than between magnitudes, was per-
formed. Moreover, there was an association between left responses
and numerically large fractions (with small denominators) and
between right responses and numerically small fractions (with
large denominators). The fact that a reverse SNARC effect was
found indicates that subjects associated the denominator to the left
response when it was smaller than the denominator of the refer-
ence and to the right response when it was larger, thus indicating
an effect of the numerical magnitude of the integers. Therefore, it
is clear that the magnitude of the whole fraction was not accessed
and not even skilled participants were influenced by the true
numerical magnitude of the fraction.

In the following experiment, the format of the reference was
changed from the fraction 1/5 to the real number it represents (0.2).
The change was aimed at exploring whether using a real number as
a reference would favor the access to the true numerical value of
the fraction.'

Experiment 2

Method

Participants.  Eleven psychology students of the University of
Padova (2 men, 9 women, all right handed) participated in the
experiment. Mean age was 23.9 years.

Stimuli.  Stimuli were the same as in Experiment 1.
570
550 ~ _ Right Hand
Group P
530 Left Hand
— Group P
g s / ~5
= - 7"7_.,A
@ 490 Right Hand
T Group E
470 T " LeftHand
450 X Group E
430 .
small big

Fraction magnitude

Figure 2. Mean response times (RTs) for right and left hand as a function
of fraction magnitude in Experiment 1. The spatial numerical association of
response codes (SNARC) effect is reversed compared to the usual associ-
ation between magnitude and response side. Separate lines are shown for
Group P (psychology students) and Group E (engineering, physics, and
computer science students).
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Procedure. Participants were asked to compare the target frac-
tion presented with the numerical reference 0.2 (smaller or larger).
For the other details, the procedure was the same as in Experi-
ment 1.

Results and Discussion

Errors were, on average, 3.6%, after the exclusion of one par-
ticipant with 25% errors. Data treatment was the same as for
Experiment 1. As for Experiment 1, the distance effect was eval-
uated through regression analyses. The true numerical distance
between the fraction and the reference was not a significant pre-
dictor of the RTs (p > .1). In contrast, the distance between the
denominator of the target and number 5 turned out to be highly
significant in the regression analysis (in absolute value; R* = .79,
B = —15, p < .01; see Figure 3). Number 5 is the denominator’s
value for a fraction with numerator 1 and magnitude 0.2.

The ANOVA on RTs, using Hand (left vs. right) and Numerical
Magnitude, smaller than 1/5 (1/9, 1/8, 1/7, 1/6) versus larger than
1/5 (1/4, 1/3, 1/2, 1/1) as factors, resulted in a nonsignificant
interaction Hand X Magnitude, F(1, 9) = .72, ns, indicating the
absence of the SNARC effect. The same analysis performed on
error rates (arcsine transformed) was not significant either, F(1,
9) = 1.13, ns. A one-way ANOVA comparing RTs of Experiment
1 (Group P) with those of Experiment 2 showed no difference, F(1,
18) = .21, ns, and the same was true of an identical ANOVA on
error rate F(1, 18) = 2.46, p = .13.

Providing a real number as reference should have facilitated
accessing the numerical value of the fractions. The real numerical
distance between the fraction and the reference, in fact, did not fit
the data. The most likely hypothesis concerning the procedure
adopted by participants is that they transcoded the reference into
1/5 and then processed the denominator only, as had happened in
Experiment 1. This is clearly shown by the presence of a distance
effect between the denominator and number 5. Note that transcod-
ing of the reference 0.2 into the corresponding fraction (1/5) could
take place at each trial or only once at the very start of the
experiment. The latter strategy would be more effective, because
keeping the reference unchanged throughout the task permits the
avoidance of a potential RT cost for each trial caused by the
additional transcoding operation. Indeed, RTs did not differ be-
tween Experiment 1 (Group P) and Experiment 2.

In summary, the results of Experiment 2 show that participants
adopted the strategy of transcoding the reference (a real number)
into a fraction and then systematically used its denominator for the
comparison with the denominator of the target fractions. Employ-
ing this strategy no doubt required a series of operations, but this
procedure was preferred to that of having recourse to direct acti-
vation of numerical magnitude. The lack of a significant SNARC
effect is difficult to interpret. Considering that the SNARC effect
was present and significant in Experiment 1, which yielded very
similar results to Experiment 2, its absence in the latter is likely
attributable to a type-2 error.

' We are grateful to Veronique Izard for this suggestion.
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Figure 3. Mean response times (RTs) for each fraction in Experiment 2
as a function of the distance from the reference number (0.2 = 1/5). The
scale of the x-axis is based on denominator magnitude.

Experiment 3

The use of componential processing in Experiments 1 and 2
could reflect an effective use of strategies that come about during
childhood as a result of learning to use fractions. Indeed, strategy
development is an important component of arithmetic learning
(Lemaire & Siegler, 1995). Alternatively, strategies could be flex-
ibly adapted to the specific context to circumvent genuine diffi-
culties in accessing numerical magnitude. Experiment 3 was de-
signed to further investigate this issue, using a wider range of
fractions. By varying the numerator and the denominator, partic-
ipants were compelled to process both operands in order to re-
spond correctly.

Method

Participants. ~ Sixteen psychology students of the University of
Padova (4 men and 12 women, all right handed) participated in the
experiment. Mean age was 23.7 years.

Stimuli.  Participants were presented with fractions with nu-
merators from 1 to 9 and denominators from 4 to 6, excluding

850

BONATO, FABBRI, UMILTA, AND ZORZI

fractions with the numerator equal to the denominator: 4/4, 5/5,
and 6/6. Thus, there were 24 different fractions. Stimulus width
and height were the same as in Experiments 1 and 2.

Procedure.  Stimulus presentation was the same as in the pre-
vious experiments. Participants were asked to press the assigned
response key if the fraction presented was smaller or greater than
1. Every participant responded to two blocks with 120 trials each,
switching the response key assignment at the end of each block.

Results and Discussion

Errors were, on average, 5%. As for the previous experiments,
the distance effect was evaluated through regression analysis on
RTs. The real numerical distance between target fraction and
reference (1) and the distance between numerator and denominator
were used as predictors (absolute values) in separate regression
analyses (see Figure 4). The absolute distance between numerator
and denominator best fitted RTs (R = .54, B = —42.1, p < .001).
The real numerical distance was significant too, but the regression
model showed a poorer fit to the data (R = .49, B = —179.9, p <
.001). Note that the real numerical distance is highly correlated to
the distance between numerator and denominator (r = .93, p <
.001). By inspecting Figure 4A, however, it is apparent that the
numerator 5 acted as a reference point for all fractions. The overlap
for the three types of fractions (i.e., n/4, n/5, and n/6) suggests that
5/5, which lies at the middle of the range of the presented fractions,
was used as reference. This could reflect the strategy of transcod-
ing the reference 1 into 5/5. Indeed, the fit to the RTs increases
substantially if the numerical distance between the fraction numer-
ator and number 5 is used as a predictor (RP°=289,B= —54,p<
.001). This finding clearly shows that participants did not access
the real numerical magnitude of the fractions.

To test the presence of the SNARC effect, data were analyzed
with an ANOVA with Hand (left vs. right) and Numerical Mag-
nitude (smaller vs. larger than 1) as factors. There was a significant
Hand X Magnitude interaction, F(1, 15) = 10.61, p < .01,
indicating a regular SNARC effect attributable to the magnitude of
the fractions (see Figure 5). Mean RTs for the right hand were 601
ms when responding to fractions larger than 1 and 665 ms when

/ A
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Figure 4. Mean response times (RTs) for each fraction in Experiment 3 as a function of the distance from the
reference number (1). The x-axis in Panel A (left) shows the magnitude of the numerator; the x-axis in Panel B

(right) shows the fraction magnitude.
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Figure 5. The Hand X Magnitude interaction in Experiment 3 indicates
a regular spatial numerical association of response codes (SNARC) effect.

responding to fractions smaller than 1, F(1, 15) = 7.76, p < .05.
Also for the left hand, mean RTs for fractions smaller than 1 and
for fractions larger than 1 differed significantly, 618 ms vs. 657
ms, F(1, 15) = 7.87, p < .05. The same ANOVA performed on
error rates (arcsine transformed) confirmed the significant Hand X
Magnitude interaction, F(1, 15) = 6.29, p < .05.

Compared to the effect obtained in Experiment 1, the SNARC
effect was opposite in direction. The association found in Exper-
iment 3 was between large numbers and right responses and
between small numbers and left responses, as usually reported for
the SNARC effect. However, this result is not surprising because
the numerator’s magnitude, on which the strategy rested, was
congruent with the numerical magnitude of the fraction. In Exper-
iments 1 and 2, instead, the strategy was applied to the denomi-
nator: When the denominator increased there was a decrease in the
numerical magnitude of the fraction.

Results suggest that processing both numerator and denomina-
tor, which was mandatory to perform the task, still failed to
produce the activation of the numerical magnitude of the fraction.
After establishing if the numerator was larger or smaller than the
denominator, participants did not access the numerical magnitude,
as clearly demonstrated by the fact that the distance effect was
determined by distance between numerator and 5 rather than by the
fraction’s magnitude. Comparing the numerator with the denom-
inator did not favor access to the ratio indicated by the whole
fraction.

Experiment 4

The results of the experiments reported above suggest that
participants adopt strategies that are tied to the specific experi-
mental context. The flexible use of strategies is compatible with
the hypothesis that participants avoid, if they can, the use of the
real numerical value of the fraction but resort instead to their
integer components to solve the task at hand. Experiment 4 was
designed to further explore this issue. Participants might adjust
their strategies either to the interval of target fractions, to the
reference number, or to both. We therefore mixed the references
and the intervals adopted in the previous experiments. Specifically,
we used a variable standard design in which the reference was
either 1/5 or 1. The type of target fraction was x/5 or 1/x, respec-
tively.

It is important to note that the variable standard design should
strongly discourage participants from using strategies based on
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componential processing. Indeed, the trial-by-trial change of ref-
erence would render the use of strategies more costly and should
favor instead the use of real numerical values (i.e., holistic pro-
cessing). We also tested the participants on a separate test of
fraction knowledge to ensure that at least some of them would be
highly skilled in using fractions.

Method

Participants. Twenty-four students of the University of
Padova (9 women, 15 men; 3 left-handed) participated in the
experiment. Mean age was 23.8 years. Of the participants, 14 were
psychology students and 10 were students of engineering, physics,
or computer science.

Stimuli. They were fractions with numerator 1 and denomina-
tor from 1 to 9 (excluding 1/5, as in Experiments 1 and 2) or
fractions with numerator from 1 to 9 and denominator 5 (excluding
5/5, as the central interval used in Experiment 3). Stimulus width
and height were the same as in Experiments 1, 2, and 3.

Procedure. Participants’ expertise with fractions was assessed
through a paper-and-pencil test that contained 10 operations and
10 magnitude comparisons (see Appendix A). Problems were
printed on a single A4 sheet and participants were asked to write
the solution next to each problem. They were allowed to calculate
the result in written form, if needed, without time limit.

The computer-based experiment was then administered. Each
trial started with a fixation cross, followed by presentation of a
target fraction. The reference for the numerical comparison, either
1/5 or 1, was randomly selected for each trial. The identity of the
reference was signaled through a color cue: Participants were
instructed to compare the target fraction with 1/5 if the fixation
cross was green and with 1 if the fixation cross was red. Unbe-
known to the participants, the reference was always 1/5 for frac-
tions with numerator 1 (as in Experiment 1), whereas the reference
was the unit (1) for fractions with denominator 5 (as in Experiment
3). Fractions were presented until a response was given. No
feedback was provided. Every participant responded to two blocks
with 128 trials each, switching the response key assignment at the
end of the first block.

Results and Discussion

Four participants were excluded from the analyses because of
their very high error rates in the experimental task (from 16.8% to
28.5%). The remaining 20 participants were divided into two
groups on the basis of their performance in the paper-and-pencil
test on fractions. Highly skilled participants, whose accuracy was
perfect (i.e., O errors), were placed in Group 1 (n = 9). The other
participants (n = 11) showed a lower accuracy (M = 1.7 errors,
range 1-3 errors) and were placed in Group 2.

RTs over 3,000 ms (fewer than 2.5%) were discarded from
analysis. The overall mean (from medians) RT for correct re-
sponses was 864 ms. An ANOVA on RTs with Hand (left vs.
right), Numerical Magnitude (smaller vs. larger), Reference (1/5
vs. 1), and Group (1 vs. 2) as factors showed significant main
effects of Reference F(1, 18) = 27.81, p < .001 (800 ms for
reference 1 vs. 929 ms for reference 1/5) and Magnitude F(1,
18) = 11.12, p < .01. This was qualified by a significant Refer-
ence X Magnitude interaction, F(1, 18) = 41.02, p < .001. Larger
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magnitudes were slower than smaller ones for reference 1/5, 962
ms vs. 896 ms; F(1, 19) = 11.2, p < .01, whereas the opposite was
true for reference 1, 723 ms vs. 876 ms; F(1, 19) = 49.79, p <
.001. The interaction Hand X Magnitude was not significant, F(1,
18) = .38, p = .55. The effect of Group was not significant either,
F(1, 18) = .022, p = .885, nor was any interaction with other
factors.

The same ANOVA performed on error rates (arcsine trans-
formed) showed a main effect of Reference, F(1, 18) = 6.15, p <
.05 (5.1% for reference 1/5 and 2.7% for reference 1) and a
significant interaction Reference X Magnitude, F(1, 19) = 24.88,
p < .001. The latter paralleled the pattern of RTs: Smaller mag-
nitudes were easier than larger ones for reference 1/5 (3% vs.
7.3%), whereas the opposite was true for reference 1 (3.7% vs.
1.6%). All other main effects and interactions were not significant,
including the two way interaction Hand X Magnitude, F(1, 18) =
.68, ns.

The interaction between Reference and Magnitude that we
found in both RTs and accuracy would seem puzzling at first sight.
Note, however, that the trials yielding faster and more accurate
responses are those in which a comparison of the target fraction to
either of the references would produce the same result. That is,
fractions 1/9, 1/8, 1/7 and 1/6 are smaller than both 1/5 and 1,
whereas fractions 6/5, 7/5, 8/5 and 9/5 are larger than both 1/5 and
1. In contrast, the other half of trials can be considered incongru-
ent, because a comparison with either of the references yields
opposite responses. For instance, 1/4 is larger than 1/5 but it
is smaller than 1; similarly, 4/5 is larger than 1/5 but is smaller
than 1.

The reference-congruency effect revealed by the interaction
between reference and magnitude shows once again a strategic
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adaptation to the task that effectively circumvents the problem of
comparing the real numerical magnitudes of the fractions. There-
fore, the following analyses are focused on the incongruent trials,
those in which the target fraction had to be compared to the
relevant reference to produce a correct response. These are the
fractions larger than 1/5 for the 1/x type (i.e., 1/4, 1/3, 1/2, 1/1) and
the fractions smaller than 1 for the x/5 type (i.e., 1/5, 2/5, 3/5, 4/5).
Interestingly, a comparison between the two types of fraction (only
incongruent trials) showed that 1/x fractions are responded to more
slowly than x/5 fractions, F(1, 19) = 9.22, p < .01. This difference
is likely to reflect the fact that the former require a “larger”
response even though they have a small denominator (1 to 4), that
is, a SNARC-like effect. Note that reliance on the denominator for
1/x fractions was also found in Experiment 1.

Inspection of the data (see Figure 6) clearly suggests that in-
congruent trials were responded to through a comparison of the
variable part of the fraction with the informative part of the
reference. For fractions of the x/5 type the comparison was be-
tween the numerator x and the reference 1. In contrast, for frac-
tions of the 1/x type the comparison was between the denominator
x and the denominator of the reference, that is 5. Indeed, the real
numerical distance between target fraction and reference predicts,
at least for fractions of the x/5 type, an effect that goes in the
opposite direction from what is observed. That is, an effect of the
real numerical distance (Figure 6B) should produce longer RTs as
the fraction value gets closer to that of the reference (i.e., a positive
slope), but the observed negative slope (Figure 6A) can be ex-
plained by the fact that the distance between the numerator and 1
gets smaller. To confirm that the slope was negative, we computed
for each subject the slope of the regression equation using the
method recommended by Lorch and Myers (1990). Indeed, the
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Figure 6. Distance effect in Experiment 4 (incongruent trials only). The reference was 1 for x/5 fractions and
1/5 for 1/x fractions. In Panel A (left), the x-axis shows the distance between the variable part of the fraction and
the informative part of the reference. For the x/5 type (squares) these are the numerator of target and the
reference itself (1). For the 1/x type (triangles), these are the denominator of the target and the denominator of
the reference (5). In Panel B (right), the x-axis shows the real numerical distance between target and fraction

magnitude.
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slopes were significantly negative in a ¢ test against zero, #(19) =
—2.76, p < .05, two-tailed. The same pattern was found for the 1/x
fractions: the individual regressions, using the distance of the
denominator from 5 as predictor, revealed a significant negative
slope, #(19)= —2.36, p < .05, two-tailed.

In summary, the results of Experiment 4 suggest that partici-
pants flexibly employed different strategies that changed accord-
ing to the type of fraction. They performed a comparison only
when it was necessary to provide a correct answer (i.e., in the case
of incongruent trials) and focused only on the informative (vari-
able) integer component of the fraction. What is more important,
however, is that the increased complexity of the task did not
discourage participants from using strategies based on componen-
tial processing. Even a trial-by-trial change of reference did not
elicit the use of real numerical values. This was true regardless of
the participants’ skill and familiarity with fractions.

General Discussion

The present study demonstrated that classical effects found in
numerical cognition, like the distance effect and the SNARC
effect, can be used to investigate the mental representation of
fractions. In particular, we investigated the processing of the
fraction’s magnitude, showing that the numerical value of a frac-
tion was not accessed even in the case of skilled and highly
educated adult participants. A componential processing of the
fraction was performed in place of the activation of its numerical
magnitude, although that required transforming the reference, as
happened in Experiment 2, or employing complex strategies, as in
Experiments 3 and 4. The magnitudes of the operands of a fraction,
instead, were separately and automatically accessed.

The componential processing of a fraction, which implies the
activation of the magnitude of the single digits forming it, can
explain the difficulties in accessing and understanding its true
numerical value. For example, children are able to multiply frac-
tions without difficulties by simply applying learned rules, but they
rarely understand the meaning behind the computation and have
“difficulties in generalizing the information to other situations,
especially when facing complex problems” (Wu, 2001, p. 174).

Componential processing is also found in other number process-
ing tasks that are routinely performed by adults. When the mag-
nitudes of two-digit numbers are compared, responses are slower
if, for example, a number is greater than the other number but has
a smaller unit value (unit—decade incompatibility; Nuerk, Weger,
& Willmes, 2001). The use of negative numbers provides further
evidence of componential processing. A reverse SNARC effect
was observed in a parity judgment task with negative numbers
(Fischer & Rottmann, 2005), suggesting that participants re-
sponded to the magnitude of the digit without processing the minus
sign.

Our study, the first to investigate the mental representation of
fractions in adults, shows that skilled participants prefer to have
recourse to heuristics based on integer numbers and do not auto-
matically access the real number that the fraction represents. The
use of strategies can reflect learning processes (Lemaire & Siegler,
1995); but, in the present case, it is apparently a way to avoid
accessing the numerical magnitude of the fraction. Notably, the
heuristics adopted by our participants were tied to the specific
experimental context and thus must have been set up on the fly.

1417

When the task became more challenging, as in Experiment 4, new
and more complex strategies were adopted even though it was
arguably costly to do so.

The prevalence of integer number over real magnitudes in
processing fractions has been widely described in developmental
and instructional studies of children, and it has been referred to as
whole number bias (Ni & Zhou, 2005, for review). Hartnett and
Gelman (1998) suggested that magnitude processing is overcome
by counting processes, not isomorphic with magnitude, and related
only to integer numbers. Children acquire a conceptual under-
standing of fraction and rational number as an interrelated body of
representations, including representations of division and density
of number (Smith et al., 2005). In contrast to a widely held belief,
however, it appears that the whole number bias is largely carried
on into adulthood. Skilled adults have acquired the concept of
rational number and the mastery of procedures for operating with
fractions (cf. the paper-and-pencil test in Experiment 4), but this is
not mirrored by a significant change in how the magnitude of
fractions is mentally represented. Indeed, the main difference
between children and adults seems to reside in the ability of the
latter to circumvent the challenge posed by fractions through a
flexible use of strategies.

Overall, these results are at odds with the hypothesis that the
representation of numbers is rooted in an innate system for ap-
proximate magnitudes (that is, real numbers; Gallistel and Gelman,
2000), which would instead have predicted an easy access to the
true fraction’s value. In effect, determining the value of a fraction
can be considered as estimating the result of a division. Gallistel
and Gelman, commenting on the developmental studies of fraction
knowledge, noted this paradox: “If humans represent numerosities
in terms of magnitudes, why do they have so much trouble learning
the mathematical conception of rational numbers (mastering frac-
tions)?” (p. 64). Nonetheless, Gallistel and Gelman claim that
numerical reasoning operates on real numbers and that “getting
from integers back to the real numbers has been the work of man”
(p. 65). Notably, mathematicians like Kronecker had the opposite
intuition (Bell, 1937).

It may be argued that the difficulty in accessing the real mag-
nitude of fractions can be explained in terms of the difficulty of
peripheral transcoding processing necessary to translate the frac-
tion to an internal mental representation of quantity. Indeed, some
have suggested that children’s difficulty with fractions and rational
numbers might also be caused by the confusion of using the same
written symbols for both whole numbers and fractional amounts
(e.g., Mix et al., 1999; Sophian, Garyantes, & Chang, 1997). This
explanation, however, is hardly tenable in the case of skilled
adults: Why would instruction and extensive practice fail in estab-
lishing an effective mapping between fractions and real magni-
tude?

The strong tendency shown by participants to use strategies
based on the manipulation of the integer components better fits
with the hypothesis that the processing of symbolic numbers is
rooted in the representation of discrete, exact numerosities (Zorzi
& Butterworth, 1999; Zorzi, Stoianov, & Umilta, 2005; Zorzi et
al., 2006). The whole number bias in adults is also consistent with
the hypothesis that the adult numerical system for exact numbers
is bootstrapped, through the use of the set of counting words, from
the small number system (which is accurate for numbers up to 3
and is essentially the perceptual system for tracking objects) rather
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than from the approximate number system (for a review of the core
systems of number, see Feigenson, Dehaene & Spelke, 2004). It
should be noted that neither interpretation denies the existence of
a phylogenetically distinct system for approximate magnitudes,
which is clearly involved in processing and manipulating nonsym-
bolic stimuli, like collections of dots (e.g., Barth et al., 2006;
Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). Nevertheless, a
system for representing exact (integer) numbers seems to be pre-
ferred to the use of (approximate) analogue magnitudes even when
dealing with fractions, a system of symbols that formally corre-
spond to real numbers.
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Appendix A

Problems Used in the Paper-and-Pencil Test (Experiment 4)
1/4 + 3/8 =

3/5-1/3 =

3/10 + 5/6 =

5/8 - 3/4 =

3/4 X 1/6 =

25/3 X 7/10 =

12 = 3/4 =

5/6 ~ 21/3 =
(1/2)(2/13) + (5/6)(2/5) =
(1/4)(3 - 3/5) =

1/1 > 1/5 True — False
1/4 > 1/5 True — False
1/6 > 1/5 True — False
1/8 > 1/5 True — False
1/5 > 1 True — False
3/5 > 1 True — False
7/5 > 1 True — False
3/7 > 3/9 True — False
8/6 > 6/4 True — False
7/8 > 2/3 True — False
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