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The connectionist dual process (CDP) approach

to modelling reading aloud

Marco Zorzi

Department of General Psychology and Centre for Cognitive Science,

University of Padova, Padova, Italy

This paper reviews the Connectionist Dual Process (CDP) approach to modelling
reading aloud, from the computational principles that motivate the model’s
connectionist dual-route architecture to the most recent developments guided by
a nested incremental modelling strategy. New simulations based on a greatly
simplified, feedforward version of the model (ffCDP�) demonstrate that the
models’ success in accounting for key phenomena in word naming relies on the
nature of its sublexical route. The results with ffCDP�, where the parameter-heavy,
interactive lexical route is turned into a simple frequency-weighted activation of
lexical phonology, show that the two-layer associative network of phonological
assembly is the core component in CDP� and highlight the intrinsic modularity of
the model. Further developments of the model and some directions for future
research are discussed.

Keywords: Reading aloud; Word naming; Computational modelling;

Connectionist models; Neural networks.

Visual word recognition and reading aloud is the area of cognitive psychology

where computational modelling has probably achieved its greatest success.

Seminal studies published in the 1980s (McClelland & Rumelhart, 1981;

Rumelhart & McClelland, 1982; Seidenberg & McClelland, 1989) have

dramatically changed the way we think about the basic processes in oral

reading of single words. More recent modelling work has produced highly

detailed simulations of various aspects of the reading process (e.g., Coltheart,

Curtis, Atkins, & Haller, 1993; Coltheart, Rastle, Perry, Langdon, & Ziegler,

2001; Grainger & Jacobs, 1996; Harm & Seidenberg, 1999, 2004; Perry,

Ziegler, & Zorzi, 2007; Plaut, McClelland, Seidenberg, & Patterson, 1996;
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Zorzi, Houghton, & Butterworth, 1998b) and it has greatly improved our

understanding of both normal performance in skilled readers and impaired

processing in dyslexic readers (see Zorzi, 2005, for a review).

In this paper I review the computational principles that motivated the

Connectionist Dual Process (CDP) model of reading aloud (Zorzi et al.,

1998b) and its development over the past 10 years (Perry et al., 2007,

in press; Zorzi, 1999, 2000). The first two sections discuss the computational

motivation for the CDP approach to learning to read and the features of

CDP that make it different from other computational models of reading

aloud. The third section reviews the recent developments of CDP and

highlight the guiding role of the nested incremental modelling strategy (Perry

et al., 2007). I discuss how CDP� (Perry et al., 2007), designed by building

upon the strengths of CDP while eliminating its weaknesses, has turned out

to be the most successful computational model of reading aloud to date. In

the fourth section I present new simulations demonstrating that the success

of the CDP� model is entirely driven by its sublexical component, the two-

layer associative network of phonological assembly. In the last two sections I

discuss further developments of the model as well as the most important

directions for future research.

THE CONNECTIONIST DUAL PROCESS APPROACH
TO LEARNING IN QUASIREGULAR DOMAINS

The seminal work of Seidenberg and McClelland (1989) showed that key

phenomena in word naming (e.g., frequency, consistency) can emerge in a

connectionist network where the mapping between orthographic (input) and

phonological (output) representations is learnt from a corpus of spelling�
sound exemplars through the error-backpropagation algorithm (Rumelhart,

Hinton, & Williams, 1986). Although the model envisaged a second pathway

between spelling and sound mediated by semantic representations, its

processing assumptions did not conform to the classic distinction between

rule-based phonological assembly versus phonological retrieval from a

lexical memory that was ubiquitous in dual-route models of reading aloud

(e.g., Coltheart, 1978; Patterson & Morton, 1985). This led to the widely

held belief that connectionist models had a ‘‘single-route’’ architecture that

challenged dual-route theories of the reading system.

The breakthrough that led to the Connectionist Dual Process (CDP)

model (Zorzi et al., 1998b) was the discovery that a dual-route processing

system can emerge from the interaction of task demands and initial network

architecture in the course of reading acquisition. CDP demonstrated that the

distinction between phonological assembly and phonological lexical retrieval

can be realised in the form of connectivity (either direct of mediated)
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between orthographic input and phonological output patterns. Thus, CDP

had a dual-route architecture but it maintained the uniform computational

style of parallel distributed processing (PDP) models, thereby dispensing

with any explicit rule-based processing system.

Zorzi et al. (1998b) and Houghton and Zorzi (2003) discuss the dual-

route connectionist architecture in relation to the standard multilayer

network that is typically employed by connectionist modellers (e.g., Plaut

et al., 1996; Seidenberg & McClelland, 1989). Multilayer networks are

a generalisation of the feedforward perceptron of Rosenblatt (1962; see

Rumelhart et al., 1986, for discussion). Multilayer networks have greater

representational power than two-layer networks in which the input and

output domains are directly connected (Figure 1A). The use of an

intermediate layer of hidden units lying between input and output permits

the learning (in principle) of arbitrary nonlinear mappings. A typical

multilayer network is built from a two-layer network not only by the

addition of hidden units and the necessary connections, but also by the

removal of the existing direct connections between the input and output

layers (Figure 1B). However, if the hidden units are added but the direct

connections are not removed, the network will still be multilayer, but with

two distinct pathways from input to output, one direct and the other

mediated by hidden units (Figure 1C).

This latter type of architecture has been largely neglected by connectionist

modellers. Although it was presented in the seminal work of Rumelhart et al.

Input Units 

Output Units 

Connections 

Input Units 

Output Units 

Hidden Units 

Input Units 

Output Units 

Hidden Units 

(A) 

(C)(B)

Direct 
Pathway 

Mediated 
Pathway 

Figure 1. (A) Simplest feedforward network, consisting of two layers of units and connections

from input to output units. (B) Single-route multilayer architecture: Hidden units are added

between the input and output units and the direct connections from input to output are removed.

(C) Dual-route multilayer architecture: Hidden units are added but the direct input�output

connections are not removed.

838 ZORZI

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
o
r
z
i
,
 
M
a
r
c
o
]
 
A
t
:
 
1
0
:
4
7
 
2
1
 
J
u
l
y
 
2
0
1
0



(1986) as the simplest solution to the exclusive-or (XOR) problem, all

subsequent simulations were based on networks in which direct connections

were not allowed. The multilayer dual-route architecture has properties that

distinguish it from the more common single-route version of multilayer

networks. First, learning takes place in both pathways at the same time, but

the network tends to partition the learning such that the direct pathway will

learn simple (linear) regularities, while the mediated route will respond to

idiosyncratic (exception) input�output pairs by recognising the exceptional

inputs and correcting the regular response produced by the direct pathway

(Zorzi et al., 1998b). In this case, the network’s ability to generalise to novel

stimuli tends to be concentrated in the direct pathway. Second, damage to

the two pathways has different effects, so that double dissociations between

regular items and exceptional items (i.e., regular words and nonwords vs.

exception words) can be observed (Zorzi et al., 1998b). The production of

such dissociations has proved extremely challenging for connectionist

models based on the standard multilayer architecture (Bullinaria & Chater,

1995; Plaut et al., 1996).

Plaut and colleagues (1996) defined as ‘‘quasiregular’’ any domain in

which a limited number of idiosyncratic exemplars (i.e., exceptions) coexist

with a large number of ‘‘regular’’ exemplars that can be described (at least in

principle) by a set of rules. The decomposition of the task between regular

and exception in the architecture of Figure 1C provides a strong computa-

tional motivation for connectionist dual-route approaches to learning in

quasiregular domains. The roots of this idea can be found in Rumelhart

et al.’s (1986) XOR example, where a single hidden unit acted as a feature

detecting the conjunction of the two inputs to switch off the output unit (i.e.,

the exception to the linear OR mapping). Indeed, the CDP approach is

not limited to reading aloud (Perry et al., 2007; Zorzi et al., 1998b), but it

has been successfully extended to spelling (Houghton & Zorzi, 2003) and

to English inflectional morphology (Thomas & Karmiloff-Smith, 2002).

Importantly, the dissociation between regular and exception in a CDP

architecture does not imply subscription to the traditional (Chomskian)

view that productivity in language is based on abstract symbolic rules (e.g.,

Clahsen, 1999; Marcus, Brinkmann, Clahsen, Wiese, & Pinker, 1995). The

dissociation is rather an emergent property of the network architecture in

response to the statistical properties of the training set (also see Perry,

Ziegler, Braun, & Zorzi, this issue 2010, for further discussion of the rule vs.

statistics debate). The apparent ‘‘rule-governed’’ behaviour showed by the

direct pathway in a CDP architecture is entirely driven by the existence of

reliable input�output mappings and it would not develop if the mapping

were arbitrary, such as in the case of the mapping between print and

meaning.
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THE CDP MODEL OF READING ALOUD

Zorzi, Houghton, and Butterworth (1998a, 1998b) studied in great detail

the performance of a simple two-layer associative network (i.e., without

hidden units) trained on a set of about 3000 monosyllabic words to learn

the mapping between orthography and phonology. Zorzi et al. found that

this network acquires properties that are considered the hallmark of a

phonological assembly process*they therefore named it the Two-Layer

Assembly (TLA) network. Learning in the TLA network does not require

the back-propagation algorithm but only the simpler delta rule learning

procedure (Widrow & Hoff, 1960). The delta rule is equivalent to a classical

conditioning law (the Rescorla-Wagner rule; see Sutton & Barto, 1981, for a

formal demonstration) and it has been employed by a number of authors to

account for human learning (see Siegel & Allan, 1996, for review). The input

to the model is a representation of the spelling of a monosyllabic word.

Letters in words are represented using a positional code, where each node

represents both a letter and the position in the word occupied by that letter.

However, the positions are defined with respect to orthographic onset (i.e.,

letters preceding the vowel letter) and orthographic rime (or word body, i.e.,

all letters from the vowel onwards). The phonological representation has a

similar format, with phonemes in a syllable aligned to phonological onset

and rime positions.

Zorzi et al. (1998b) showed that the TLA network is able to extract the

statistically more reliable spelling�sound relationships in English, without

forming representations of the individual training items (such as the

exception words). Therefore, the phonological assembly route in the CDP

model produces regularised pronunciations (if the input word is an exception

word) and is not sensitive to the base frequency of the trained words. The

model provides a good match to the nonword reading performance of

human subjects, and can also read single letters and graphemes. The direct

connections between letters and phonemes in the TLA network can

sometimes be ‘‘read out’’ as pronunciation rules (e.g., initial letter M is

always pronounced as /m/), but most of the sublexical spelling�sound

mappings discovered by the network are sensitive to the local context and

their size is variable (see Zorzi et al., 1998b). Indeed, the output of the

network reflects the relative consistency of a given mapping. In agreement

with the fact that the major locus of inconsistency in pronouncing English

words is the vowel (e.g., EA in HEAD, MEAL, GREAT; e.g., Treiman,

Mullennix, Bijeljac-Babic, & Richmond-Welty, 1995), the TLA network,

along with the most common mapping of the vowel, delivers other

alternative, less common mappings, which are activated to a lesser extent.

The emergent behaviour of the model corresponds to proposals which

had been made before. For instance, Brown and Besner (1987) suggested that
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some individual letters or graphemes may be associated with a small number

of phonological realisations. The possibility of rules with multiple outputs
has also been proposed by Patterson and Morton (1985) in relation to the

‘‘body subsystem’’ contained in their model. Finally, the idea of multiple

outputs is incorporated in Carr and Pollatsek’s (1985) notion of ‘‘islands of

reliability’’ in spelling�sound correspondence, which implies that correspon-

dences are more reliable for some graphemes than for others. Thus, the

system would typically specify a single output for consonants and multiple

outputs for vowels. All these proposals are consistent with the behaviour of

the TLA network, but they contrast sharply with the model of phonological
assembly endorsed by Coltheart et al. (2001) in the DRC model, where the

Grapheme-to-Phoneme Conversion (GPC) route is a production system

based on a set of explicit rules specifying the dominant (e.g., most frequent)

relationships between letters and sounds.

As already noted, the TLA network has only direct connections between

input and output and is therefore incapable of learning inconsistent (or even

idiosyncratic) mappings like those contained in exception words. Thus, the

correct pronunciation of exception words requires a second pathway with
greater computational and representational power. This can be achieved by

adding an intermediate (hidden) layer between input and output representa-

tions. Word-specific information can be represented over hidden units either

in a distributed way (when the two pathways are part of a single network, as

discussed in the previous section) or in a localist fashion by allocating each

unit to a single word (i.e., word nodes). Thus, the lexical pathway in the

model can be conceptualised as an interactive activation network (Coltheart

et al., 2001; see Houghton & Zorzi, 2003, for an alternative implementation
in the context of the lexical pathway for spelling), or alternatively, by any

network that develops mediated, internal representations for the known

words. The advantage of a (localist) interactive activation model of the

lexical route is that visual word recognition (e.g., perceptual identification

and lexical decision task) can be readily simulated (Grainger & Jacobs,

1996). Clearly, with regard to word recognition and retrieval of lexical

phonology, any advantage of distributed over localist representations has yet

to be demonstrated (see Page, 2000, for an extensive discussion).
In the final CDP model, depicted in Figure 2, the lexical route is not fully

implemented. When the input string matches one entry in the model’s

lexicon, the corresponding phonological word form is directly activated and

lexical phonological activation spreads to the phoneme output nodes. This

activation (excitatory for phonemes that make up the word and inhibitory

for other phonemes) is weighted by the log-scaled frequency of the word and

is pooled with the assembled phonology produced by the TLA network.

Thus, the phoneme output system is the point of interaction between the two
routes, where the model’s final pronunciation is produced. The structure of
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this system is identical to the output layer of the TLA, but incorporates

features (lateral inhibition and gradual activation decay) that provide a

temporal dynamic and sensitivity to response competition caused by

alternative mappings, which is postulated to be a causal factor in naming

latencies. Activations change over time until one of the units in each

activated phoneme group reaches a response threshold. The time that the

network takes to settle is taken as a measure of naming latency.

The CDP model has been shown to account for the main empirical

phenomena in reading aloud, such as the effects of frequency, lexicality,

consistency, and regularity, etc. (see Coltheart et al., 2001, and Zorzi, 2005,

for comparative evaluations of the model). CDP has also been shown to

provide a good match to the performance of patients with surface dyslexia

as a result of simulated damage to its lexical route (Zorzi et al., 1998b).

Finally, the acquisition of spelling�sound mappings in the sublexical route

of CDP during learning provides an excellent account of developmental

data on reading acquisition (Hutzler, Ziegler, Perry, Wimmer, & Zorzi, 2004;

Zorzi et al., 1998a).

Figure 2. Architecture of CDP (adapted from Zorzi et al., 1998b). The letter level is organised

according to a slot-based template, with letters assigned to three onset (O) and five rime (R)

positions. Phonemes have a similar alignment into onset and rime slots, both in the TLA network

and in the phoneme output buffer.
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NESTED INCREMENTAL MODELLING: FROM CDP
TO CDP�

The development of the successor of CDP was motivated by the attempt to

build on its strengths and address its shortcomings. This nested incremental

modelling strategy advocated in Perry et al. (2007) dictates that a new model

should be related to or include at least its own direct predecessors and that it

should also be tested against the data sets that motivated the construction of

the old models before it is tested against new data sets (see Grainger &

Jacobs, 1996, for a discussion of this strategy in the context of modelling

visual word recognition).

In particular, CDP showed a length effect for nonwords that was too

weak in comparison to the human data (Weekes, 1997) and the correlation

between model RTs and human RTs on nonwords of varying length was

rather poor (Coltheart et al., 2001). The second weakness, shared by all

other major computational models, was the modest item-level correlation

between model RTs and human RTs on large-scale databases (Coltheart et

al., 2001). Spieler and Balota (1997), who collected naming latencies of 2870

words, suggested that successful models should pass two critical tests: First,

the amount of variance predicted by computational models should be at

least as strong as the strongest correlating single factor. Second, that the

amount of variance predicted by computational models should be similar to

the correlation derived from factors that are typically shown to be involved

in reading, such as log word frequency, orthographic neighbourhood, and

orthographic length. These factors accounted for 21.7% of the variance of

word naming latencies in the human data. Unfortunately, CDP accounted

for 7.73% of the variance of the human naming latencies, DRC for 3.49%,

and the Triangle model for 2.54% (Coltheart et al., 2001). Similar figures

were obtained on the Wayne State database (Treiman et al., 1995), which

contains RTs for all monosyllabic words that have a consonant-vowel-

consonant phonological structure.

The new model, CDP� (Figure 3), was built according to the nested

incremental modelling strategy discussed earlier. First of all, CDP needed to

be augmented with a fully implemented lexical route. The choice was to

implement a localist lexical route that was as close as possible to that of

DRC and based on the interactive activation model of McClelland and

Rumelhart (1981). The advantage of this solution is that it inherits the

strengths of the interactive activation model in capturing effects related to

orthographic processing and lexical access, as previously shown in the

simulation studies of Coltheart et al. (2001) and Grainger and Jacobs (1996).

Note that CDP� contains a much larger lexicon than CDP. Indeed, the

lexicon basically consists of all monosyllabic words, with 7383 unique

orthographic patterns and 6663 unique phonological patterns (extracted
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from the English CELEX word form database; Baayen, Piepenbrock, & van

Rijn, 1993). The upgraded TLA sublexical network was trained on this

larger database.

A further problem for CDP was the relatively high error rate in reading

difficult nonwords. A hard test of nonword reading (i.e., generalisation) for

connectionist models is the ‘‘whammy’’ set (Rastle & Coltheart, 1998), which

includes many nonwords that are highly dissimilar from trained words (e.g.,

FOOPH, GOICH, TAWSH). CDP had an error rate of around 50% on this

set. One way of improving nonword reading in connectionist models is to

reduce the ‘‘dispersion’’ (Plaut et al., 1996) of spelling�sound relationships

across slot positions. The use of better input and output representations

implies that the frequency at which the same letters map onto the same

phonemes is generally increased, which in turns facilitates learning of the

most common statistical relationships. In CDP�, this was achieved by using

graphemes as orthographic input for the TLA network instead of single

letters. The level of grapheme representation was added to the model by

Figure 3. Architecture of CDP� (adapted from Perry et al., 2007). Letters (L) are encoded in

their absolute spatial positions, whereas graphemes are organised according to a graphosyllabic

template, with three grapheme slots for the onset (O), one for the vowel (V), and four for the coda

(C) positions. Phonemes have a similar alignment into onset, vowel, and coda slots, both in the

TLA network and in the phoneme output buffer.

844 ZORZI

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
o
r
z
i
,
 
M
a
r
c
o
]
 
A
t
:
 
1
0
:
4
7
 
2
1
 
J
u
l
y
 
2
0
1
0



implemented the graphemic buffer of Houghton and Zorzi’s (2003)

connectionist dual route model of spelling. The primary motivation for
the assumption that the representation is structured into ‘‘graphosyllables’’,

with onset, vowel, and coda constituents (Caramazza & Miceli, 1990;

Houghton & Zorzi, 2003) comes from the studies of patients with a specific

acquired disorder of the graphemic buffer (e.g., Caramazza, Miceli, Villa, &

Romani, 1987; Cotelli, Abutalebi, Zorzi, & Cappa, 2003). Also, the data

from normal readers suggest that graphemes are functional units above the

letter level (Martensen, Maris, & Dijkstra, 2003; Rey & Schiller, 2005; Rey,

Ziegler, & Jacobs, 2000). The use of a graphosyllabic template as input
coding scheme boosted nonword reading accuracy. The error rate on the

‘‘whammy’’ nonwords dropped from 50% in CDP to only 2.1% in CDP�.

Grapheme units are the input level of the TLA network, but graphemes

must be first computed on the basis of the information that is available at the

letter level in CDP� (which, in turn, is activated by letter features) and then

inserted into the appropriate slot of the graphemic buffer. Accordingly, a

graphemic parsing process that is controlled by focused spatial attention

segments letters into graphemes to be submitted to the TLA network.
Complex graphemes (e.g., TH) are selected over simple graphemes (e.g.,

T�H) and graphemes are fully activated when inserted in the graphemic

buffer, even if their constituent letters are not when taken from the letter

level. The latter implies that CDP� can account for additive effects of

stimulus degradation and length or word frequency (Besner & Roberts,

2003; O’Malley & Besner, 2008; see Ziegler, Perry, & Zorzi, 2009, for

CDP� simulations), because the sublexical part operates as if thresholded

processing were used at the letter level.
To illustrate the grapheme parsing mechanism, take for example the word

check. Based on a syllabic representation, the first largest grapheme

encountered, CH, should be assigned to the first onset position of the

graphemic buffer. The next grapheme among the remaining letters (ECK) is

the vowel letter E, which should be assigned to the vowel position. The

remaining two letters, CK, correspond to a single grapheme that should be

assigned to the first coda position. Whether phonological assembly is best

conceived as a serial or parallel process has been a hotly disputed issue.
Indeed, data taken to support the DRC model’s assumption of serial letter

processing in the GPC route (e.g., Coltheart & Rastle, 1994; Rastle &

Coltheart, 1999) could be accounted for by the parallel CDP model (Zorzi,

2000; but see Roberts, Rastle, Coltheart, & Besner, 2003, for a subsequent

study in which CDP did not account for the serial effect). It is important to

emphasise that serial processing in CDP� is not instrumental to accounting

for serial effects but it is motivated by the problem of graphemic parsing, a

processing stage that was not envisaged in CDP. The timing of phonological
assembly in CDP� is influenced by the serial grapheme parsing process
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(i.e., the first grapheme is available to the TLA network before the second,

and so on) but phonological assembly remains intrinsically parallel because

activation spreads between graphemes and phonemes regardless of how

many graphemes are available at a given time step. Nonetheless, serialising

the sublexical route was found to be important for simulating the length

effect on nonwords in CDP� and it did also significantly improve the

correlation with word naming latencies on large-scale databases of real word

reading. In a broader theoretical context, the serial processing assumption in

CDP� is specifically linked to spatial attention mechanisms that control

attention shifts from left to right over the letter string. This hypothesis is

supported by studies showing that experimental manipulations of spatial

attention influence phonological assembly but not (or much less) lexical

processing (e.g., Reynolds & Besner, 2006; Sieroff & Posner, 1988). In the

same vein, deficits of spatial attention after brain damage (i.e., hemispatial

neglect) affect phonological assembly but not lexical processing (e.g.,

Ladavas, Shallice, & Zanella, 1997; Sieroff, Pollatsek, & Posner, 1988).

Impaired orienting of spatial attention is strongly correlated with defective

phonological decoding skills in children with developmental dyslexia

(Facoetti et al., 2006, 2010).

To summarise, CDP� combines the sublexical network of CDP (updated

with graphemic representations and serial graphemic parsing) with the

localist lexical network of DRC. As in CDP, the point of interaction between

the two routes is the phonological output buffer, a competitive network

where lexical and sublexical phonological codes are pooled online to drive

the final pronunciation (compare Figures 2 and 3). Phonological represen-

tations are identical in CDP and CDP�, with phoneme output nodes

syllabically organised into onset-vowel-coda positions.
Perry et al. (2007) proposed a list of 13 empirical phenomena in word

naming that constitute the benchmark effects for computational models of

reading aloud (Table 1), partly based on a previous list proposed by

Coltheart et al. (2001). CDP� accounts for all these effects, which also

include two important forms of acquired dyslexia (see Denes, Cipolotti, &

Zorzi, 1999, for a review). Moreover, it accounts for about 20% of

the variance in the large-scale databases of human naming latencies. In

particular, CDP� accounts for as much variance as the three factors

mentioned in Spieler and Balota (1997; orthographic length, frequency,

orthographic neighbourhood). In sum, CDP� is greatly superior to both

its predecessor CDP and its competitors as a model of reading aloud.

CDP� has not been used yet to account for lexical decision data. However,

given that the lexical routes in CDP� and DRC are identical from

the feature level up to and including the orthographic lexicon, it should be

fairly easy to replicate the simulations of lexical decision performed by
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TABLE 1
Benchmark effects for computational models of reading aloud (from Perry et al., 2007)

Name of effect Description

Frequency High-frequency words are faster/more accurate than low-frequency words

Lexicality Words are faster/more accurate than pseudowords

Frequency�Regularity Irregular words are slower/less accurate than regular words. Jared (2002) reports no interaction with frequency

Word consistency Inconsistent words are slower/less accurate than consistent words. The size of the effect depends on friend/enemy ratio

Nonword consistency Nonword pronunciations show graded consistency effects, that is, people do not always use the most common

grapheme�phoneme correspondences

Length�Lexicality Naming latencies increase linearly with each additional letter

Position of irregularity The size of the regularity effect is bigger for words with first position irregularities (e.g., chef) than for words with

second- or third-position irregularities

Body neighbourhood Words with many body neighbours are faster/more accurate than words with few body neighbours

Masked priming Words preceded by an onset prime are faster/more accurate than words preceded by unrelated primes

Pseudohomophone advantage Nonwords that sound like real words (e.g., bloo) are faster/more accurate than orthographic controls

Surface dyslexia Specific impairment of irregular word reading, which is modulated by the consistency ratio of the words

Phonological dyslexia Specific impairment of nonword reading, which is reduced when nonwords are orthographically similar

pseudohomophones

Large-scale databases Naming latencies of the model are regressed onto the average naming latency of each item in large-scale databases

containing thousands of items
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Coltheart et al. (2001). This is clearly an advantage of the nested incremental

modelling strategy.

FFCDP�: A SIMPLE FEEDFORWARD VERSION OF CDP�

In one of the analyses designed to investigate which parts of CDP� were

responsible for its improved performance (Perry et al., 2007, Part V), CDP�
was turned into a feedforward model by eliminating the recurrent, top-down

connections as well as the activation of orthographic neighbours. Strikingly,

the feedforward version of CDP� accounted for an almost identical

proportion of item-level variance to that accounted for by the normal

version of CDP�. This result is extremely interesting for two main

theoretical reasons. First, it shows that the fully implemented lexical route

(inherited from DRC) does not add much over and above the effect of a

frequency-weighted activation of lexical phonology. Second, it is a strong

argument against the criticism that the superior performance of CDP� is

simply due to the large number of free parameters (e.g., Sibley, Kello, &

Seidenberg, this issue 2010).

Perry et al. (2007) also reported that the feedforward version of CDP�
(henceforth ffCDP�) showed the same sensitivity to spelling�sound

consistency of the full model. This is not surprising because consistency

effects related to orthographic units of different grain sizes (e.g., graphemes,

word bodies) have been shown to emerge in the TLA network (Zorzi, 2000;

Zorzi et al., 1998a,b). However, ffCDP� was not tested and compared to

CDP� in a more systematic way. Therefore, besides the issue of item-level

variance accounted for, a more comprehensive investigation of ffCDP� is

interesting in its own right. Following the recent proposal of Yap and Balota

(2009), the analysis presented here is based on regressing the model (and

human) latencies onto key word recognition variables (frequency, length,

etc.), rather than simply looking at quantitative fits between model and

human data. This analysis can reveal whether the model’s latencies are

influenced to the same extent by the variables that affect the human latencies

and provides a much more fine-grained test for the model’s quantitative fit

than the percentage of variance accounted for. For these analyses I employed

the database of 2428 monosyllabic words used by Balota, Cortese, Sergent-

Marshall, Spieler, and Yap (2004). The corresponding human naming

latencies were obtained from the English Lexicon Project (ELP; Balota

et al., 2007) because item means computed over the large number of ELP

participants (rather than over 30 participants in the original study by Balota

et al., 2004) imply a smaller error variance (and potentially an increased

amount of reproducible variance; see Rey, Courrieu, Schmidt-Weigand, &

Jacobs, 2009). Matching this database against the CDP� lexicon resulted in
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a set of 2385 monosyllabic words with human latencies that could be used

for the simulations (from now on referred to as the Balota dataset).
In the simulations reported later, I adopted the same parameter set used

in Perry et al. (2007) to turn CDP� into a feedforward model. First,

ffCDP� has no recurrent connections. This was achieved by setting all

feedback parameters to zero (for both lateral and top-down connections).

Second, the activation of orthographic neighbours was prevented by setting

a strong inhibition between the letter level and the orthographic lexicon

(the parameter was increased from �0.55 to �1.0). This ensures that no

orthographic neighbours of a word are ever activated in the lexical route.
Third, the strength of the excitatory connections between phonological

lexicon and phonological output buffer was slightly increased (from .128 to

.135) to compensate for a slower build-up of activation in the phonological

output buffer that results from the absence of recurrent processing.

Note that the lexical route of ffCDP� has 7 parameters, whereas the

parameter-heavy lexical route of CDP� has 15 parameters. It could be

argued that the number of parameters in ffCDP� is still large. However, the

parameters are not free but they are set in a way that the lexical route simply
activates the correct lexical phonology. Moreover, the entire lexical route,

from the letter level up to and including the phonological lexicon, could be

replaced by a frequency-weighted lexical phonological activation with only

two parameters, that is, excitation and inhibition of phoneme nodes in the

output buffer (exactly as in the older CDP model; Zorzi et al., 1998b). To

provide a more formal demonstration of this claim, I turned off the

sublexical route in ffCDP� (by setting to zero the activation sent by the

TLA to the output buffer) and submitted the Balota et al. (2007) dataset to
the model. All words were named correctly and, crucially, the model

latencies were entirely driven by word frequency. The negative correlation

between model latencies and scaled log frequency values (used in the

phonological lexicon of the model) was near-perfect, r��.98, pB.0001.

Model latencies for this item set were then collected from both ffCDP�
and CDP�. After the removal of phonological errors and RT outliers (items

that yielded RTs longer than three standard deviations from the mean), the

final data set contained 2352 words that had latencies for ffCDP�, CDP�,
and human participants. This ensures that all subsequent analyses were

performed on identical sets of words. The correlation between ffCDP� and

CDP� latencies was extremely high, r�.995, pB.001, N�2352, suggest-

ing that the performance of the two models is very similar despite the

different processing dynamics of the respective lexical routes. This is

corroborated by the fact that the correlation between model latencies and

ELP human latencies was virtually identical for the two models, r�.403 for

ffCDP�� and r�.409 for CDP�. Note that the correlations between
ffCDP� latencies and the original data of Balota et al. (2004), which
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included latencies for both young and older participants, were .39 and .419,

respectively.

The naming latencies (ffCDP�, CDP�, and ELP human data) were

then submitted to regression analyses that used as predictors the four most

important lexical variables (cf. Balota et al., 2004):

. Word frequency. The logarithm of the HAL frequency norms (Lund &

Burgess, 1996).

. Word length. The number of letters in the word.

. Neighbourhood size. The number of orthographic neighbours that can

be obtained by changing one letter (i.e., Coltheart’s N).

. Body consistency. A consistency measure computed for the word body
using Jared’s (2002) equation based on the frequency of friends and

enemies.

The human data were analysed using a hierarchical regression, whereby 13

descriptors of the onset phoneme (dummy-coded articulatory features; see

Balota et al., 2004) were entered in the first step and lexical variables were

entered in the second step as predictors. The variance associated with voice

key biases are therefore removed in the first step, so that the standardised

coefficients (beta weights) for the lexical variables obtained in the second

step are more directly comparable to those obtained in the analysis of

the models’ latencies (articulatory effects are outside the scope of most

computational models of reading aloud).

The results are presented in Table 2 using standardised regression

coefficients (betas) for each predictor variable. Comparing the effects

between models, one can conclude that ffCDP� shows the same sensitivity

to the main lexical variables, even in terms of the effect size, as the full-blown

TABLE 2
Standardised beta-coefficients for standard predictor variables from regression

analyses on human and model data (items from Balota et al., 2004)

Standardised regression coefficients (beta)

Lexical variables ffCDP� CDP� Human (ELP)

Log frequency �.721** �.691** �.272**

Letter length .275** .314** .138**

Orthographic N �.043* �.048* �.074**

Rime consistency �.144* �.149* �.106**

R2 .699 .695 .491$

**pB.001, *pB.01, $including onset coding.
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CDP�. The comparison between models and human data shows that all

effects go in the correct direction but that the size of the frequency effect is

too strong in both models. Therefore, this type of analysis reveals that a

different set of parameters might improve the fit between model and human

data (see Adelman & Brown, 2008, for a different method for diagnosing the

sources of models’ mispredictions).

For the purpose of the present study, the important result is that the main

lexical effects in word naming can be accounted for by a greatly simplified

version of CDP�. The interactive, recurrent, parameter-heavy lexical route

does not seem to be necessary to account for the main factors that influence

written word naming. These results do not imply that a lexical route is not

needed, but only that word-specific (i.e., lexical) information could take

any other form. They also do not imply that feedback processing is not

necessary. Not all phenomena in word naming can be explained by a purely

feedforward model; in particular, the simulation of the pseudohomophone

advantage in nonword naming relies on the existence of feedback connec-

tions between phoneme output nodes and phonological lexicon (Perry

et al., 2007). Feedback is also important to account for context effects

in written word perception (McClelland & Rumelhart, 1981). The main

theoretical implication of the results with ffCDP� is that the CDP� model

is intrinsically modular and that the two-layer associative network of

phonological assembly is its only core component. Moreover, the constraints

on the type of lexical route appear to be minimal, so that the current lexical

route could be replaced by a very different type of network. This issue is

taken up in the Future Directions section.

Interestingly, Diependaele, Ziegler, and Grainger (this issue 2010) used

components of CDP� to augment the Bimodal Interactive Activation

Model (BIAM) of visual word recognition (Grainger & Ferrand, 1994) so

that it could perform the reading aloud task. They implemented the

sublexical route (graphemic buffer and TLA network) and the phonological

output buffer of CDP� as point of interaction between lexical and

sublexical phonology. The augmented BIAM model can account for fast-

acting phonological influences during word recognition (masked phonolo-

gical priming) and at the same time it can accurately read irregular words

aloud, a pattern that poses a serious challenge to the DRC model (Rastle &

Brysbaert, 2006). Diependaele et al. point out the striking similarity between

their model and CDP�, although the BIAM architecture was motivated

by very different constraints (i.e., bimodal interactivity in a model of

word comprehension). Note that the components they took from CDP� are

those that form the core of ffCDP�.
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BEYOND CDP�

There are many different ways in which CDP� can be further improved and

extended. The ongoing work is focused on two main objectives. The first is

to develop versions of CDP� that work with languages other than English.

A German version of CDP� is already available (Perry et al., this issue

2010) and we are developing Italian and French versions. In addition to

providing a useful tool to further promote reading research in these other

European languages, a systematic comparison between models trained on

different languages should provide insights into the issue of whether the

features of a specific language can shape the functional (and neural)

architecture of the reading system (e.g., Paulesu et al., 2000; Ziegler et al.,

2010). For instance, consistency of the mapping from print to sound has an

immediate impact on the contribution of the direct input�output pathway

(i.e., the TLA network) versus the lexically mediated pathway to the

computation of phonology. Strength of lexical processing might therefore

be tuned to the orthographic transparency of the language that the model

is trained on. Note that most changes required to adapt CDP� to other

languages involve the TLA network, because, in addition to the problem of

learning the spelling�sound mappings for a given language, the alignment

of graphemes in the input layer must be structured in a way that reflects

the statistical properties of the specific orthography. In contrast, adapting

the lexical route is simply a matter of replacing the English lexicon with the

words contained in a language-specific database (e.g., the German version of

CELEX; see Perry et al., this issue 2010).
The second main objective is to develop a multisyllabic version of

CDP�. Indeed, at least by type counts, most words in English have more

than one syllable (e.g., Baayen et al., 1993). Despite this, CDP� (as all other

influential computational models of reading aloud) has been developed for

monosyllabic words. Dealing with multisyllabic words is a tough modelling

challenge. Consider the words canon and canal: The model not only needs

to know where to put the syllable boundary (ca.non, ca.nal), but also that

canon is stressed on the first syllable, whereas canal is stressed on the second

syllable. Even assuming that it is possible to look up this information in the

phonological lexicon, one still faces the problem that people can read

nonwords, such as commoke or zortess (see Rastle & Coltheart, 2000), for

which they consistently assign stress on the first syllable in zortess and on the

second in commoke. This means that in the absence of lexical phonology,

people are able to assign stress nonlexically. Any new model of disyllabic

processing should be able to predict such reading patterns.

CDP��, the successor of CDP�, is a dual process model of reading

aloud mono- and disyllabic English words with a lexicon of about 32,000

words (Perry et al., in press). Again, most of the changes required to extend
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CDP� to disyllabic words involve the TLA network. In other words, the

modelling challenge was to develop a new sublexical route that could learn the
spelling�sound mappings for both mono- and disyllabic words. In CDP�,

graphemes and phonemes are assigned to specific slots in a left�right manner

based on whether they belong to the onset, the vowel, or the coda. In

CDP��, the graphosyllabic and phonological templates are duplicated, so

that two syllables can be represented. However, a disyllabic word like canal

could potentially be segmented as ca.nal or can.al. In the first case, the

grapheme -n would go in the onset of the second syllable, whereas in the

second case it would go in the coda of the first syllable. A number of different
linguistic constraints can be used to segment disyllabic words (Hall, 2006).

However, most of these constraints do not have to be explicitly represented.

To assign graphemes without lexical information, the graphemic parser in

CDP�� uses onset maximisation as its core principle (this is a well-known

constraint in phonology). Thus, consonant graphemes occurring between two

vowels are assigned to the onset positions of the second syllable, whenever

possible. With the word canal, the model would maximise the -n, and hence

use the syllabification ca.nal. A second principle used in graphemic parsing
comes from internal network dynamics (i.e., what has been learnt in the

TLA network). The idea is that the statistical information captured by

the network during training provides implicit constraints to the operations

of the graphemic parser. In particular, this prevents the parser from insert-

ing graphemes into slots where nothing has been learnt (note that this

information is readily available in terms of strength of the connection

weights).

Word stress is modelled with CDP�� simply by adding two extra nodes
to the output layer of the sublexical network, which represent predictions

by the sublexical network about whether stress should fall on the first or

second syllable. Thus, the model not only learns relationships between

graphemes and phonemes, but also between graphemes and the stress

nodes. The sublexical stress nodes send activation to two stress output

nodes, placed at the level of the phonological output buffer, which also

receive information about lexical stress from the phonological lexicon.

Stress output nodes pool lexical and sublexical information in the same way
as phoneme output nodes.

As required by the nested incremental modelling approach, CDP��
captures all empirical phenomena that were accounted for by its predecessor

CDP�. Moreover, CDP�� can account for a number of effects specific to

disyllabic words (e.g., syllable number, consistency of second syllable, stress

typicality; see Yap & Balota, 2009) and nonwords (e.g., stress assignment;

e.g., Rastle & Coltheart, 2000). Finally, CDP�� accounts for over 36%

of the variance on a set of about 18,000 English words from the ELP
database (Balota et al., 2007).
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FUTURE DIRECTIONS

The development of the CDP model over the last decade shows very clearly

that a nested incremental modelling strategy*commonly used in other

areas of science but often neglected in psychology*results in better and

more powerful computational models. Although the development of CDP

represents one of the most successful and comprehensive computational

modelling enterprises in cognitive psychology, there are several aspects of the

model that still need substantial improvement.
First, there is no learning at all in the lexical route. Using the interactive

activation model as the basis for the lexical route, all recent versions of CDP

have inherited its merits as well as its shortcomings. One major problem in

adding learning to the current lexical route is that word frequency in the

interactive-activation framework is modelled by a node-specific threshold

value that directly represents the frequency of the item. However, it is

possible to conceive frequency as a dynamic effect in the context of a

competitive recurrent network where nodes also have self-feedback connec-

tions. In Houghton and Zorzi’s (2003) model of spelling, each (localist) word

node in the orthographic lexicon had an excitatory feedback loop onto itself,

giving it the ability to support its own activation. The strength of this

feedback, which depends on a parameter (the feedback weight), can be

allowed to vary as a function of word frequency. The modulation of a unit’s

feedback weight could be achieved as part of a competitive learning

algorithm: the feedback loop would be strengthened each time a node is

activated. Emphasis on word frequency as a dynamic effect is also a key

aspect of the SOLAR model of visual word recognition (Davis, 1999).

Frequency effects in SOLAR reflect a node bias mechanism, where bias

strength for each word node is constantly revised by the learning algorithm

as a function of input statistics.

One more radical solution would be to replace the current lexical route

with a completely different network that is not a variant of the interactive

activation model. The simulations with ffCDP� discussed here show very

clearly that the constraints on the type of lexical route are minimal. At

least with regard to the naming task, the constraints are just two: (1) a

frequency-weighted spread of activation to the phonological output nodes;

and (2) feedback between phonological output nodes and word-level

representation of phonology. Several alternative models of visual word

recognition have been proposed in recent years, with special emphasis on

the issue of letter position coding and lexical orthographic representations

(e.g., Davis, 1999, this issue 2010; Gomez, Ratcliff, & Perea, 2008; Grainger

& van Heuven, 2003; Whitney, 2001). Moreover, orthographic coding

might be substantially different for lexical access and phonological assem-

bly, with a coarse-grained code for fast access to lexical-semantic
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representations and a fine-grained code for accessing phonology (e.g.,

Grainger & Holcomb, 2009). Therefore, in the spirit of the nested
incremental modelling strategy, the best one among these models could

replace the lexical route in CDP�, or at least its ‘‘front end’’.

In the context of learning lexical representations, a further issue that

deserves investigation is how these representations interact with semantics.

The DRC model (Coltheart et al., 2001) assumes that nodes in the

phonological lexicon can be activated both from the orthographic lexicon

(direct lexical route) or via word meanings (lexical-semantic route). The

slower lexical-semantic processing would explain why a semantic variable
like imageability influences naming only in the case of the slowest items

(i.e., low-frequency exception words; Shibahara, Zorzi, Hill, Wydell, &

Butterworth, 2003; Strain, Patterson, & Seidenberg, 1995). A different

possibility is that orthography makes contact to a level of representation

that is neither phonological nor semantic, but intermediate between the two.

This view is endorsed in the ‘‘Junction’’ model of Kello (2006), where

orthography maps onto a set of hidden units that bind together phonological

and semantic representations (note, however, that the Junction model uses
the same route to perform phonological assembly, thus departing from the

idea that there are two separate ways to get to phonology from print). The

idea of a common representation linking phonology, semantics, and

orthography is broadly consistent with the lemma level in models of speech

production (Levelt, Roelofs, & Meyer, 1999; also see Zorzi, Perry, Ziegler, &

Colheart, 1999, on learning lexical-semantic representations).

Finally, another way in which learning in CDP should be improved is by

greatly reducing the amount of supervised learning. All connectionist
models of reading to date have learned the task of reading aloud through

the exposure to a very large corpus of spelling�sound pairs. That is, the

input (spelling) and the ‘‘desired’’ output (target pronunciation) for many

thousands of words are typically presented until the error-correction

procedure employed as learning algorithm reaches a level of performance

that is considered adequate by some external criterion. This training regimen

is highly implausible: The kind of supervised learning used in all models

implies that a teacher externally supplies the pronunciation of all words that
should be learnt. The idea that several thousands of words can be taught by

externally supplying the correct pronunciation is flawed for a great number

of reasons (see Share, 1995, for discussion). Therefore, we need to deve-

lop models that are constrained to learn in realistic stimulus environments

using a learning regimen that has a sound psychological basis. For example,

Dufau et al. (this issue 2010) used unsupervised learning and a realistic

corpus (reading materials used in French primary schools to teach kids to

read) to map prelexical orthographic representations onto whole-word
orthographic representations in a self-organising map (Kohonen, 1982).
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Moreover, the simulation study of Hutzler et al. (2004) provides a very

effective demonstration that statistical learning by itself, without considering
how reading is taught at school, is not sufficient to successfully account for

the developmental data on learning to read. Thus, success in this endeavour

would open the possibility of assessing the impact of different teaching

methods, both for normal children and in remedial treatment of reading

disorders.

REFERENCES

Adelman, J. S., & Brown, G. D. A. (2008). Methods of testing and diagnosing model error:

Dual and single route cascaded models of reading aloud. Journal of Memory and Language, 59,

524�544.

Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX lexical database (CD-ROM).

Linguistic Data Consortium, University of Pennsylvania.

Balota, D. A., Cortese, M. J., Sergent-Marshall, D. S., Spieler, D. H., & Yap, M. J. (2004). Visual

word recognition of single-syllable words. Journal of Experimental Psychology: General, 133,

283�316.

Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., et al. (2007). The

English Lexicon Project. Behavioral Research Methods, 39, 445�459.

Besner, D., & Roberts, M. A. (2003). Reading nonwords aloud: Results requiring change in the

dual route cascaded model. Psychonomic Bulletin and Review, 10, 398�404.

Brown, P., & Besner, D. (1987). The assembly of phonology in oral reading: A new model. In M.

Coltheart (Ed.), Attention and performance XII (pp. 471�489). Hove, UK: Lawrence Erlbaum

Associates Ltd.

Bullinaria, J. A., & Chater, N. (1995). Connectionist modelling: implications for cognitive

neuropsychology. Language and Cognitive Processes, 10, 227�264.

Caramazza, A., & Miceli, G. (1990). The structure of graphemic representations. Cognition, 37,

243�297.

Caramazza, A., Miceli, G., Villa, G., & Romani, C. (1987). The role of the graphemic buffer in

spelling: Evidence from a case of acquired dysgraphia. Cognition, 26, 59�85.

Carr, T. H., & Pollatsek, A. (1985). Recognizing printed words: A look at current models. In D.

Besner, T. G. Waller, & G. E. MacKinnon (Eds.), Reading research: Advances in theory and

practice (Vol. 5 pp. 1�82). San Diego, CA: Academic Press.

Clahsen, H. (1999). Lexical entries and rules of language: A multidisciplinary study of German

inflection. Behavioral and Brain Sciences, 22, 991�1060.

Coltheart, M. (1978). Lexical access in simple reading tasks. In G. Underwood (Ed.), Strategies of

information processing (pp. 151�216). London: Academic Press.

Coltheart, M., Curtis, B., Atkins, P., & Haller, M. (1993). Models of reading aloud: Dual-route and

parallel-distributed-processing approaches. Psychological Review, 100, 589�608.

Coltheart, M., & Rastle, K. (1994). Serial processing in reading aloud: Evidence for dual-route

models of reading. Journal of Experimental Psychology: Human Perception and Performance,

20, 1197�1211.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. C. (2001). DRC: A dual

route cascaded model of visual word recognition and reading aloud. Psychological Review, 108,

204�256.

Cotelli, M., Abutalebi, J., Zorzi, M., & Cappa, S. F. (2003). Vowels in the buffer: A case study of

acquired dysgraphia with selective vowel substitutions. Cognitive Neuropsychology, 20, 99�114.

856 ZORZI

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
o
r
z
i
,
 
M
a
r
c
o
]
 
A
t
:
 
1
0
:
4
7
 
2
1
 
J
u
l
y
 
2
0
1
0



Davis, C. J. (1999). The Self-Organising Lexical Acquisition and Recognition (SOLAR) model of

visual word recognition. Unpublished doctoral dissertation, University of New South Wales,

Australia.

Davis, C. J. (2010). SOLAR versus SERIOL revisited. European Journal of Cognitive Psychology,

22, 695�724.

Denes, F., Cipolotti, L., & Zorzi, M. (1999). Acquired dyslexias and dysgraphias. In G. Denes &

L. Pizzamiglio (Eds.), Handbook of clinical and experimental neuropsychology (pp. 289�317).

Hove, UK: Psychology Press.

Diependale, K., Ziegler, J. C., & Grainger, J. (2010). Fast phonology and the Bimodal Interactive

Activation Model. European Journal of Cognitive Psychology, 22, 764�778.
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