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Abstract The posterior parietal cortex (PPC) is funda-

mental for sensorimotor transformations because it com-

bines multiple sensory inputs and posture signals into

different spatial reference frames that drive motor pro-

gramming. Here, we present a computational model mim-

icking the sensorimotor transformations occurring in the

PPC. A recurrent neural network with one layer of hidden

neurons (restricted Boltzmann machine) learned a stochastic

generative model of the sensory data without supervision.

After the unsupervised learning phase, the activity of the

hidden neurons was used to compute a motor program (a

population code on a bidimensional map) through a simple

linear projection and delta rule learning. The average motor

error, calculated as the difference between the expected and

the computed output, was less than 3�. Importantly, analyses

of the hidden neurons revealed gain-modulated visual

receptive fields, thereby showing that space coding for

sensorimotor transformations similar to that observed in the

PPC can emerge through unsupervised learning. These

results suggest that gain modulation is an efficient coding

strategy to integrate visual and postural information toward

the generation of motor commands.
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Introduction

Programming goal-directed motor behavior requires a

series of computational steps, ranging from the sensory

acquisition of the target to the generation of the motor

command, including a transformation between different

coordinate reference frames. Such transformation is man-

datory because the reference frames of the sensory input

usually differ from those of motor effectors. The neural

substrates of sensorimotor transformations are undisput-

edly attributed to the posterior parietal cortex (PPC) (Colby

and Goldberg 1999). The PPC has been the subject of

extensive research since a seminal neurophysiological

investigation (Mountcastle et al. 1975) describing how its

neural activity, characterized by both sensory and motor

properties, is related to eye and limb movements; crucially,

the PPC has been described as a sensorimotor interface for

the generation of visually guided movements (Buneo and

Andersen 2006). PPC neurons are functionally segregated

for different types of movement (Fig. 1). In particular, the

intraparietal sulcus (IPS) represents the cross-road where

different sensory inputs converge to encode-specific motor

programs (Buneo and Andersen 2006). The IPS contains

several distinct sub-regions, each one devoted to a specific

task: for instance, the lateral intraparietal area (LIP) is

specialized for saccadic eye movements, the medial intra-

parietal area (MIP) is specialized for reaching, and the

anterior intraparietal area (AIP) is involved in grasping

(Sakata and Taira 1994).

Spatial representations for motor programming are dis-

tributed in a group of PPC neurons whose activity

approximates a multiplicative combination of visual and

posture signals (Andersen et al. 1985). Such interplay

between information coming from different modalities,

usually termed gain modulation, can be generally described
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as a change in response amplitude of a neuron indepen-

dently of its selectivity or receptive field characteristics.

Computational investigations allowed to confirm the cru-

cial role of gain modulation in sensorimotor transforma-

tions. In a seminal work (Zipser and Andersen 1988), a

multi-layer neural network was trained with the back-

propagation algorithm to transform retinal signal into head-

centered coordinates. Notably, the hidden neurons of the

network developed gain-fields similar to those described in

parietal cortex. In another computational investigation

(Mazzoni and Andersen 1991), a neural network was

trained to represent visual space in head-centered coordi-

nates with a reinforcement learning rule, which is more

biologically plausible: also in this case, the authors found

gain-fields in the hidden neurons. Thus, these studies show

that gain modulation might provide an efficient solution to

the coordinate transformation problem.

Here, we investigated whether space coding based on

the gain field mechanism may emerge when learning is

only concerned with efficient coding of the sensory infor-

mation (i.e., unsupervised learning of a generative model)

rather than finding a function that maps sensory informa-

tion onto motor programs (i.e., supervised learning). We

used a restricted Boltzmann machine (RBM) (Hinton et al.

2006), a stochastic recurrent neural network that learns a

generative model of the sensory input without supervision

and develops distributed nonlinear representations at the

level of the hidden neurons during training.

Method

The model is based on a RBM, which is formed by one layer

of visible (sensory) neurons and one layer of hidden neurons

(feature detectors) that are fully connected by bidirectional

symmetric weights (Fig. 2). The visible neurons simulated

Fig. 1 The PPC of the human brain. In particular, three regions of the

intraparietal sulcus (IPS) are crucially involved in sensorimotor

transformations: anterior (AIP), medial (MIP) and lateral (LIP)

intraparietal areas

Fig. 2 Model architecture. The

RBM was used to learn without

supervision a distributed

nonlinear representation of the

sensory input in the hidden

layer. Delta rule learning was

then used to compute the motor

program from the activity of the

hidden neurons

S142 Cogn Process (2012) 13 (Suppl 1):S141–S146

123



the activity of the cortical areas supplying sensory infor-

mation to the PPC (see below), while hidden neurons were

supposed to develop response properties similar to those of

PPC neurons during learning. The RBM was trained with

the Contrastive–Divergence learning algorithm (Hinton and

Salakhutdinov 2006) to learn a generative model of the

input data without supervision (i.e., maximizing the likeli-

hood of reconstructing the data). In the ‘‘positive’’ phase,

the visible neurons are clamped to an input vector vi
?, and

their activity spreads to the feature detectors hj
?. In the

‘‘negative’’ phase, a stochastically selected binary state of

the feature detectors (using their state hj
? as probability to

turn them on) feeds back to the visible neurons through the

top-down weights (i.e., reconstruction of the input vector)

and then feeds forward again to the feature detectors hj
-.

The weights wi,j are updated with a small learning fraction e
of the difference between pairwise correlations measured in

the positive and negative phases:

Fig. 3 Distribution of gain modulation index (GMI) values of hidden neurons in one exemplar network as a function of postural position

Fig. 4 Percentage of the hidden

neurons showing a specific type

of postural modulation

Cogn Process (2012) 13 (Suppl 1):S141–S146 S143

123



The visible layer was composed of 357 neurons:

1. A retinotopic map, simulating area V6 (Galletti et al.

2001), consisting in a square matrix of 17 9 17

neurons with Gaussian tuning functions. Visual recep-

tive fields were uniformly spread between -9� and

?9� in increments of 3�, both in the horizontal and

vertical dimensions;

2. Four postural maps (each one consisting in 17 neurons)

encoding the horizontal and vertical position of the eye

and the horizontal and vertical position of an effector

(e.g., hand). The neurons used a sigmoid activation

function to encode position between -18� and 18�, in

steps of 3�.

This input representation is broadly consistent with

neurophysiological data, and the basic characteristics of the

neural network are in line with those used in earlier

computational investigations of sensorimotor transforma-

tions (Pouget and Snyder 2000). The hidden layer was

composed of 250 neurons, and its activity reflected a dis-

tributed nonlinear encoding of the sensory input. The

training set presented for each training epoch consisted in

520 patterns balanced for each visual and postural position.

In the learning phase, the training set was presented for a

total of 3,000 epochs.

After training the RBM, we assessed whether the

activity of hidden neurons supported the computation of

motor programs through a simple linear projection (Pouget

and Snyder 2000). The motor program (for each training

pattern) was a population code on a map of 35 9 35

neurons that coded the target position in coordinates cen-

tered on the effector. Thus, the RBM’s hidden layer was

the input to the motor map (Fig. 2). Delta rule learning,

which minimizes the error through gradient descent, was

Fig. 5 Analysis of hidden layer neurons: top row, receptive field of Neuron 11 (Network 1) as a function of eye position and bottom row,

receptive field of Neuron 145 (Network 1) as a function of effector position
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used to adjust the connection weights between hidden

neurons and motor neurons. The model’s performance was

tested by computing the average motor error, consisting in

the difference between expected and actual output. In order

to achieve reliable results, we trained ten networks with

different initial random weights.

Activity in the hidden layer was analyzed with the

approach that is usually adopted in neurophysiological

studies (e.g., Andersen et al. 1985) to detect the presence of

gain modulation in parietal neurons: the modulation of the

visual receptive field of each hidden neuron was mapped

by recording its response to each target location as a

function of eye and effector positions (Pouget and Snyder

2000). For each postural position, the normalized ratio

between maximum and minimum volume profiles (chang-

ing a postural position at a time) was computed. The

postural positions that generated the maximum volume

profile have been set as constant values for the invariant

postural positions. Thus, for each hidden neuron, four

values indicating the gain modulation index (GMI) were

obtained.

Results

The average motor error (calculated as the mean error of

the ten trained networks) was below 4�, the typical

performance error threshold adopted while training mon-

keys in neurophysiological investigations of intraparietal

neurons (Zipser and Andersen 1988).

The investigation of the hidden layer revealed a small

number of neurons (about 10 %) characterized by close-to-

nil activations. Most of the remaining hidden neurons

exhibited clear gain modulation. The distribution of GMI

values across hidden neurons is shown in Fig. 3: a different

GMI distribution can be observed for each postural

variable.

The GMI scores are distributed along the range [0,1],

where zero means that the receptive field of a neuron is

unaffected by postural information, hence varying postural

positions does not generate any modulation, while high

GMI scores indicate that the receptive field of a neuron is

strongly modulated by a postural variable. As illustrated in

the figure, all postural variables exhibited GMI values

encompassing the entire range. Then, we classified all

hidden neurons of the ten trained networks in terms of gain

modulation effect in each postural position. We used a

GMI of 0.5 as an arbitrary threshold to calculate the per-

centages of neurons falling in different categories accord-

ing to modulation type (see Fig. 4).

Only about 9 % of the neurons responded to the visual

stimuli but were not modulated by postural information.

Indeed, activity of most neurons was modulated by the

position of the eye (26 %), the effector (19 %), or both

Fig. 6 Analysis of hidden neurons: a more complex receptive field of Neuron 249 (Network 1) modulated by both eye and effector position
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(34 %). We investigated the neurons’ receptive fields to

verify the gain modulation effect and to understand which

reference frame was used to compute the motor program.

Notably, all receptive fields of the hidden neurons turned

out to be strictly retinotopic. The top row of Fig. 5 shows

the receptive field of Neuron 11 in the hidden layer of

Network 1 as a function of different horizontal eye posi-

tions (-18�, 0� and 18�). Although the neuron’s receptive

field is fixed on the retina, its activity is modulated by eye

position: its largest response is observed when the eye is

positioned at -18�. The bottom row of Fig. 5 shows the

receptive fields of Neuron 145 of Network 1 as a function

of different horizontal effector positions: here, the largest

response is observed when the effector is positioned at 18�.

Finally, Fig. 6 shows the receptive field activity of

Neuron 249 of Network 1 as a function of different hori-

zontal eye and effector positions. These examples show

that there are complex selectivity patterns for different

combinations of eye and effector positions. For this neuron,

the largest response is observed for horizontal eye position

of 18� and horizontal effector position of -18�.

Conclusions

Our results show that spatial representations for visually

guided movements can emerge through unsupervised

learning in a generative model that predicts the sensory

input via top-down activation. Generative models are

extremely appealing because they represent plausible

models of cortical learning and are consistent with neuro-

biological theories that emphasize the mixing of bottom-up

and top-down interactions in the brain (Hinton 2007).

Indeed, generative models can account for empirical data at

both behavioral and neurophysiological level (Stoianov

and Zorzi 2012). Our study sheds light on the integrative

mechanisms involved in sensorimotor transformations. The

interaction between visual and postural signals observed in

the present computational model is in line with neuro-

physiological data recorded in PPC (Salinas and Sejnowski

2001). All the receptive fields of the hidden neurons were

fixed on the retina, showing that their reference frame is

based on retinotopic coordinates; nevertheless, their

activity was markedly modulated by postural variables:

both these properties are strikingly similar to the neural

properties observed in the sub-regions of PPC (Brotchie

et al. 1995). Most importantly, these properties spontane-

ously emerged in the hidden layer even though learning did

not involve any coordinate transformations (cf. Zipser and

Andersen 1988; Mazzoni and Andersen 1991).

Our results show that gain modulation is an efficient

coding strategy to integrate visual and postural informa-

tion, independently from the generation of motor

commands. Importantly, gain-fields have been also

described in cortical and subcortical areas that are not

specifically involved in coordinate transformation (Salinas

and Sejnowski 2001), thereby suggesting that gain modu-

lation can be considered a more general brain mechanism

supporting a broader class of nonlinear transformations. In

conclusion, the present study shows that gain modulation

spontaneously emerges as a mechanism for multisensory

integration in a generative model that simply learns to

efficiently encode the sensory data without supervision.
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