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Nonword reading performance, that is, the ability to generate plausible pronuncia-

tions to novel items, has probably been the hardest test case for computational

models of reading aloud. This is an area where rule-based models, such as the Dual-

Route Cascaded (DRC) model, typically outperformed connectionist learning

models. However, what is the evidence that people apply rules when reading

nonwords? This was investigated in German. Nonwords were created that allowed

us to test whether people apply an abstract rule to determine vowel length or

whether they would be sensitive to the statistical distribution of vowel length in the

mental lexicon. The human data showed a great amount of variability in nonword

pronunciations. Simulations of these nonwords, where the DRC was contrasted

with a fully implemented and freely available German version of the connectionist

dual process model (German_CDP�), a model that learns the statistical mapping

between spelling and sound, showed that CDP� provided a better account of the
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data than the DRC. These results support the view that rule based models may
simply approximate patterns of language use rather than provide an accurate
description of the underlying cognitive machinery.

Keywords: Computational modelling; Connectionism; German; Reading Aloud;

Rules.

Whether human language processing (and, more generally, cognition) is best

described by rule-based or connectionist models is one of the most

fundamental and long standing debates in the cognitive sciences. The

traditional (Chomskian) view that productivity in language is based on

abstract symbolic rules (e.g., Clahsen, 1999; Marcus, Brinkmann, Clahsen,

Wiese, & Pinker, 1995) has been challenged by statistical learning (a.k.a.

connectionist) accounts in which ‘‘rule-governed’’ behaviour is assumed to

simply be a description of patterns of language use that occur, rather than a

description of the cognitive processes that cause it (e.g., Elman, 1993;

Rumelhart & McClelland, 1986; Gupta & Touretzky, 1994). The issue,

however, is far from being settled (cf. McClelland & Patterson, 2002; Pinker

& Ullman, 2002), with much of the debate being focused on ‘‘quasiregular’’

domains (Plaut, McClelland, Seidenberg, & Patterson, 1996), whereby a

limited number of idiosyncratic exemplars (i.e., exceptions) coexist with a

large number of ‘‘regular’’ exemplars that can be described by a set of rules.

A well-known example of a quasiregular domain is the relationship that

exists between spelling and sound at the sublexical level (i.e., the sublexical

process used when reading aloud). The ability to learn the spelling-to-sound

mappings and to generalise this knowledge to novel orthographic stimuli

(i.e., nonwords) has been ascribed both to rule-based (Coltheart, Curtis,

Atkins, & Haller, 1993; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001)

and to connectionist learning systems (Plaut et al., 1996; Seidenberg &

McClelland, 1989; Zorzi, Houghton, & Butterworth, 1998). The aim of the

present study is to offer new insights into the rules versus connections debate

by looking at a specific aspect of German orthography. In particular, in their

implementation of the German DRC model, Ziegler, Perry and Coltheart

(2000) noticed the existence of a simple abstract rule that can be used to

predict, for a very large number of words, whether a vowel is likely to be

pronounced long or short. This ‘‘metarule’’ takes into account higher level

abstract information about letters*that is, whether a letter is a consonant or

vowel and the number of consonants that occur after single letter vowels. If

there is more than one consonant (i.e., VC� words; e.g., Milch [milk]), the

vowel is typically pronounced short. If there is only one consonant (i.e., VC

words; e.g., rot [red]), the vowel is typically pronounced long. If such
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metarules exist, it is hard to see how connectionist models that only use

simple associative mechanisms (e.g., Zorzi et al., 1998) could learn them.

The German DRC (Ziegler et al., 2000) directly implements the metarule

in its set of rules. It therefore makes a strong prediction about German

nonword reading: people should be sensitive to this metarule, and the

sensitivity should be basically all or nothing. Thus, given a set of nonwords

that orthogonally manipulates the number of consonants after the vowel,

according to DRC, people should give pronunciations that use long vowels if

there is only one consonant and short vowels if there are more than one.

In contrast, nonword reading with the connectionist dual process model

(CDP�; Perry, Ziegler, & Zorzi, 2007) is based on a simple two-layer

connectionist network that is sensitive to the frequency at which letters and

sounds are associated in the lexicon (i.e., a consistency metric; e.g., Treiman,

Mullennix, Bijeljac-Babic, & Richmond-Welty, 1995). This type of network

has no way of learning complex metarules, and therefore predicts that the

pattern of sensitivity should generally reflect the statistical distribution of

simple letter�sound correspondences (see Appendix A).

A more specific prediction CDP� makes is with respect to nonwords and

how orthographically similar they are to real words. If sequences of

graphemes commonly occur together, CDP� may become sensitive to

such co-occurrences over and above simple grapheme�phoneme frequencies,

and this may affect the behaviour of the model. One such measure of word-

likeness is the frequency at which a nonword shares its body (i.e., the

orthographic equivalent of the rime) with other words. When conflict exists

between the pronunciation that could be derived from the most common

bodies and the pronunciation that could be derived from the most common

graphemes, CDP� is more likely to use a pronunciation based on the body

when the body is frequent (see Perry et al., 2007; Zorzi et al., 1998). This

makes the interesting prediction that CDP� and possibly people might give

different responses as a function of whether the body of a nonword is extant

or not.

To examine these predictions, we chose a set of nonwords that

orthogonally manipulated two factors. The first was simply the number of

consonants after the vowel, which was either one or more than one. The

second was whether the nonword used an extant or nonextant body. If

people perfectly complied with the rules when reading nonwords aloud, they

should give short vowel pronunciations to all VC� nonwords regardless of

whether they have extant or non-extant bodies. We also carried out

simulations with the German DRC (Ziegler et al., 2000) and a newly

developed German version of CDP� to investigate which of the models

would more closely capture the human data.
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METHODS

Participants

Thirty-four undergraduate students from the University of Eichstätt,

Germany, participated in the study.

Stimuli

Eighty nonwords were used. They were divided into four groups based on
whether they had an extant body and whether they had one or more than

one consonant after the vowel. All had single letter vowels. The nonwords

were chosen such that the onsets were matched quadruplet-wise across the

four groups, as were the vowels. The average letter length of the nonwords

was matched within VC (extant: 3.50; nonextant: 3.50) and VC� (extant:

4.95; nonextant 4.90) groups. Forty further nonwords that did not have a VC

or VC� body were added to the stimuli set and used as fillers.

Procedure

The stimuli were presented in the centre of the screen and participants were

asked to read them aloud as quickly and as accurately as possible. The

stimuli disappeared from the screen as soon as the voice-key registered that

the participant had made a response. The third author marked the stimuli as

having a long or short vowel. The stimuli were presented in a 24 point

Courier font in black on a white background.

RESULTS

Human data

All fillers were discarded from the analysis. One item (Witch) was removed

from the analysis because most participants gave the English loan-word

pronunciation. A further 6.03% of the remaining responses were removed
from the reaction times (RTs) and considered errors because participants

gave an implausible nonword pronunciation for them or stuttered whilst

producing them. The plausibility of nonword pronunciations was judged by

the data-coder. Note that in a transparent writing system, such as German,

the decision about what counts as a plausible pronunciation is obvious

because there is very little ambiguity about how letters should be

pronounced. Thus, most errors were due to lexicalisations or visual

confusions. For the RT analysis, items with response times greater than
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1200 ms or less than 100 ms were removed from the analysis (0.85%) as were

any remaining responses that were more than 3 SDs away from the mean

RTs calculated for each participant (0.49%).

The results showed that participants gave more short vowels with the

VC� versus VC nonwords (VC: 49.46%; VC�: 94.63%), F1(1, 33)�309.76,

pB.001; F2(1, 18)�131.50, pB.001. Participants also appeared to give

more short vowels in the nonextant body condition, F1(1, 33)�27.52, pB

.001; F2(1, 18)�6.47, pB.005, although this appeared to be restricted

mainly to the VC nonwords (VC�, extant vs. nonextant: 94.73% vs. 94.52%;

VC, extant vs. nonextant: 40.54% vs. 58.58%), causing a significant

interaction, F1(1, 33)�39.19, pB.001; F2(1, 18)�5.53, pB.05. The results

appear in Table 1.

In terms of RTs, participants read aloud the VC� nonwords more slowly

than the VC nonwords (VC�: 627.37 ms; VC: 589.86 ms), F1(1, 33)�53.33,

pB.001; F2(1, 18)�31.53, pB.001. There was also a main effect of extant

body status that was significant by participants but not items, F1(1, 33)�
17.92, pB.001; F2(1, 18)�2.42, p�.14 (nonextant: 613.66 ms; extant:

602.61 ms). The interaction, where VC nonwords showed a smaller effect

than VC� nonwords (5.51 ms vs. 19.46 ms), was significant only by

participants, F(1, 33)�4.69, pB.05; F2B1. The results appear in Table 2.

In terms of errors, most occurred in the VC� group with nonextant

bodies (VC/extant body: 2.50%; VC�/extant body: 3.68%; VC/nonextant

body: 3.24%; VC�/nonextant body: 11.18%). Accordingly, the main effects

of number of consonants, F1(1, 33)�12.69, pB.005; F2(1, 18)�13.56, pB

.005, and extant body status, F1(1, 33)�23.04, pB.001; F2(1, 18)�9.35,

pB.01, were significant, as well as their interaction, F1(1, 33)�13.94, pB

.005; F2(1, 18)�9.80, pB.01.

TABLE 1
Mean percentage of short vowels given on the nonwords for the models and

humans, as a function of extant body status and body type

Participant(s)

Human
CDP� CDP�

(without umlauts)

DRC

Body type Mean SD Mean Mean Mean

Nonextant

VC 59 24 45 56 0

VC� 95 5 80 88 100

Extant

VC 41 25 30 38 0

VC� 95 8 75 88 100
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To summarise these results, participants were sensitive to the number of

consonants after the vowel, but this sensitivity was not all or nothing, with

long vowels only being used around half the time in the VC condition. Thus,
it appears that our participants did not consistently use a consonant

counting rule to determine vowel length. In addition, it also appears that our

participants were more likely to give long vowel pronunciations with VC

nonwords if they had extant bodies. Thus, the frequency at which a body

occurred affected responses.

Simulation study

We conducted simulations with a German version of the rule-based DRC

and a German version of the connectionist learning model CDP�
(German_CDP�) in order to investigate which of the models would capture

more closely the human data.

German_CDP�. A German version of CDP� was constructed (the

executable version can be downloaded at http://ccnl.psy.unipd.it/CDP.html).

We used the lemma database from CELEX (Baayen, Piepenbrock, & van
Rijn, 1993) that was also used in the German DRC (Ziegler et al., 2000).

Identical choices as in DRC were also made when there were potential

options (i.e., -ss was used and not b, and capital and lower case letters were

treated identically). The model was trained as in Perry et al. (2007) except for

the following differences: (1) The pretraining phase used the set of German

spelling-to-sound correspondences (based on phonics teaching programmes)

from Hutzler, Ziegler, Perry, Wimmer, and Zorzi (2004), modified slightly to

fit into the grapheme-based coding scheme. (2) We trained the model for 500

TABLE 2
Mean reaction times for the models (cycles) and humans (ms), as a function of

extant body status and body type

Participant(s)

Human CDP� DRC

Body type Mean SD Mean SD Mean SD

Nonextant

VC 593 119 129 18 136 7

VC� 638 146 153 20 188 24

Extant

VC 587 115 129 18 131 13

VC� 618 131 149 21 181 23
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cycles rather than 100 because the database is around one-fifth the size of the

English one. (3) We allowed an attentional window of four letters instead of

three because the largest German grapheme has four letters (i.e., -tsch). The

graphemes used in the graphemic buffer of the model appear in Appendix B.

Although it is likely that parameters used may differ in different languages

(see, e.g., Perry & Ziegler, 2002; Ziegler, Perry, & Coltheart, 2003), there

is currently not enough data to effectively optimise the parameters of

CDP�_German. We therefore used exactly the same set of parameters as

Perry et al. (2007). To make sure that the results of the model were not due

to idiosyncratic factors with respect to the order of presentation of the

stimuli in training, we repeated the procedure 10 times and chose a median

model in terms of the proportion of short/long vowels given.

German DRC. The German DRC is fully described in Ziegler et al.
(2000). The parameters used are identical to the English version reported in

Coltheart et al. (2001).

Simulation results

All errors were removed from the analysis (DRC: 3; German_CDP�: 0). As

can be seen from Table 1, the two different models make quite different

predictions as to the expected number of long and short vowels that should

be given in the different categories. Not surprisingly, DRC predicted that the

metarule should be used*in fact, 100% of the time. Alternatively,

German_CDP� predicted that we should find many VC nonwords for

which people give a short vowel answer (37.5%). German_CDP� also

produced more short vowels with VC nonwords in the nonextant versus

extant condition (nonextant: 45%; extant 30%). However, the interaction

between vowel length and extant body status was not significant, FB1. An

uncorrected two-tailed paired samples t-test examining extant body status

with just the VC nonwords was marginally significant, t(19)�1.83, p�.083.

We also examined generalisation performance of the model without

umlauts (i.e., we excluded 16 of the 80 nonwords that contained the vowels ä,

ö, and ü). This was done because the distribution of umlauts and the vowels

they map onto is very different in monosyllabic as opposed to multisyllabic

words. For example, the umlauted letter ä most commonly maps onto short

vowels in the first syllable of disyllables, but maps onto short vowels in

monosyllables (disyllables: ä: 57.1%; ö: 42.7%; ü: 62.9%; monosyllables: ä:

25%; ö: 36.4%; ü: 60%). Given that we used a monosyllabic database for

training, the model may therefore be affected by potentially incorrect

statistical information presented to it. As can be seen from Table 1, when
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nonwords with umlauts are removed from the testing set, the proportion of

short vowel responses of German_CDP� increased in all four categories.

In summary, when the human data is compared with German_CDP�
and DRC, the distribution of short and long vowels given by participants

was much more similar to German_CDP� than DRC, especially with

respect to VC nonwords. That was confirmed by calculating root mean

squared error differences based on the mean proportion of times partici-

pants gave long or short vowels in the four different categories and the mean

results given by the models (including the umlauts) (German_CDP�: .15;

DRC: .36; note that smaller numbers indicate a better fit). The actual

difference between the percentages of long/short vowels given with VC

nonwords in the non-extant and extant body groups was almost the same in

the human (18%) and German_CDP� (15%) data.

In terms of RTs, German_CDP� predicted that there should be no

significant effect of extant body status, FB1 (nonextant: 141.1 cycles;

extant: 139.0), whereas DRC did predict a significant effect: F(1, 16)�6.18,

pB.05 (nonextant: 162.1 cycles; extant: 155.6 cycles). Both models predicted

a difference between the VC and VC� nonwords*that is, that there will be

a length effect in nonword reading, German_CDP�: F(1, 19)�31.23, pB

.001; DRC: F(1, 16)�124.58, pB.001. Neither model predicted an

interaction, German_CDP�: FB1; DRC: FB1.

DISCUSSION

The results of the study are clear. Nonword pronunciations of German

speakers appear to be much closer to what might be expected based on the

statistical distribution of letter�sound relationships in a lexical corpus (see

Appendix A) than the use of a metarule that relies on consonant counting.

The human data are generally consistent with German_CDP� because

humans showed the same kind of variability that was predicted by the

model. In fact, German_CDP� uses only a simple two-layer network that

cannot learn complex nonlinear rule-like patterns. Thus, even if metarules

might be useful at a descriptive level, people seem to be more sensitive to the

subtle statistical patterns present in the lexicon rather than all-or-none rules,

and this is what German_CDP� predicts.

In terms of RTs, the main result of interest was that whilst there was an

effect of extant body status, it was only significant by participants. This

result is essentially the same as that found by Ziegler, Perry, Jacobs, and

Braun (2001). The present study extends this finding by showing a

significant difference in nonword generalisation performance (as measured

by number of short/long vowels given) and error rates as well. Thus, extant
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body status does strongly affect processing, but RTs are not especially

sensitive to it.
Apart from the experiment reported here, there are a small number of

other data sets that can be used to examine the model. One such set (Ziegler

et al., 2001) examined the cross-language length effect, where German

readers show a larger length effect than English readers, both on words and

nonwords. In simulations of this effect, Perry and Ziegler (2002) showed

that, at least with nonwords, the DRC produced such an effect due to the

serial nature of the assembled phonology route. Perry and Ziegler demon-

strated that the reason for this was because, when assembling VC nonwords,
the DRC initially produces a long vowel when the VC part becomes available

but that this later gets revised to a short vowel when the VCC part becomes

available. This revision process slows processing down in German with VCC

nonwords in two ways. First, it means that the correct vowel becomes

available relatively late in the assembly processes. Second, when the correct

vowel becomes available, there is spurious activation left from a previously

incorrect vowel being assembled. Due to these two factors, the German

DRC is slower at producing longer nonwords than shorter ones compared to
the English DRC where this particular pattern does not exist.

We tested whether German_CDP� would produce the German-English

pattern in the same way as the DRC. The results showed that whilst

German_CDP� displays a similar pattern of revision due to the left�right

parsing of graphemes, the revision process is not strong enough to cause a

larger length effect in German than English. Whilst it may be possible to

reparameterise the model to accentuate this effect, we did not do this

because there is a more parsimonious explanation. In particular, in Perry et
al. (2007), we suggested that the parsing of graphemes into the graphemic

buffer requires focused spatial attention. In this respect, an important

difference between German and English is that the grapheme parsing

mechanism requires a three-letter attentional window in English but a four-

letter window in German. If we assume that using a four-letter window is

more attention demanding than using a three-letter window, this would

affect the speed at which graphemes can be parsed. In particular, it would

cause graphemes to become available more slowly, thus creating a greater
length effect in German compared to English. Whether or not this

hypothesis is correct is an empirical question that can be tested. If the

hypothesis is correct, the length effect in languages that do not require four-

letter attentional windows should be weaker than that found in German.

Apart from German_CDP�, there may be other types of model that may

be able to explain the data if modified. In terms of the DRC, one change that

might be used would be to get rid of the metarule that we proposed in Ziegler

et al. (2000) and use a set of all-or-nothing grapheme-phoneme conversion
(GPC) rules based on extant grapheme�phoneme correspondences instead.
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However, this would lead to an explosion of fairly complex context-sensitive

rules. This is because each vowel would need to have a large set of context-
sensitive rules that determine its pronunciation (basically, all existing

combinations of consonants that follow the vowel). For example, with just

single letter vowels with either one or more than one consonant after them

such as those examined here, there would need to be 71 VC and 303 VCC

rules, as this is how many unique extant sequences of VC and VCC letters

there are. Furthermore, if graphemes and not just the two letters after the

vowel are important (as the results from our extant body manipulation

suggest), but only letters are used to determine context (as is the case with
the DRC), then the rules needed would have to include some with five

context letters. Without these, some bodies that use five letters in their codas

but have only two graphemes (e.g., -atscht, which exists in words like klatscht

[he/she claps]) could not be distinguished from bodies that use four letters

but only one grapheme. Such a large set of context-sensitive rules would be

needed since the pattern of results whereby single-letter vowels often receive

both long and short vowel responses cannot be explained by the frequency of

context-free grapheme�phoneme correspondences*it can only be explained
when consonantal context is taken into account.

Although using a large number of rules to predict nonword pronuncia-

tions may not be especially parsimonious, based on the database, 92% of

words with VC� bodies and 25% of words with VC bodies used a short

vowel, and, thus, a set of rules based on extant words that use a large

amount of consonantal context may come close to approximating the overall

difference between VC and VC� nonwords with extant bodies. Despite this,

a problem with using large numbers of rules and not a metarule is that it is
not clear how nonwords with nonextant bodies could be read aloud. These

nonwords also showed a rather mixed pattern in terms of the proportion of

short and long vowels given, with VC� nonwords almost always being

assigned short vowels, but VC nonwords being assigned short vowels only

around half the time. This has implications for both the VC and VC�
nonwords.

In terms of VC� nonwords with nonextant bodies, these may create

problems because although their bodies were nonextant, they generally had
extant VC sequences within them. For example, whilst the -enst in spenst

does not exist as a body, the -en does (e.g., Gen [gene]). Thus, if a set of GPC

rules with consonantal context sensitivity was used, the -en would be

assembled with a VC rule, which would predict that nonwords like spenst

should have a long/short vowel distribution more similar to that of VC

words than VC� words, which is not what was found. One way around this

would be to mark all of the VC rules as ‘‘end’’ rules (i.e., rules that only apply

at the end of words). However, if this was done, the rules would simply
amount to a list of extant bodies, and, in addition, it would still not be
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possible to distinguish between vowels in VC and VC� nonwords with

nonextant bodies.
In terms of VC nonwords with nonextant bodies, these may create

problems because the relationship between the final consonant and the

vowel does not exist and hence could not be learnt. Thus there is simply no

way to predict a distribution with VC nonwords with nonextant bodies. In

this case, since single letter vowel grapheme�phoneme correspondences map

onto short vowels much more often than long vowels, VC nonwords with

nonextant bodies should almost always be given short vowels, which is not

what was found.
Given that all-or-nothing contextually sensitive rules could not predict

the data, a further possibility would be to allow probabilistic weighting of

rules. Thus, given the presentation of the same grapheme, different

grapheme�phoneme rules could be selected in different circumstances based

on lexical statistics. Using probabilistic rules might seem intuitively reason-

able and could perhaps explain some of the present data, but it is not

without its own problems. One in particular is that, at least for some types of

nonwords in English, people almost always choose regular pronunciations
(see Andrews & Scarratt, 1998), and thus a probabilistic rule system might

underestimate the number of regular pronunciations with some types of

nonword.

Even if probabilistic rules were added and they did not cause too many

nonregular pronunciations, it is not clear that simple grapheme�phoneme

correspondences would be enough to capture effects that occur at the rime-

body level, such as consistency effects with words (e.g., Jared, 2002). Thus,

one might need to add rules of different grain sizes, in addition to suggesting
some method by which small (e.g., phoneme�grapheme) and large (e.g.,

body�rime) rules would be selected when in competition with each other.

This would be a very big change to the present model.

Aside from practicalities of using a larger number of probabilistic

context-sensitive rules, radically changing the rules of DRC would clearly

soften some of the main tenets of a rule-based approach and some of the

main advantages, such as its rather simple and straightforward solution to

explaining how people read words and generalise to nonwords. Thus,
theoretically, updating the DRC to handle probabilistic data via the use of

probabilistic rules would mean that one of the great advantages of a rule-

based approach would be lost.

An interesting alternative to the models we have discussed so far would be

a lexical analogy plus rules model (Andrews & Scarratt, 1998; see Campbell,

1983, for such a model of spelling; and Albright & Hayes, 2005, for an

implemented computational model in a slightly different domain). This type

of a model first attempts to read nonwords by analogy to existing words. If
the analogical process fails, a set of rules are used. This means that the less
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word-like a nonword is (and hence the harder it is to construct a

pronunciation via analogy), the more likely rules are to be used when

reading it (see Andrews & Scarratt, 1998, for a discussion). In our case, this

means that VC nonwords with nonextant bodies should be read aloud with

long vowels more often than VC nonwords with extant bodies, because the

model would be more likely to default to a rule that uses a long vowel in the

nonextant case (assuming a metarule is used). This is the opposite of what

CDP� predicted and the opposite of what was found in the human data.

Again, this suggests that CDP� does a better job at predicting the

qualitative data pattern than other types of model.

A second type of analogy model1 worth considering is that of van den

Bosch and Daelmans (1998). This type of model is computationally

implemented and works by breaking words down into all the possible fixed

length letter sequences they have (seven-letter sequences are used in the

current model). The sequences themselves consist of a central letter and

context letters to the left and right of it and are stored with the phoneme that

cooccurs with the central letter. The pronunciation of nonwords is then

constructed by matching the sequences which can be created from the

nonword with the most commonly occurring sequences that have been stored

based on a nearest-neighbour algorithm. In its present form, it is unlikely

that this type of analogy model could capture the general pattern found here,

since the number of context letters to the right of the vowel is important in

determining the vowel pronunciation, and the current three-letter context is

not sufficient to capture the distinction between VC and VC� nonwords

that use a coda grapheme after the vowel that is three or four letters long.

This could potentially be fixed by allowing a five-letter context, but this

would have the undesirable effect of increasing the already high error rate of

the model. Given the lack of rigorous testing of this model on even the most

basic effects (e.g., length), further discussion of these possibilities seems

premature.

In conclusion, our results support the view that, in some instances, rule-

based models may simply approximate patterns of language use rather than

necessarily provide a description of how cognitive processing occurs (e.g.,

Gupta & Touretzky, 1994). The results here show that phonological

assembly in German_CDP�, which uses a network that learns statistical

patterns between spelling and sound, provides a better description of human

knowledge of productive spelling�sound relationships than rule-based

models, even in a case that could easily be handled by a single abstract

and highly predictive rule. Finally, the results demonstrate that detailed

analyses of nonword pronunciations beyond simple accuracy measures (e.g.,

1 We thank Padraic Monaghan for this suggestion.
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Andrews & Scarratt, 1998) can provide very constraining datasets even in

the case of a transparent orthography like German and support our
programme to extend the CDP modelling approach to German and other

European languages. Finally, we hope that the free availability of

German_CDP� will stimulate new research on reading aloud in German,

in both within- and cross-language studies.
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APPENDIX A

APPENDIX B

Graphemes used in the graphemic buffer of CDP�

Grapheme type Graphemes

Onset sch, kn, pf, ch

Vowel auh, ieh, äu, oa, ie, ai, au, ei, eu, ee, aa, oo, ou, ah, eh, ih, oh, uh, äh, öh, üh

Coda tsch, sch, tch, ch, ck, ff, ll, mm, ng, nn, pf, pp, rr, ss, th, ts, tt, tz, zz, dt, ph

Vowel pronunciation counts of all monosyllabic German words with a single letter
vowel grapheme in the German CELEX lemma database (Baayen et al., 1993)

Vowel pronunciation

Short Long Total

VC words

Vowel

A 8 47 55

Ä 0 7 7

E 9 11 20

I 17 5 21

O 9 40 49

Ö 0 7 7

U 9 36 45

Ü 0 7 7

Total 52 160 211

VC� words

Vowel

A 251 19 270

Ä 3 2 5

E 116 9 125

I 135 1 136

O 113 24 137

Ö 4 4 8

U 106 3 109

Ü 15 3 18

Total 743 65 808
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