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The representation of numerical and non-numerical ordered sequences was investigated in
children from preschool to grade 3. The child’s conception of how sequence items map onto
a spatial scale was tested using the Number-to-Position task (Siegler & Opfer, 2003) and
new variants of the task designed to probe the representation of the alphabet (i.e., letter
sequence) and the calendar year (i.e., month sequence). The representation of non-
numerical order showed the same developmental pattern previously observed for
numerical representation, with a logarithmic mapping in the youngest children and a shift
to linear mapping in older children. Although the individual ability to position non-
numerical items was related to the child’s knowledge of the sequence, a significant amount
of unique variance was explained by her type of number-line representation. These results
suggest that the child’s conception of numerical order is generalized to non-numerical
sequences and that the concept of linearity is acquired in the numerical domain first and
progressively extended to all ordinal sequences.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

How numerical information is represented in mind and
brain, as well as the developmental pathway that leads to
adult numeracy, is a major issue in numerical cognition re-
search. Considerable progress has been made towards
understanding how animals and humans represent numer-
osity that is, the cardinality of a set. However, numbers can
have other meanings, such as order or rank.

Ordinal information is not a distinctive property of num-
bers because it is shared with a variety of non-numerical
sequences that we learn in a conventional fixed order
during childhood. Two prominent examples are the alpha-
bet and the months of the year. Studies that investigated
the representation of ordinal information have found both
similarities and differences between numbers and non-
numerical ordered sequences, raising the question of
. All rights reserved.
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whether they might depend on shared cognitive and neural
substrates.

The first suggestion that numerical and non-numerical
ordered sequences share common characteristics comes
from the observation that comparing two items close in
the sequence takes longer than two items further apart. In-
deed, a graded distance effect, first reported for numbers in
the seminal work of Moyer and Landauer (1967), was also
found in a letter comparison task (Hamilton & Sanford,
1978; Jou & Aldridge, 1999; Van Opstal, Gevers, De Moore,
& Verguts, 2008) and even after learning a new abstract
ordering of elements (Woocher, Glass, & Holyoak, 1978).
Van Opstal, Gevers, et al. (2008) replicated the distance ef-
fect for both number and letters in a comparison task, but
they found distance-dependent priming effects only for
numbers. Thus, the striking similarity between numerical
and alphabetical order seems to be related to specific con-
ditions or processes.

A second line of evidence comes from studies that
investigated the spatial coding of numerical and non-
numerical ordered information. The spatial–numerical
association of response codes (SNARC; Dehaene, Bossini,
numerical and non-numerical order in children. Cognition (2012),
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1 Note that ordinal meaning of numbers has been shown do dissociate
from cardinal meaning in single-case neuropsychological studies (Delazer &
Butterworth, 1997; Turconi & Seron, 2002).

2 A recent study of Barth and Paladino (2011) argued that the data in the
Number-to-Position task are better accounted for by a proportion-
judgment model. This issue is taken up in the General Discussion.
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& Giraux, 1993), which indexes faster left-hand than right-
hand responses to small numbers and faster right-hand
than left-hand responses for larger numbers (in Western
cultures), has been extended to letters and months
(Gevers, Reynvoet, & Fias, 2003, 2004). That is, beginning
items of the sequence show an association with left
responses, whereas later items are associated to right
responses. This finding suggested that the representation
of letters and months is spatially organized with a format
that closely resembles the representation of numbers.
Thus, the concept of ‘‘number-line’’ (Dehaene et al., 1993;
Zorzi, Priftis, & Umiltà, 2002; Zorzi et al., 2012) would have
a parallel for non-numerical sequences, such as an ‘‘alpha-
bet-line’’ for letters. Interestingly, some individuals with
synaesthesia report seeing numbers, but also non-numeri-
cal sequences (letters, months, days of the weeks), as pro-
jected onto the external visual space along a specific
trajectory such as a line or a more complex graphical form
(e.g., Galton, 1880; Hubbard, Ranzini, Piazza, & Dehaene,
2009; Price & Mentzoni, 2008). Nevertheless, one aspect
of number processing that appears to be domain-specific
is its influence on the orienting of spatial attention. Num-
ber cues cause shifts of spatial attention (leftward for small
and rightward for large numbers; Fischer, Castel, Dodd, &
Prett, 2003), whereas letter cues have no effect (Casarotti,
Michielin, Zorzi, & Umiltà, 2007).

In a study on neglect patients, Zorzi, Priftis, Meneghello,
Marenzi, and Umiltà (2006) also showed similarities and
differences in the mental representations of numbers, let-
ters and months. When asked to bisect physical lines, pa-
tients tend to misplace the center of the line to the right
of the true midpoint, with a deviation that increases with
line length. Zorzi and colleagues (2002) found the same
spatial bias when patients were asked to mentally bisect
a verbally presented numerical interval. Indeed, patients
showed a systematic bias towards larger numbers (right
on the mental number line), which increased as a function
of the length of the interval (e.g., responding that 7 is the
midpoint between 1 and 9). Zorzi et al. (2006) observed
the same pattern of results for number interval bisection
but not for the mental bisection of intervals formed by let-
ters (e.g., L-P) or months (e.g., April–October). Patients
showed a bias towards later items (right on a putative
alphabet line) in the letter bisection task, but the bias
was not modulated by interval length. For month intervals,
the bisection bias was in the opposite direction that is to-
wards the beginning items. Similarities and differences be-
tween numerical and non-numerical bisections were also
observed in a subsequent study on neglect patients
(Zamarian, Egger, & Delazer, 2007). Finally, studies of
pseudoneglect, a general tendency of neurologically intact
individuals to favor the left side of space (Manning,
Halligan, & Marshall, 1990), revealed a slight ‘‘leftward’’
misplacement of the interval midpoint for both number
bisection (Göbel, Calabria, Farnè, & Rossetti, 2006) and let-
ter bisection (Nicholls & Loftus, 2007).

The hypothesis of a common mechanism for processing
numerical and non-numerical order has also found support
from neuroimaging studies (Fias, Lammertyn, Caessens, &
Orban, 2007). It is widely held that the horizontal segment
of the intraparietal sulcus (hIPS) plays a central role in the
Please cite this article in press as: Berteletti, I., et al. Representation of
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representation and processing of numerical information
(Dehaene, Piazza, Pinel, & Cohen, 2003, for review). Nota-
bly, in a comparison task, the activation of hIPS is modu-
lated by the numerical distance (Pinel, Dehaene, Rivière,
& LeBihan, 2001). Crucially, Fias et al. (2007) showed that
the hIPS is equally responsive during comparisons of
numerical magnitude and letter order. Participants in their
study had to judge which of two letters came later in the
alphabet and the resulting activations were compared with
those obtained when the task was to judge which of two
numbers was larger. Highly similar neural networks were
activated by number and letter comparisons, and the con-
junction between number and letter comparisons showed
selective activation of bilateral hIPS. Thus, hIPS activation
was specifically related to order comparison, suggesting
that its role might be to represent ordinality rather than
just quantity/cardinality (Nieder, 2005). Further support
to the hypothesis that hIPS is involved in the representa-
tion and processing of non-numerical ordered sequences
is provided by the study of Ischebeck et al. (2008), who
found no significant difference in IPS between ordered gen-
eration of months and numbers, compared to the genera-
tion of non-ordered names of animals. However, a recent
study of Zorzi, Di Bono, and Fias (2011) has questioned
the significance of the overlap in cortical activation
between number comparison and letter comparison. Anal-
yses of the fMRI data of Fias et al. (2007) using multivariate
classifiers showed that number and letter comparison can
be separated within hIPS even though the two tasks
yielded the same metric of behavior. These results recon-
cile the neuroimaging data with the neuropsychological
evidence suggesting dissociations between numbers and
other non-numerical ordered sequences (Zorzi et al.,
2006).1

The studies reviewed above, all concerned with adult
participants, are somewhat inconclusive because they
show both associations and dissociations between numer-
ical and non-numerical order. Developmental studies
might provide further insights into this issue by looking
at how the different representations develop in children.
Are numerical and non-numerical ordered sequences rep-
resented in a similar format? What developmental pattern
leads to the acquisition of these representations? In the
numerical domain, seminal studies by Siegler and Booth
(2004) and Siegler and Opfer (2003) have shown that chil-
dren’s representation of numbers, indexed by how num-
bers are placed on a spatial scale (i.e., ‘‘number lines’’
with 0 at one end and 100 or 1000 at the other) change
with age during the first years of school and shift from log-
arithmic to linear.2 For example, children at grade 2 and 4
overestimated small numbers and compressed large num-
bers to the end of the scale (logarithmic positioning) when
the context was unfamiliar (0-to-1000), but positioned num-
bers linearly in a familiar context (0-to-100). In contrast,
numerical and non-numerical order in children. Cognition (2012),
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grade 6 children positioned numbers linearly on both small
and large scales, just like adults. Interestingly, younger chil-
dren treated the same numbers differently – identical num-
bers being placed linearly or logarithmically according to the
interval of reference – indicating how the context influenced
the numerical representation deployed in the task and how
the choice among these multiple representations is depen-
dent of age and experience. Berteletti, Lucangeli, and Zorzi
(2010) extended these findings to a younger population of
preschoolers, who showed the same transition from
logarithmic to linear positioning on smaller number lines
(1–10 and 1–20).

To the best of our knowledge, no study to date has inves-
tigated how children represent non-numerical ordered se-
quences and whether it may change over development as
previously shown for numbers. We therefore developed
variants of Sigler and Opfer’s (2003) Number-to-Position
(NP) task to investigate whether non-numerical ordered se-
quences can be readily mapped onto lines, as it is the case
for numbers, and whether the type of representation used
by children shows a developmental trend resembling the
pattern that has been established for numbers. As noted
above, the NP task has been an effective tool for uncovering
the child’s mental representation of numbers as well as its
developmental trajectory.

The developmental pattern with an initial logarithmic
phase followed by a shift to linear positioning might be a
distinctive feature of numbers, perhaps driven by their un-
ique property of conveying cardinality. Alternatively,
non-numerical ordered sequences might show the same
developmental pattern of numbers, which would fit well
with the similarities across domains observed in adult par-
ticipants and the fact that they share the ordinal dimen-
sion. However, this would lead to the question of how
the transition to linearity is related across domains. The
timing of the shift might be independent across numerical
and non-numerical orders; alternatively, linear positioning
for non-numerical ordered sequences might be observed
only once it is acquired for a comparable numerical range.
The latter finding would suggest that linearity in the repre-
sentation of non-numerical ordered sequences is a general-
ization from the numerical domain.

We examined the performance of preschoolers3 and pri-
mary school children (grade 1, 2 and 3) in several position-
ing tasks. We presented two classic number lines, as
previously used by Siegler and collaborators, as well as
two new lines where children had to position letters and
months, respectively. Thus, the Letter-to-Position (LP) task
required to position letters on a line marked with ‘‘A’’ and
‘‘Z’’ at its ends, whereas the Month-to-Position (MP) task re-
quired to position months on a line marked with ‘‘January’’
and ‘‘December’’ at its ends. Moreover, to allow a direct
comparison with the numerical representation, we also
3 In the Italian education system, primary school starts at 6 years of age.
Children aged between 3 and 5 years can attend kindergarten but this is not
compulsory and it does not imply formal teaching (indeed, classes are often
mixed in terms of age groups). We will use the term preschooler
throughout the article to define our youngest group of children. This term
highlights the absence of formal teaching compared to the meaning of
kindergarten in other countries.
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presented two new number lines matched to the non-
numerical lines in terms of interval length (e.g., the number
line matched to the month line was marked 1 and 12 at its
ends). These number lines allowed us to directly test the
generalization hypothesis. Indeed, if linearity for numbers
is generalized to non-numerical ordinal sequences, perfor-
mance on the non-numerical lines should be predicted by
the performance on the corresponding number lines.
2. Method

2.1. Participants

A total of 136 children from 14 different schools of
north-eastern Italy ranging from the last year of kindergar-
ten to grade 3 took part in the study. There were 51
preschoolers (mean age = 5 yr 8 mo, SD = 5.4 mo, range:
58–79 mo, 27 girls), 28 children from grade 1 (mean
age = 6 yr 11 mo, SD = 3.9 mo, range: 72–89 mo, 15 girls),
35 children from grade 2 (mean age = 7 yr 11 mo,
SD = 3.4 mo, range: 90–104 mo, 18 girls), and 22 children
from grade 3 (mean age = 8 yr 9 mo, SD = 4.4 mo, range:
96–116 mo, 9 girls).

2.2. Procedure

Trained teachers from each school met with the chil-
dren individually during school hours in a quiet classroom
for about half an hour. Order of experimental tasks was
randomly presented to children. Tasks were presented as
games, no time limit was given and items or questions
could be repeated if asked but neither feedback nor hints
were given to the child. Children were free to stop at any
time.

2.2.1. Sequences knowledge
All children were tested on their minimal knowledge of

numbers, letters and months of the year. Instructions for
the number sequence were to count as far as they knew
(e.g., ‘‘Do you know the numbers? Try to tell me all the
numbers you know’’), but were stopped whenever they
reached 30. In the same way they were asked to say all
the letters and months they knew.

2.2.2. Number-to-Position task (NP task)
Numerical estimation was assessed as in Siegler and

Opfer (2003). Children were presented with 25-cm long
lines in the center of a horizontal A4 sheet. Two different
lines were administered: 0–100 and 0–1000. The ends of
the lines were labeled on the left by 0 and on the right
by either 100 or 1000. The number to be positioned was
written in the upper left corner of the sheet (rather than di-
rectly above the line) to avoid its use as visual reference.
Numbers to be positioned for the 0–100 line were: 2, 3,
4, 6, 18, 25, 48, 67, 71, 86; and for the 0–1000 line: 4, 6,
18, 25, 71, 86, 230, 390, 780, 810 (corresponding to sets
A and B for the same lines used in Siegler & Opfer, 2003).
Items were completely randomized within each interval
and were presented separately from each other to avoid
influence from previous positioning. Instructions given at
numerical and non-numerical order in children. Cognition (2012),
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the beginning were: ‘‘We will now play a game with the
number lines. Look at this page: you see there is a line
drawn here. I want you to tell me where some numbers
are on this line. When you have decided where the number
goes, I want you to make a mark with your pencil on this
line.’’ To ensure that the child was well aware of the inter-
val size, the experimenter would point to each item on the
sheet while repeating for each item: ‘‘This line goes from 0
to 100 (1000). If here is 0 and here is 100 (1000), where
would you position 50 (500)? The experimenter always
named the number to be positioned.

For both intervals there was a practice trial that used
numbers 50 or 500 according to the interval. Experiment-
ers were allowed to rephrase the instructions as many
times as required without making suggestions as to where
to place the mark both for practice and test trials.
2.2.3. Non-numerical lines task
The Letter-to-Position (LP) task and the Month-to-Posi-

tion (MP) task as well as the corresponding numerical
interval lines were presented in the same way as the NP
task. The stimuli used for the LP task were: ‘‘B, E, H, L, N,
P, S, V’’. For the MP task, children had to position: ‘‘Febru-
ary, April, July, September, November’’. The corresponding
numerical lines were 1–21 for the Italian alphabet and
1–12 for the months of the year. These number lines
started from 1 rather than 0 (also see Berteletti et al.,
2010, who used 1–10 and 1–20 number lines) to match
non-numerical lines that start with the first element of
the sequence. Moreover, the numbers to be positioned cor-
responded to the serial position of the chosen non-numer-
ical items (e.g., items ‘‘B’’, and ‘‘February’’ were replaced by
number 2).
3. Results

3.1. Sequence knowledge

Mean correct responses and standard deviation were
calculated for all sequences. The maximum score was 30
for numbers, 21 for letters (according to the Italian alpha-
bet, all other letters were not considered) and 12 for
months. Two scores were initially computed: one was
the overall number of items produced for each sequence
without repetitions and in any order; the second
considered only items given in the correct order, without
repetitions and with a maximum gap of 2 in-between
Table 1
Mean Lenient and Strict scores (standard deviations in parenthesis) for the Seque

Class Numbers (Max score 30) Letters (Max

M (SD) Lenient
score

M (SD) Strict
score

Range M (SD) Lenie
score

Preschool (n = 51) 21.9 (8.9) 21.4 (9.2) 0–30 5.9 (6.9)a

Grade 1 (n = 28) 29.4 (1.9) 29.4 (2) 20–30 16.8 (6.4)
Grade 2 (n = 35) 29.5 (1.9) 29.1 (3.4) 16–30 19.3 (4.6)
Grade 3 (n = 22) 30 (0) 28.6 (6.4) 0–30 20.3 (1.6)
Mean 26.7 (6.7) 26.2 (7.4) 13.9 (8.4)

a One participant did not complete the task.

Please cite this article in press as: Berteletti, I., et al. Representation of
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items (e.g. ‘‘a, b, e, f, g. . .’’ was considered as an acceptable
sequence but not ‘‘a, b, f, g. . .’’). Correlations between the
two types of scores were very high (from r = .96 to
r = .99), therefore only the second scoring criterion was re-
tained for the subsequent analyses. Means and SDs as a
function of class and sequence are presented in Table 1.
We also calculated scores according to the strictest crite-
rion that allows no gaps. These are presented in Table 1
to allow comparison with the more lenient scoring crite-
rion. We considered the latter as more representative of
the child’s sequence knowledge than the strictest criterion
because some children (especially 3rd graders) skipped 1
or 2 items in an otherwise complete and correct sequence
in the rush of showing how well they could perform (that
was particularly evident for numbers; see Table 1). Note
that the correlations between strict and lenient scores
were very high (numbers: r = .88; letters: r = .97; months:
r = .97) and that the results of all subsequent analyses
involving sequence scores remained virtually unchanged
when using the strict scores.

Separate one-way analyses of variance (ANOVA) on
scores for each sequence were calculated introducing
class as a factor. For all sequences, class was significant
(Numbers: F(3, 132) = 20, p < .001, g2 = .31; Letters: F(3, 131) =
56, p < .001, g2 = .56; Months: F(3, 131) = 102, p < .001,
g2 = .70). Post-hoc comparisons highlighted that the signif-
icant improvement, as could be expected, occurred between
preschool and the primary school for all sequences (pre-
school vs. all primary grades for the three sequences:
ps < .001, see Table 1). Moreover, between grade 1 and 3 a
significant improvement also occurred for months (p < .05).

The a priori hypothesis was that improvement should
occur with level of instruction for all sequences. All tasks
positively correlated with class (r = .48, .69 and .77 for
numbers, letters and months respectively) and with each
other once class was partialled out (Numbers–Letters:
r = .42; Numbers–Months: r = .33; Letters–Months: r = .40).

3.2. NP task

For the NP task, analyses were conducted according to
the method recommended by Siegler and Booth (2004)
and Siegler and Opfer (2003). Six children were excluded
for not completing enough items on these lines. Estimation
accuracy was computed using the Percentage of Absolute
Error (PAE) of estimation for each participant (corrected
with the formula 2�arcsin

p
(PAE/100) for statistical test-

ing). This was calculated as follows:
nce knowledge task.

score 21) Months (Max score 12)

nt M (SD) Strict
score

Range M (SD) Lenient
score

M (SD) Strict
score

Range

5.1 (6.1) 0–21 1.9 (3.4)a 1.8 (3.1) 0–12
15.6 (7.3) 0–21 9.4 (3.8) 8.9 (3.9) 1–12
18.7 (5) 3–21 11.3 (2.1) 11 (2.6) 3–12
19.5 (3.4) 8–21 11.9 (.5) 11.8 (.6) 10–12
13.1 (8.5) 7.5 (5.3) 7.2 (8.5)

numerical and non-numerical order in children. Cognition (2012),
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PAE ¼ ðestimate� real valueÞ=line of estimates:

A mixed ANOVA on PAE was computed with class as a
between-subject factor and interval (0–100 and 0–1000)
as within-subject factor. Results indicated that both factors
were significant (group: F(3, 126) = 38, p < .001, g2 = .47;
interval: F(1, 126) = 355, p < .001, g2 = .69). Mean PAE was
17% (SD = 10%) for the 0–100 line and 32% (SD = 12%) for
the 0–1000 line. Post-hoc comparison indicated that the
precision of estimation significantly increased throughout
classes (all ps < .005), except between grade 1 and 2. Mean
PAEs across class (from preschool to grade 3) were 27%,
14%, 12% and 8% for the 0–100 line and 38%, 36%, 28%,
and 19% for the 0–1000 line. These data closely resemble
those obtained by Siegler and collaborators in their
seminal studies (Booth & Siegler, 2006; Siegler & Booth,
2004). The interaction between class and interval was also
significant, highlighting that the precision of estimation
changed at different times for the two intervals
(F(3, 126) = 10, p < .001, g2 = .06). Repeated contrasts indi-
cated a significant improvement from preschool to grade
1 (p < .001) and from grade 2 to grade 3 (p < .01) for the
0–100 line. For the 0–1000 line, accuracy improved signif-
icantly from grade 1 to 2 (p < .05) and from grade 2 to 3
(p < .001).

To analyze the pattern of the estimates, the fit of loga-
rithmic and linear functions were computed first on group
medians and then for each individual child. For group
medians, the difference between models was tested with
a paired-sample t-test on the absolute distances between
children’s median estimate for each number and (a) the
predicted values according to the best linear model and
(b) the predicted values according to the best logarithmic
model. If the t-test indicated a significant difference be-
tween the two distances, the best fitting model was attrib-
uted to the group. For preschoolers, both intervals were
best represented by a logarithmic model (0–100 line:
Fig. 1. Best logarithmic and linear models for each class in the Number-to-Positio
100 line are in the top row and those for the 0–1000 line are in the bottom row
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t(9) = 2.86, p < .05, R2-log = .93 and R2-lin = .67; 0–1000
line: t(9) = 2.56, p < .05, R2-log = .83 and R2-lin = .40). For
grades 1 and 2, the estimates approached linearity for
the 0–100 line but the two models were not statistically
different (grade 1: R2-lin = .88, R2-log = .98; grade 2: R2-
lin = .95, R2-log = .96). In contrast, their performance on
the 0–1000 line was markedly logarithmic (grade 1:
t(9) = 3.41, p < .01, R2-log = .93 and R2-lin = .50; grade 2:
t(9) = 3.72, p < .01, R2-log = .99 and R2-lin = .69). The esti-
mates of grade 3 children were best fit by the linear model
for the smaller interval and approached linearity on the
larger interval (0–100 line: t(9) = �3.22, p < .05, R2-
lin = .99 and R2-log = .89; 0–1000 line: R2-lin = .85 and R2-
log = .94). Graphs of median estimates and the best fitting
model are presented in Fig. 1.

Fitting individual children’s estimates allows further
characterization of the developmental patterns (Siegler &
Opfer, 2003). The best fitting model between linear and
logarithmic was attributed to each child whenever one
was significant. If for example, both models were signifi-
cant but the logarithmic R2 was the highest then the child
was attributed a logarithmic representation. In the case
where both were not significant, the child was considered
unable to position numbers. Therefore, for each line chil-
dren could be classified as having linear, logarithmic or
no representation.

Spearman’s rank correlations were computed between
class (preschool, grade 1, 2 and 3) and type of representa-
tion (no representation, logarithmic and linear) separately
for each line (0–100 line: rs = .62, p < .001, one-tailed;
0–1000 line: rs = .48, p < .001, one-tailed). Moreover, the
type of representation on one interval was significantly
correlated with the type of representation on the other
interval when class was partialled out (rs = .40, p < .001,
one-tailed). Table 2 reports the distribution of children
(in percentages) as a function of type of representation
n task. Median estimates are plotted against real values. Graphs for the 0–
. Both models are plotted when they are not statistically different.

numerical and non-numerical order in children. Cognition (2012),
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Table 2
Distribution of children (%) as a function of the type of representation on
the two number lines.

0–1000 Line 0–100 Line Total

None Logarithmic Linear

None 16 4 1.5 21.5
Logarithmic 2 47 21 70
Linear 1.5 0 7 8.5
Total 19.5 51 29.5 100

Table 3
Distribution of children (%) as a function of the type of representation in the
LP task and matched NP task.

LP task 1–21 NP task Total

None Logarithmic Linear

None 15 6 5 26
Logarithmic 1 9 12 22
Linear 2 5 45 52

Total 18 20 62 100
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on the two lines. Finally, correlations were also computed
between type of representation for each line and counting
score with class partialled out. The correlation was signif-
icant only for the 0–1000 line (rs = .27, p < .001, one-tailed;
rs = .09, n.s. for the 0–100 line). The weak correlation is in
agreement with the findings of Berteletti et al. (2010),
who showed that the type of numerical representation in
preschoolers had a good correlation with their scores in a
numerical ordering task (either symbolic or non-symbolic)
but it did not correlate with finger counting scores.

Overall, these results replicate and confirm previous
findings on the NP task, that is, a developmental transition
from a logarithmic to a linear representation (Berteletti
et al., 2010; Siegler & Booth, 2004; Siegler & Opfer, 2003).

3.3. Non-numerical lines

Results for each non-numerical line and its matched
number line are presented separately. All analyses fol-
lowed the procedures used for the NP task. Six children
had to be excluded from the analyses of the LP task and se-
ven from the analyses of the MP task for not completing
enough items and dropping out of the experimental ses-
sion (5 children form preschool, 1 from grade 2 and 1 from
grade 3).

3.3.1. LP task and 1–21 NP task
A mixed ANOVA on PAE was computed with class as a

between-subject factor and type of line (alphabet line vs.
1–21 line) as a within-subject factor. The main effects of
class and type of line were significant (F(3, 126) = 37,
p < .001, g2 = .47, 25%, 11%, 11% and 10% from preschool
to grade 3; F(1, 126) = 7.3, p < .01, g2 = .05), highlighting an
improvement in estimation accuracy with education level
and a better performance for the number line compared
Fig. 2. Best fitting models for each class in the LP task and the matched 1–21 NP
and the ordinal value for letters (triangles). The models’ fits are represented wi
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to the alphabet line. Mean PAEs were 17% (SD = 12%) for
the LP task and 15% (SD = 11%) for the 1–21 NP task. A re-
peated contrast indicated a significant improvement in
estimation accuracy from preschool to grade 1 (p < .001).

For group medians, preschoolers’ estimates in the LP
task were best represented by a logarithmic function
(R2-log = .84 and R2-lin = .66, t(7) = 2.79, p < .05) whereas
for the corresponding NP task the difference between
the two types of representations was not significant
(R2-lin = .95 and R2-log = .98). The good fit of the linear
model indicates that preschoolers approach linearity on a
small numerical interval (Berteletti et al., 2010). In grades
1, 2 and 3, the way children positioned letters was equally
well fit by the linear and the logarithmic models (R2-lin =
.98, .97, .99, respectively; R2-log = .92, .87, .91, respec-
tively), whereas numbers were positioned linearly (grade
1: R2-lin = .99 and R2-log = .89, t(7) = �2.82, p < .05; grade 2:
R2-lin = .98 and R2-log = .83, t(7) = �2.77, p < .05; grade 3:
R2-lin = .97 and R2-log = .84, t(7) = �3.21, p < .05; Fig. 2).

Subsequently, for each task (LP and 1–21 NP) each child
was assigned a linear, logarithmic or no representation.
One-tailed Spearman’s rank correlations were significant
between class and type of representation, separately for
each line (LP: rs = .53, p < .001; 1–21 NP: rs = .57, p < .001)
as well as between the representations for the two lines
(Table 3) once class was partialled out (rs = .47, p < .001).
3.3.2. MP task and 1–12 NP task
The mixed ANOVA on PAE showed a significant main

effect of class (F(3, 125) = 25, p < .001, g2 = .38; mean PAEs
26%, 14%, 14% and 10% from preschool to grade 3), a main
effect of tasks (F(1, 125) = 5.58, p < .05, g2 = .04; mean PAEs
17%, 18%, respectively for the MP task and the NP task)
and a significant interaction between class and task
(F(3, 125) = 5.35, p < .005, g2 = .11). Preschoolers were more
task. Median estimates are plotted against real values for numbers (dots)
th dashed lines for the LP task and solid lines for the NP task.

numerical and non-numerical order in children. Cognition (2012),
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Fig. 3. Best fitting models for each class in the MP task and the matched 1–12 NP task. Median estimates are plotted against real values for numbers (dots)
and the ordinal value for months (triangles). The models’ fits are represented with dashed lines for the MP task and solid lines for the NP task.
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accurate with numbers than months (mean PAE 24% vs.
29%), though the comparison did not reach significance
(F(1, 45) = 3.7, p = .06, g2 = .07). In contrast, grade 1 and
grade 3 children were more accurate in positioning months
than numbers (grade 1: mean PAE 12% vs. 16%,
F(1, 26) = 6.69, p < .05, g2 = .20; grade 3: mean PAE 8% vs.
13%, F(1, 20) = 11, p < .005, g2 = .36).

Subsequently, the fit of logarithmic and linear functions
were computed on group medians first and then for each
individual child. The t-test on the logarithmic and linear
models for preschoolers’ performance in both MP and
matched NP tasks did not reach significance, indicating
that both models equally fit the data (Fig. 3). Nevertheless,
a slight better R2 was found for the logarithmic fit when
positioning months and a better linear R2 was found for
the matched number line (R2-log = .84 and R2-lin = .68 for
the MP task, R2-log = .90 and R2-lin = .97 for the 1–12 NP
task). First graders positioned months linearly (t(4) = -
3.74, p < .05, R2-lin = .99 and R2-log = .90), whereas the fits
of the two models did not differ for the numerical esti-
mates (R2-log = .74 and R2-lin = .88). For the two older
groups, both tasks were best fit by a linear model (MP task:
t(4) = �3.48, p < .05, R2-lin = .98 and R2-log = .89 for grade 2
and t(4) = �3.7, p < .05, R2-lin = .99 and R2-log = .92 for
grade 3; the 1–12 NP task, t(4) = �2.85, p < .05, R2-lin = .92
and R2-log 2 = .78 for grade 2 and t(4) = �3.7, p < .05, R2-
lin = .97 and R2-log = .86 for grade 3).

Again, each child was attributed a representation for the
MP and the 1–12 NP tasks. Therefore, for each line, children
could have a linear, logarithmic or no representation. One-
tailed Spearman’s rank correlations were significant be-
tween class and type of representation for each task (MP
task: rs = .59, p < .001; 1–12 NP task: rs = .39, p < .001) as
well as between the representations for each task (Table 4)
with class partialled out (rs = .33, p < .001).
Table 4
Distribution of children (%) as a function of the type of representation in the
MP task and matched NP task.

MP task 1–12 NP task Total

None Logarithmic Linear

None 22 2 13 37
Logarithmic 3 1 9 13
Linear 5 5 40 50

Total 30 8 62 100
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3.4. Regression analyses

The analyses of the LP and MP tasks showed that chil-
dren progress to a linear positioning of the items, even
though this is not explicitly required by the task and it is
not formally implied by the knowledge of the non-numer-
ical order. For example, knowledge of the alphabet does
not imply that the distance between ‘‘A’’ and ‘‘C’’ is twice
the distance between ‘‘A’’ and ‘‘B’’. There are two possible
explanations for the linearization of the representation of
non-numerical sequences. One is that children generalize
the linearity principle to all ordinal sequences, whether
or not they are numerical, as long as the context is familiar.
The alternative hypothesis is that logarithmic and linear
positioning do not depend on the properties of the numer-
ical domain but represent a general regularization phe-
nomenon: that is, the more items of the sequence are
known, the more they are regularly spaced onto the line.
To investigate this issue, we performed a set of fixed-entry
multiple regression analyses to account for the type of rep-
resentation deployed by individual children in the various
estimation tasks. Class was always introduced as first pre-
dictor to partial out the general effect of schooling. The
score on the relevant sequence (numbers, alphabet or
months) was introduced as second predictor to assess the
role of specific sequence knowledge. Indeed, as shown by
Siegler and colleagues (Siegler & Booth, 2004; Siegler &
Opfer, 2003 also see Berteletti et al., 2010), children’s
ability to position numbers in the NP task is strongly influ-
enced by the familiarity with the numerical context, that
is, how well children master the numbers included in the
interval. Finally, for the LP and MP tasks, we introduced
as third predictor the type of representation displayed by
the child on the matched NP task (1 for no representation,
2 for logarithmic and 3 for linear).

If the latter explains unique variance, we can conclude
that the representation deployed in the non-numerical
task is influenced by the child’s numerical representation
and it cannot be fully explained by specific knowledge of
the sequence. Table 5 presents the percentages of unique
variance explained by each predictor in the regression
analyses.

Inspection of Table 5 reveals that even though the larg-
est proportion of variance was explained by educational le-
vel, domain-specific knowledge (i.e., score on the relevant
sequence) significantly influenced the ability to estimate
in a linear way across all tasks, whether numerical or
numerical and non-numerical order in children. Cognition (2012),
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Table 5
Variance explained (%) at each step of the fixed-entry multiple regression analyses.

1st Predictor
(N participants) LP (129) MP (127) 1–21(132) 1–12(133)

Class 27** 33** 32** 15**

2nd Predictor
Alphabet score 10**

Month score 10**

Number score 10** 6**

Total variance 37 43 42 22

3rd Predictor
Representation 1–21 11**

Representation 1–12 3*

Total variance 48 46

Note: Each column corresponds to the percentage of unique variance explained by each predictor. Class was introduced as first predictor, score on the
relevant sequence as second predictor and, for the LP and MP tasks, type of representation for the matched NP task.

* p < .05.
** p < .001.
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non-numerical. More crucially, the representation de-
ployed in the non-numerical tasks was significantly influ-
enced by the quality of numerical representation even
after partialling out the effects of schooling and domain-
specific knowledge.

To further investigate the role of sequence knowledge in
achieving linear positioning of numbers, letters and
months, we selected children who obtained 100% correct
in the sequence knowledge task. The hypothesis that linear-
ity of estimation is a general regularization phenomenon
leads to the prediction that these children would only de-
ploy linear positioning. For numbers, we focused on the
1–21 NP task because sequence knowledge for numbers
was only assessed up to 30. Ninety-three children had ceil-
ing scores in the counting task: 73% of them were linear,
whereas 23% were logarithmic and 4% were unable to posi-
tion items in a meaningful way. For the LP task, of the 63
children who were at ceiling in the alphabet score, 73%
showed linear positioning, 21% showed logarithmic posi-
tioning and the remaining 6% were unable to position items
in a meaningful way. For the MP task, of the 67 children who
were at ceiling in the months score, 76% positioned months
linearly, 15% showed logarithmic positioning and the
remaining 9% were unable to position items in a meaningful
way. These results show that perfect sequence knowledge is
not a sufficient condition for linearity of estimation.

Finally, to further support our claim that linearity in the
numerical domain precedes linearity in the non-numerical
domain, we assessed whether the type of representation in
the numerical domain, across the entire sample of children,
had a higher rank (1 = no representation, 2 = logarithmic
and 3 = linear) than the representation in the non-numer-
ical domain. A one-tailed Wilcoxon matched pair test for
ordinal-categorical variables showed that this was true
for both LP and MP tasks (1–21 NP vs. LP: Z = 3.133,
p < .001, r = .276; 1–12 NP vs. MP: Z = 2.124, p < .05,
r = .187).
4. Discussion

The aim of the study was to investigate whether chil-
dren can map non-numerical ordered sequences onto lines
Please cite this article in press as: Berteletti, I., et al. Representation of
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and whether the type of representation deployed reveals a
similar developmental trend as it has been shown for num-
bers (Siegler & Opfer, 2003; Siegler & Booth, 2004; Berte-
letti et al., 2010).

First, we replicated previous results on 0–100 and 0–
1000 number lines. Children showed the classical develop-
mental pattern with an initial logarithmic phase followed
by a shift to linear positioning. Moreover, some children
showed different patterns according to the interval: they
positioned numbers linearly on the most familiar interval
but reverted to a logarithmic positioning on the larger
and less familiar interval.

Second, we compared performance on non-numerical
lines (i.e. LP and MP tasks) with their matched numerical
lines (i.e. 1–21 and 1–12 NP tasks). In all tasks we observed
an increase of accuracy in estimating the correct position
of items with age group and the largest improvement oc-
curred from preschool to grade 1. But most interestingly,
we observed for the first time a developmental trend for
the two non-numerical tasks, similar to the one observed
for the NP tasks. Indeed, analyses on group and single-
subject estimates have shown for the LP and MP tasks that
there seems to be a mandatory logarithmic transition pre-
ceding linearity. This result supports the hypothesis of a
common developmental pattern for numbers and non-
numerical ordered sequences.

To further understand whether the time of the develop-
mental shifts are independent across domains or whether
the linear positioning of non-numerical ordered sequences
is observed only once it is acquired for a comparable
numerical range, we computed a set of fixed-entry regres-
sions for the LP and MP tasks. These analyses revealed that
the type of representation deployed in the matched NP
task (i.e., 1–21 or 1–12) accounted for unique variance in
the non-numerical tasks even after partialling out the ef-
fects of schooling and domain-specific knowledge. That
is, the quality of the representation deployed (i.e., none,
logarithmic or linear) in the numerically matched interval
was predictive of how items were positioned on the non-
numerical interval. This result supports the hypothesis that
linearity of non-numerical ordered sequences is a general-
ization from the numerical domain. Indeed, the type of
representation in numerical estimation had higher rank
numerical and non-numerical order in children. Cognition (2012),
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than the type of representation in both non-numerical esti-
mation tasks. Finally, it is important to stress that knowl-
edge of the alphabet does not necessarily imply a
representation in which adjacent letters have fixed, equal
distance between each other. Indeed, performance of the
youngest children in the LP and MP tasks did not conform
to a linear representation. Crucially, even perfect knowl-
edge of the sequences was not sufficient to yield linearity.
Though the majority of children who scored at ceiling in
sequence knowledge had acquired linearity, one child out
of four either positioned items logarithmically or failed to
show a meaningful mapping (27% for the 1–21 NP and LP
tasks, and 24% for the MP task).

It is worth noting at this point that the interpretation of
the shift from logarithmic to linear positioning has been
recently challenged by Barth and Paladino (2011). They ar-
gued that performance in the NP task is better captured by
a model of proportion judgment (which implies a sigmoi-
dal rather than logarithmic function) and that the apparent
logarithmic compression is an artifact of under-sampling
the larger values in the range. Regardless of the outcome
of the debate raised by these claims (see Opfer, Siegler, &
Young, 2011, for a convincing rebuttal), two aspects of
our data deserve discussion. First, the sampling of items
in the non-numerical positioning tasks and the numeri-
cally matched number lines was evenly distributed across
the respective ranges, yet no sigmoidal distribution of esti-
mates was visible (Figs. 2 and 3). Second, and most impor-
tant, our finding that linearity is generalized from
numerical to non-numerical domains does not depend on
the interpretation of the observed mapping behavior as
logarithmic or sigmoidal.

Taken together, our results exclude the possibility that
linear positioning is a general regularization phenomenon
but support the generalization hypothesis, whereby linear-
ity is a distinctive feature of numbers, perhaps driven by
their unique property of conveying cardinality. This inter-
pretation would account for the common effects observed
across domains. Indeed, if linearity is generalized to all
ordinal sequences, it is conceivable that non-numerical
sequences might acquire other characteristics that were
initially thought to be distinctive of numbers. This could
explain the distance effect (Jou & Aldridge, 1999) and the
SNARC-like effect observed for non-numerical sequences
(Gevers et al., 2003, 2004). The acquisition of common
characteristics might lead to activation of the same cortical
regions, including the hIPS (Fias et al., 2007; Ischebeck
et al., 2008; but see Zorzi et al., 2011), during processing
of both numerical and non-numerical order.

Note, however, that the generalization hypothesis does
not imply that the format of representation for non-
numerical ordered sequences is identical to that of
numbers. For example, the qualitative difference between
representations is highlighted by the dissociation between
numbers and letters found by Van Opstal and collaborators
(2008) in a priming task. Indeed, only number priming re-
vealed an overlapping distribution of activations on the
internal representation. Overlapping representations
between adjacent letters would be clearly dysfunctional
because the conventional ordering of letters in the alpha-
bet is arbitrary and it bears no significance for written
Please cite this article in press as: Berteletti, I., et al. Representation of
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language processing. In the same vein, the spatial coding
of letters and months does not need to be identical to that
of numbers (Zorzi et al., 2006). For all these reasons, pat-
terns of brain activity during comparison of non-numerical
order can be distinguished from number comparison even
though they recruit partially overlapping regions, such as
the hIPS (Zorzi et al., 2011). Van Opstal, Verguts, Orban,
and Fias (2008) found that the consolidation of new ordinal
sequences is correlated with activation of the angular
gyrus, which is known to be involved in the verbal coding
of numbers and in arithmetic facts retrieval (Dehaene
et al., 2003). They suggested that the hIPS would be
recruited only after extensive practice with a new ordinal
sequence. However, 1 week of practice still failed to acti-
vate hIPS in a follow-up study (Van Opstal, Fias, Peigneux,
& Verguts, 2009). This suggests that the involvement of IPS
requires a higher level of abstraction of the order implied
by a new sequence, perhaps mediated by links to the num-
ber domain.

In summary, the present study shows that the develop-
mental transition from logarithmic to linear positioning of
items on a spatial scale is not a distinctive feature of num-
bers but is shared by non-numerical ordered sequences.
Nonetheless, the quality of numerical representation is
predictive of the pattern shown by children in positioning
non-numerical items, whereas perfect knowledge of the
ordered sequence is not enough to yield linearity. We
therefore conclude that the principle of linearity is general-
ized from the numerical domain to non-numerical ordered
sequences.
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