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Abstract. This paper reports an experiment in which artificial foraging agents 
with dynamic, recurrent neural network architectures, are "evolved" within a 
simulated ecosystem. The resultant agents can compare different food values to 
"go for more," and display similar comparison performance to that found in bio-
logical subjects. We propose and apply a novel methodology for analysing 
these networks, seeking to recover their quantity representations within an Ap-
proximationist framework. We focus on Localist representation, seeking to in-
terpret single units as conveying representative information through their aver-
age activities. One unit is identified that passes our "representation test", repre-
senting quantity by inverse accumulation. 

1   Introduction 

In 1963, Feyerabend ([1] and [2]) claimed that improvements in our scientific under-
standing of the mind will eventually undermine our basic concepts of mental states. 
His position – Eliminative Materialism – stemmed from the intuition that “folk psy-
chology” [3] is merely our current best “theory” of mind. Like any other theory, folk 
psychology may eventually be falsified, perhaps in favour of a neuro-biological ac-
count of cognition. Significantly, there is no requirement that this replacement must 
“explain” the theory that it replaces – like phlogiston and alchemy, mental states may 
simply disappear [4] in the face of scientific progress. In cognitive science, a debate 
has recently emerged that adds a practical dimension to Feyerabend’s position. 

Since the emergence of the digital computer during the 1940’s, the Computer 
Metaphor (CM – [5]) has dominated the way in which scientists study intelligent 
behaviour. One of the principal methodological commitments of the CM is Functional 
Decomposition (FD), which implies that, like computers, cognitive systems can be 
understood as networks of functional “modules” [6]. The acceptance of this intuition 
is nearly ubiquitous in contemporary cognitive science; most experimental paradigms 
are designed explicitly to isolate and manipulate these putative modules. Seeking to 
account for experimental data, computational cognitive models have tended to be 
directed along similar lines. This division naturally emphasises the concept of “repre-
sentation” in contemporary cognitive theories, since the specification of a module’s 
interfaces (input and output representations) has a critical impact on its empirical 
behaviour (e.g. [7]). 
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Yet for all its evident utility, FD carries a heavy burden of explanation; functional 
modules must be integrated before they can reasonably be said to account for cogni-
tive behaviour. Recognising the critical role that module interfaces play in designing 
these modules, some researchers (e.g. [8], [9]) have questioned whether this integra-
tion could ever be successful.  

Dynamicism [10] offers an alternative. The Dynamicist programme construes cog-
nition as intrinsically embodied, emerging from the interaction of adaptive behav-
iours. These behaviours are the Dynamicist equivalent of functional modules – the 
atomic components of intelligence [8]. To the extent that this framework addresses 
the “integration problem” mentioned previously, it must surely be welcomed even by 
researchers entrenched within the CM. The problem is that, at least as commonly 
construed [11], the Dynamicist programme is resolutely Eliminativist. 

Dynamicist models are thought to be best understood in terms of the temporally 
situated causal processes that manage sensor-motor integration [11]. Traditionally 
critical concepts, like representation, simply do not appear to “fit” with how these 
systems work. Recognising this, many Dynamicist researchers have been moved to 
claim that the CM-inspired distinction between data and process – the very concept of 
representation itself – must go the way of phlogiston [8]-[11]. 

This proposition is antithetical to many neuroscientists because it simply does not 
appear to correspond with the observed structure of cognition in the brain. Selective 
neural disorders and brain imaging experiments [12] provide convincing evidence of 
functional specialisation in human cognition; though consistent with Dynamicism, a 
functionally specialised cognitive system naturally encourages analysis by FD. Con-
cepts of representation are a powerful and intuitive tool in accounting for well-
confirmed experimental data (e.g. [13], [14]); in some cases, such as [15], these ac-
counts can even draw on “observations” of the representations themselves. In some 
respects at least, brains just do appear to represent and to compute. If Dynamicism 
must be accepted at the expense of the concept of representation, few cognitive neu-
roscientists will accept it.  

To manage this tension, we propose an Approximationist response. Approxima-
tionism articulates the intuition that computational accounts of cognitive processes 
may be useful and approximately correct, without necessarily capturing every detail 
of the underlying causal processes [16]. One implication is that we might usefully 
search for – and discover – representations in neural systems, while at the same time 
accepting that the implied “computational story” will be at best a good approximation 
to the underlying “causal story”. 

Following the logic of [17], we evolve artificial agents to perform a “representa-
tion-heavy” task – a task for which some kind of representational structure appears to 
be required. Section 2 describes the artificial ecosystem and agents, as well as the 
representation-heavy task that they evolve to perform. The goal is then to recover the 
agents’ evolved representations. Section 3 describes and applies a methodology de-
signed to achieve this goal.  

2   Through Foraging to Quantity Comparison 

The focus for the current project is "quantity comparison", a common theme of study 
within the cognitive neuroscience of numeracy. Representation plays a critical role in 
contemporary accounts of the way in which subjects (humans and animals) manipu-



524 T. Hope, I. Stoianov, and M. Zorzi 

late numbers and numerosities [13] – indeed, there is great debate in this field con-
cerning the precise format of that representation (e.g. [13], [18], [19]). Quantity com-
parison therefore meets our requirement for a representation-heavy process. Further, a 
growing body of evidence indicates that certain facets of the “number sense” may be 
inherited [20]. The implication is that evolution might engender a preparedness in 
humans and animals to represent quantity in a particular way, raising an independent 
question about what kinds of quantity representations can emerge “spontaneously” 
during evolution. The current work approaches quantity comparison as an evolution-
ary by-product of selection for quantity-sensitive foragers. 

2.1   The Artificial Ecosystem 

The environment is a 2-dimensional, toroidal grid, composed of 100x100 square cells. 
Agents navigate the grid by moving between neighbouring cells. Each cell can con-
tain “food”, construed as appearing in “bundles” of some specified numerosity (1-9). 
Any number of agents can co-exist in the same cell: the only upper limit is the size of 
the population itself (200), which remains constant throughout the run. Food can also 
“grow”, in the sense that its numerosity can increase. A record is kept of the total 
depletion of food during the run, and this food is periodically reinserted by sharing it 
among randomly selected cells.  

The ecosystem proceeds by iterative update. During each iteration, every individual 
is updated, with sensor activity propagated through the neural network and effector 
units interpreted to identify if any action has been made. The update order for agents 
is randomly specified at the beginning of each iteration.  

The agents are recurrent, asymmetrically connected neural networks. In a network 
of N units, the activity u of the i-th unit (ui) at time step t is calculated by  

1

( ) ( ( 1)).(1 ) ( 1).
N

i ij j i

j

u t S w u t m u t m
=

= − − + −∑  (1) 

where wij is the weight of the connection from unit j to unit i, S() is the sigmoid func-
tion and m is a fixed momentum term with a value of 0.5. 

A subset of units act as sensors, which are clamped according to the salient fea-
tures of the environment around the agent. Agents have a 3 cell field of view, and are 
also sensitive to food in the cell that they currently occupy (see Fig. 1), for a total of 
four sensor “fields”. Each field represents its corresponding food quantity using a 
“Random Position Code”; this was used in [18], among others, to capture quantity 
information without biasing models in favour of specific representational strategies. 
To represent food numerosity N, the code requires that N (randomly chosen) sensor 
units (positions) should be active. The scheme is illustrated in Fig. 2, where N = 5. 

Another subset of units are effectors, whose activity determines how the position / 
orientation of the agent's body is updated, as well as defining when agents try to eat. 
The remaining units are hidden and do not interact directly with the environment. 
Sensor units receive no input from the rest of the network, and have no direct connec-
tion to effector units, but the hidden layer is universally connected – every unit is 
connected to every other unit, and to itself. 
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Fig. 1. An agent in its environment. (A) The 
agent – a black triangle – is facing right and 
can sense food (grey circles) in its right and 
left-most sensor fields. (B) The same agent, 
after making a single turn to the left. It can 
now sense only one cell containing food. 

 
Fig. 2.  The Random Position Code. For 
food = N, exactly N units are active (activ-
ity clamped to ‘1’), while the remainder 
are inactive (activity clamped to ‘0’). Each 
sensor field has a total of 9 units. 
 

2.2   Evolution in the Ecosystem 

All of the agents in the initial population are specified with random numbers of hid-
den units, and random weights. The "fitness" (F) of the i-th agent is just the rate at 
which it has consumed food, 

F( ) /i ii f a=  (2) 

where f is the total food consumed and a is the agent’s age (expressed as the number 
of iterations since the agent's creation). 

At the end of each iteration, two “parents” are drawn at random from the popula-
tion and their fitnesses compared. The structure of the “child” is defined by randomly 
mixing the parents’ weight vectors (cross-over), followed by mutation. The mutation 
operator will usually increment or decrement a randomly selected weight value by a 
small constant (0.01), but may also add or remove a hidden unit. The resultant child 
replaces the least fit of the two parents. 

The best signal that agents are discriminating quantity is high food collection effi-
ciency: food collected per moves made in the environment. The agents’ food collec-
tion efficiency rises above 5 after about 10 million iterations (~50,000 generations), 
indicating that genuinely “discriminating” foraging behaviour has evolved. 

2.3   Quantity Comparison Performance 

The evolved agents are not merely models of quantity comparison; to capture that 
facet of their behaviour, we need a methodology that can effectively isolate it. Fortu-
nately, examples of the required kind of methodology already exist. In [21], the “sub-
jects” (salamanders) were placed at the base of a clear Perspex T-maze. Two clear jars 
of drosophilia fruit flies, which the salamanders eat, were placed at the end of each 
branch of the maze – two flies in one jar and three flies in the other. The authors re-
ported that twice as many salamanders “chose” the jar with more flies (signified by 
walking toward and touching that jar). Our methodology emulates this experiment. 

OR OR“5” =  

(a) (b) 

OR… 
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The experimental environment is a 3x3 “mini-world”. Two cells, the top left and 
top right of the world, contain food of varying quantity. In its initial position at the 
centre of the world, the agent can “see” both of these food quantities, though it may 
turn without constraint once the trial begins. Food “selection” occurs when the agent 
moves onto one or other of the filled cells – the only cells onto which the agent is 
allowed to move. A correct choice is defined as the selection of the larger of the two 
food groups. Every agent in the population was tested using this methodology, with 
50 repetitions of every combination of food quantities (1-9, 72 combinations in all), 
for a total of 3,600 trials per agent. The results are displayed in fig. 3.  

 
Fig. 3. (Left) The schematic structure of the comparison experiment. The agent is placed in the 
centre of the mini-world, facing “up”. (Right)  A histogram of the population performance in 
the quantity comparison experiment. 

A few of the agents perform extremely badly, indicating that the evolved foraging 
solutions are brittle in the face of “evolutionary” change – perhaps emphasised as a 
consequence of a mutation bias against specialised structures [22]. The main bulk of 
the population distribution is also apparently bimodal; agents in the left-most cluster 
perform at roughly chance levels, whereas agents in the right-most cluster perform 
significantly above chance – only this latter group appear to discriminate quantity. 
The persistence of non-discriminating agents is unsurprising, since high rates of food 
collection can be achieved by sacrificing decision quality for decision speed. A visual 
inspection of the performance scores for agents in this cluster indicates strong asym-
metry in their behaviour; many simply “choose” the right-hand square regardless of 
the food quantities presented.  

2.4   Single-Subject Comparison Behaviour 

Using the results of the previous section, we selected the best “discriminator” from 
the population and recorded its empirical performance in more detail. The results are 
displayed in fig. 4.  

The agent’s empirical behaviour displays certain characteristic phenomena that are 
also reliably found when both humans and animals compare quantities. As the mini-
mum of the two quantities-to-be-compared increases (fig. 4a), there is an increase in 
discrimination error, this is an instance of the “Size Effect” [13].  As the numerical 

Food 1 Food 2
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Fig. 4. Accuracy scores are rates of correct choices per 1,000 trials. (a) Mean accuracy vs. 
minimum quantity of food (Min) in a given trial. (b) Mean accuracy vs. numerical distance 
(Split) between food quantities. (c) Mean “reaction time” vs. numerical distance between  
quantities. 

distance between the quantities increases (fig. 4b), there is a corresponding   
improvement in discrimination accuracy; this is an example of the “Distance  
Effect” [13].  

Surprisingly, this agent also displays a Distance Effect for reaction times, defined 
as the number of time steps between the start of a comparison trial and the agent's 
selection of one of the two food quantities. Non-discriminating foragers can persist by 
sacrificing decision accuracy for decision speed, but this agent is capable of reversing 
that tradeoff, sacrificing decision speed in order to more reliably “go for more”. 

Though the agents are too simple to support a meaningful comparison with biologi-
cal organisms, this behavioural correspondence is nevertheless encouraging. As men-
tioned prevously, most contemporary theories of quantity manipulation account for 
empirical phenomena (such as the Size and Distance effects) as a consequence of the 
way in which subjects represent quantities. A representational account of this agent's 
behaviour could therefore add a new dimension to this traditional debate, expanding 
the space of representational strategies that can account for the empirical phenomena. 

3   Approximationist Representation 

The key property of a representation is that it tracks some property of the environ-
ment. During the comparison experiment, the most salient properties are the values of 
the two food “options”, which remain static throughout each trial. But a visual inspec-
tion of the agent’s network dynamics reveals nothing remotely static – nothing that 
seems appropriate to represent these food values.  

Our thesis is that although the behaviour of each unit is subject to chaotic variation, 
its average activity may still be interpreted as conveying representative information.  

If a unit’s average activity (relative to some food value) is a functionally significant 
representation, it should be possible to “fool” the agent by interfering with that activ-
ity by fixing the unit’s activity to its average for a different food value. In deference to 
previous work (e.g. [23] and [24]) on lesion types in network analysis, we refer to this 
kind of interference as "Partial Informational Lesion" (PIL). Our Approximationist 
method relies on statistical analyses of the impact of PIL’s on the agent’s behaviour. 

In the material that follows, we restrict the analysis to Localist "theories" of repre-
sentation – to theories that single units can be interpreted as conveying functionally 
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significant, representative information. This is a simplifying assumption, but not with-
out biological justification; recent single-cell recording experiments [25] suggest that 
single neurons in the primate parietal cortex may be selectively tuned to quantity. 

3.1   Defining "Representation-Like" Deviation from Normal Behaviour 

Consider a simple example in which a hypothetical agent manages a quantity com-
parison using just two hidden units – unit A and unit B. Each unit is subject to exten-
sive noise, but represents a corresponding quantity (Food A and Food B) by its aver-
age activity. As in the current work, our hypothetical system uses food values 1-9, 
signified by average unit activities of 0.1, 0.2…., 0.8, and 0.9. Suppose that we inter-
fere with unit A so that its activity is always 0.5 – now, the agent will always perceive 
food A as taking the value ‘5’.  

In some circumstances, this discrepancy between “actual” and “perceived” value of 
food A should reduce the agent’s comparison performance. If the actual value of food 
A is ‘2’, and the value of food B is ‘4’, our agent will “think” (wrongly) that food A is 
larger and could make the wrong decision. There are also circumstances in which this 
intervention should improve the agent’s performance. Suppose now that the true value 
of food A is in fact ‘2’ and food B is ‘1’; the perceived and actual comparisons be-
tween the two quantities both have the same “answer” (i.e. food A is larger), but the 
perceived comparison is arguably easier because the numerical distance between ‘5’ 
and ‘1’ is greater than that between ‘2’ and ‘1’. 

This logic leads us to define two groups of comparison trial, relative to particular 
PIL’s; Consistent trials are those for which PIL’s should improve comparison per-
formance, whereas Inconsistent trials are those for which PIL’s should reduce com-
parison performance. The hypothesis that some unit’s average activity does in fact 
“represent” can then be judged by reference to two “Representation Scores”; one for 
Consistent trials, and one for Inconsistent trials, calculated as in equation 3. 
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where Rj is the representation score for the j-th unit, and Pj() is a function that counts 
the number of correct comparison choices that the agent makes under the four possi-
ble conditions. The four conditions are: 

1) ( C, L ): Consistent comparisons made while the unit was subject to a PIL (i.e. 
is Lesioned). 

2) ( C, N ): Consitent comparisons, but where the unit is allowed to change freely 
(i.e. is Normal). 

3) ( I, L ): Inconsistent comparisons made while the unit was subject to a PIL (i.e. 
is Lesioned). 

4) ( I, N ): Inconsistent comparisons, but where the unit is allowed to change 
freely (i.e. is Normal). 
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A “positive” result is observed when R+ (the “Consistent Score”) is significantly 
positive, and R– (the “Inconsistent Score”) is significantly negative. 

3.2   Identifying "Representation-Like" Deviation from Normal Behaviour 

The current results are derived from the hypothesis that single units may represent 
food quantities. The average activities of these units – putatively localist representa-
tions – were collected during 100 repetitions of the comparison experiment described 
in section 2. This process associates each unit with one average activity for each food 
value (1-9) in each position (Food 1 or Food 2) – 18 values in total. 

Fig. 5 displays scatter plots for the 2-dimensional representation scores of each of 
the agent’s 25 hidden units. Each unit has a data point in both graphs. Each compo-
nent of a unit’s representation score is a mean average value. Scores that pass our 
“Filter test” will lie in the top-left quadrant of each graph; when applied to the units 
that correspond to these data points, PIL’s improve the agent’s performance during 
Consistent comparison trials, and reduce that performance during Inconsistent trials.  

T-tests for paired samples (Lesioned vs. Normal in both Consistent and Inconsis-
tent comparison conditions, N = 90 in both cases) confirm that the marked data points 
represent significant deviation from normal performance after the lesion (p < 0.05) in 
both Consistent and Inconsistent conditions.  

 

Fig. 5. Representation scores for the agent’s 25 hidden units, relative to the hypotheses that 
each unit represents either food group 1 (left) or food group 2 (right). Scores in the top-left 
quadrant of the graph indicate a positive result. Data labels denote the unit numbers of associ-
ated data points. 

 
Both of the food groups support multiple theories of unit-centric representation; 

relative to each food group there are three units that, when lesioned with PIL's, en-
gender the behavioural deviations that we hoped to discover. A visual inspection of 
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the associated representation scores is not sufficient to adjudicate between them. To 
make that step, we need to extend the method. 

3.3   Comparing Candidate Theories 

Returning once more to our hypothetical agent, consider what happends when we fix 
the value of unit A to ‘0.1’. In this case, the agent will “think” that Food A takes the 
value ‘1’, regardless of the true value of Food A, and its comparison performance 
should reflect that perception.  This logic is the foundation for our extension. 

We can collect a pair of performance scores based on this hypothesis; in the “Le-
sioned” condition, the PIL is applied and Food A takes some value other than ‘1’, 
whereas in the “Unlesioned” condition, no PIL is applied and Food A is always equal 
to ‘1’. After collecting analogous pairs for every other food value, relative to each of 
the two food groups, we have two sets of paired series of performance scores. To the 
extent that the PIL's have captured the agent's representational strategy, there should 
be a significant relationship between these paired series; we can capture that relation-
ship using linear regression. If the relationship is significant, its “variance explained” 
(R2) provides the metric that we need to compare competing theories. 

Table 1 displays the results when this Comparison test is applied to the data-points 
highlighted in Fig. 5. The values are derived from series generated by 10 repetitions 
of each experiment; regressed series are 90 elements long. 

Table 1. Linear regression results for each of the unit-centric theories identified by the Filter 
test. The shaded column corresponds to a theory that passes the Comparison test. 

 Food 1 Food 2 
Unit 2 5 14 6 7 17 

Significance 0.127 < 0.001 0.176 0.943 0.544 0.062 
R2 0.026 0.219 0.021 < 0.001 0.004 0.039 

Beta 0.162 0.476 0.144 0.008 -0.065 -0.198 
 
 

                                         

Fig. 6. The average activity of the agent’s hidden unit ‘5’, relative to the value of food group 1 

Only one of the units passes this Comparison test – unit 5 does justify an interpreta-
tion of representing food group 1 by its average activity. The quality of that justifica-
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tion depends on the R2 and Beta values associated with the regression; the quality 
increases as these variables approach the value ‘1’. This unit's activity  (Fig. 6) is 
inversely proportional to the value of “Food 1”, a pattern consistent with the “Accu-
mulator” theory [26] of neural quantity representation. 

4   Discussion 

Conventional approaches to cognitive modeling tend to focus on the isolated, func-
tional components of cognitive behaviour; methods that could facilitate more behav-
iourally integrated models have failed to attract great support among cognitive neuro-
scientists. One reason for this is the sense that the gulf between human / animal and 
artificial agent behaviour is too wide to permit useful comparisons. Another reason is 
that these techniques can challenge our fundamental notions of representation, which 
remains an important conceptual tool for understanding cognitive systems. 

The current work lays the foundations of a methodological framework designed to 
address these apparent inconsistencies. We have evolved agents whose behavioural 
performance is reminiscent of that found in biological organisms, and offered an ana-
lytical framework that permits the recovery of classically “recognisable” representa-
tions from those agents. Critically, our method quantifies the extent to which a repre-
sentational account of the agent’s behaviour can be justified – the extent to which the 
theory captures the underlying causal process. 

We chose to base the analysis on the thesis the average unit activities can be inter-
preted as conveying functionally significant representative information. Though po-
tentially controversial, this thesis is at least consistent with the practice of single-cell 
recording experiments (e.g. [25]), which emphasise average neural behaviour at the 
expense of the apparently random [27] variation in specific spike trains. The real 
justification for the choice flows from the results of the analysis itself; despite its 
restricted (Localist) scope, we have identified a unit that appears to represent quantity 
by its average activity. We expect that the strength of this result can be improved by 
relaxing the Localist restriction, and work to implement that extension is currently 
underway. 

Despite its limitations, the current version of this system yields an interesting im-
plication concerning the symmetry assumption in conventional cognitive modeling. 
Contemporary models of quantity comparison are invariably “functionally symmetri-
cal” in that both of the quantities-to-be-compared are treated in the same way; the 
current result exposes that assumption to unfavourable scrutiny. As mentioned in 
section 2.3, the evolved population reliably contains “non-discriminating” foragers. 
These agents display strongly asymmetrical behaviour, selecting food group 2 (ini-
tially on the agent’s right) regardless of the food values. This strategy emerges rather 
earlier in evolutionary runs than does the more “discriminating” variant; the implica-
tion is that quantity comparison processes emerge within a behaviourally asymmetri-
cal context.  

Given the context of behavioural asymmetry, it seems natural to predict that an 
agent's representational strategy will also be asymmetrical – though preliminary, our 
results do support this prediction because there is no equivalent of unit ‘5’ for food 
group 2. In other words, though we cannot say with confidence how the agent “repre-
sents”, we can predict that its distributed representations will not be symmetrical. 
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