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Abstract

Background: Numerosity estimation is a basic preverbal ability that humans share with many animal species and that is
believed to be foundational of numeracy skills. It is notoriously difficult, however, to establish whether numerosity
estimation is based on numerosity itself, or on one or more non-numerical cues like—in visual stimuli—spatial extent and
density. Frequently, different non-numerical cues are held constant on different trials. This strategy, however, still allows
numerosity estimation to be based on a combination of non-numerical cues rather than on any particular one by itself.

Methodology/Principal Findings: Here we introduce a novel method, based on second-order (contrast-based) visual
motion, to create stimuli that exclude all first-order (luminance-based) cues to numerosity. We show that numerosities can
be estimated almost as well in second-order motion as in first-order motion.

Conclusions/Significance: The results show that numerosity estimation need not be based on first-order spatial filtering,
first-order density perception, or any other processing of luminance-based cues to numerosity. Our method can be used as
an effective tool to control non-numerical variables in studies of numerosity estimation.
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Introduction

It is widely believed that numeracy is founded upon a non-

symbolic system of numerical representation (for reviews, see

[1,2]). At the heart of this system is the ability to perceive and

discriminate numerosities (discrete quantities). This ability is

predictive of math achievement [3–5], but children possess it

before language acquisition [6,7] and humans share it with various

other species from monkeys [8–11] to fish [12].

The study of numerosity estimation is plagued by a fundamental

problem: if we physically manipulate a collection of items to

change its numerosity, then we not only change its numerosity, but

inevitably also its physical dimensions. Take, for example, a

collection of identical dots on a two-dimensional surface. If the

numerosity of the collection is increased by adding another dot,

then the collection must increase either in spatial extent (the area

delineated by its outermost dots), or in density (interdot distance).

It is unavoidable. A frequently recurring question in numerosity-

estimation studies is therefore whether numerosity estimates are

based on numerosity itself, or on one or more non-numerical cues

like—in visual stimuli—spatial extent and density.

Although it is impossible to manipulate a numerosity and

concurrently hold all non-numerical cues constant, many

numerosity-estimation studies hold different non-numerical cues

constant on different trials of the same experiment [8,10,13]. This

way, it is hoped, subjects’ numerosity estimates cannot be based on

any of the non-numerical cues in particular, and will be based on

numerosity itself. If, for example, only numerosity and spatial

extent are manipulated on some of the trials, and only numerosity

and density on the other trials, then neither spatial extent, nor

density, can be used as a reliable cue to numerosity. Even if this

procedure is followed, however, numerosity estimates need not

rely on abstract numerosity. They could be based, concurrently,

on more than one non-numerical cue, or—more parsimoniously—

on a single combination of them [14,15,16,17,18]. These

possibilities are much harder to control.

Allik and Tuulmets, for example, presented a quantitative

model of numerosity estimation of dot collections that is entirely

based on a combined measure of the collections’ spatial extent

and density [14]. In this model, the authors assume that each dot

is perceived with a surrounding disk-shaped influence sphere with

a size that is the model’s only free parameter (Figure 1). Human

numerosity estimation is then predicted by the total area

(occupancy) covered by the influence spheres. In the occupancy

model, just as in humans, estimated numerosity follows a power

function of actual numerosity [19–22, although cf. 23]. That is,

y= c Q n , whereby y and Q represent psychological (estimated)

numerosity and physical numerosity, and c and n represent

constants (or alternatively: log(y) = n log( Q)+c). If numerosity is

held constant, then in the occupancy model, just as in humans,

estimated numerosity decreases with dot density [16,20,24–27]

(compare Figures 1D and 1F), and is smaller for collections

containing clusters of dots than for collections of evenly spaced

ones [28–30].

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e17378



It is important to note that occupancy is a combined measure of

both spatial extent and density. If in an experiment only

numerosity and spatial extent are manipulated on some of the

trials (compare Figures 1A and 1B), and only numerosity and

density on the other trials (compare Figures 1C and 1D, or

Figures 1E and 1F, or Figures 1G and 1H), then numerosity and

occupancy are manipulated on all trials. In principle, therefore,

numerosity estimates in dot patterns could be based on occupancy,

rather than on abstract numerosity, even if both spatial extent and

density vary from trial to trial. Some studies control the combined

surface area of the items [7,13,31] (as illustrated in Figures 1G and

1H). This surface area is sometimes called ‘‘occupied area’’ [13],

but is unrelated to occupancy as defined in occupancy models.

Many studies investigate numerosity estimation in tasks in which

one numerosity is compared to another. In some of these studies,

the two numerosities are presented in different modalities (e.g., one

in the visual, and one in the auditory, modality), or their items are

presented simultaneously in one numerosity and sequentially in

the other [32–35]. The occupancy model was not designed to

handle such manipulations, and only applies to numerosities of

simultaneously presented dots. The necessary extension of the

model, however, is straightforward. When the dots are replaced by

beeps, for example, and dispersed over time instead of space, then

the influence spheres can be replaced by influence time-intervals.

Occupancy is then the total time period covered by the influence

intervals, and increases with the extent of this period and decreases

with the rate of the beeps. There is indeed evidence that

numerosity estimates decrease with rate in the temporal domain,

just like they decrease with density in the spatial domain [36].

Crossmodal comparisons of numerosities can therefore, at least in

principle, be based on crossmodal comparisons of occupancies

rather than of abstract numerosities.

It has been argued that if abstract numerosities are represented

in the brain, then numerosity comparisons across different

modalities and modes of presentation should be as easy to perform

as numerosity comparisons within the same modality and the same

mode of presentation [32,35]. If, instead, numerosities were

represented as occupancies that are specific to modality and mode

of presentation, then one would expect comparisons across these

modalities and modes to be more difficult than comparisons within

them. The data leave room for debate. Barth and colleagues [32],

for example, found no effect of modality in their first experiment,

and no effect of presentation mode in their second experiment, but

did find a small effect of the combination of the two in their third

experiment, and would have found it again in their fourth

experiment if their test had been one-tailed instead of two-tailed

(which would have been appropriate here, and while attempting to

accept a null hypothesis, also more conservative). The authors

report that, in a number of follow-up studies, the effects remained

small, but that the comparisons across modalities and modes were

nevertheless consistently more difficult than the comparisons

within the same modality and mode. In macaque monkeys, rather

than humans, Jordan and colleagues [35] did not find an effect of

modality on accuracy, but did find that crossmodal numerosity

comparisons were slower than intramodal ones. The results are

thus rather mixed.

The most frequently used stimuli in numerosity-estimation

studies do not involve different modalities or modes of presenta-

tion, but simultaneous presentations of collections of dots. For

those stimuli, Allik and Tuulmets argue that occupancy can be

computed on the basis of a simple spatial filtering of the stimulus

[14]. Durgin rendered the occupancy model applicable to a wider

range of numerosities by converting the model’s constant

influence-sphere size into one that decreases with density

[17,18]. He normalized the resulting occupancy by dividing it

by influence-sphere size. Durgin too, though, argues that

numerosity estimation is primarily a perceptual phenomenon. In

his view, it is little more than a byproduct of density perception,

which as its main purpose has the detection and recognition of

textures and objects, and which—because the perceived density of

a regular texture increases with distance—also plays a role in the

perception of three-dimensional depth.

Figure 1. Influence spheres of numerosities containing either
two or three items. The black dots have a numerosity of two in Panels
A, C, E, and G and a numerosity of three in Panels B, D, F, and H. In Allik
& Tuulmets’s occupancy model [14], a numerosity estimate is given by
the total area (occupancy) covered by the disk-shaped influence spheres
(the set-theoretical union of the gray regions, including the black dots).
From Panel A to Panel B, holding density constant, numerosity and
occupancy are increased by increasing the collection’s spatial extent.
From Panel C to Panel D, holding spatial extent constant, numerosity
and occupancy are increased by increasing the collection’s density.
From Panel E to Panel F, holding spatial extent constant, numerosity
and occupancy are increased by increasing the collection’s density, but
due to the resulting overlap between the influence spheres, the
occupancy is smaller in Panel F than in Panel D. From Panel G to Panel
H, holding the combined surface area of the dots constant, numerosity
and occupancy are increased by increasing the collections density.
Thus, the model’s numerosity estimate is the same in Panels A, C, E, and
G and in Panels B, D and H. In Panels B, D, F, and H, it is larger than in
Panels A, C, E, and G, but in Panel F it is smaller than in Panels B, D, and
H. In Durgin’s version of the model [17,18], influence-sphere size
decreases with dot density, and occupancy is normalized by dividing it
by influence-sphere size.
doi:10.1371/journal.pone.0017378.g001
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The numerosities, spatial filtering, and densities, considered by

Allik and Tuulmets [14] and Durgin [17,18], however, all involve

luminance-defined items; the items are all either darker, or

lighter, than their background. Although it is impossible to

manipulate the numerosity of a physical collection of items and

concurrently hold all its physical dimensions constant, it is

possible to hold all its luminance-defined dimensions constant. In

one of the stimuli that allow this to happen, the items move, but

the motion is not first-order (luminance-based), but second-order

(contrast-based [37]).

A popular method to obtain this second-order motion is to (1)

create a region filled with black and white random dots (little

squares), (2) consider an imaginary rectangular area within that

region, (3) change all its black dots into white ones, and all its white

dots into black ones, (4) laterally displace the imaginary area, and

(5) repeat steps 3 and 4 several times. In a rapid presentation of the

sequence, one sees the rectangular area in coherent second-order

motion, even though the dots of which it consists do not show

coherent first-order motion. Observers describe the moving

rectangle as ‘‘transparent’’, or ‘‘ghost-like’’, whereas in any still

image of the presentation it is undefined and undetectable. (For

other kinds of second-order and higher-order motion, see [38]).

Here we introduce a new method based on second-order

motion to create stimuli that exclude all first-order visual cues to

numerosity. Our particular stimuli consist of gray and white dots,

rather than black and white ones, and contain a variable number

of rectangles that move back and forth in either first-order motion

(in which case the rectangles are black, see Movie S1), or second-

order motion (see Movie S2). The task is to estimate the

numerosity of the rectangles. If the task can be performed in both

motion conditions, then numerosity estimation cannot be based on

first-order spatial filtering (as suggested by Allik & Tuulmets [14]),

or first-order density perception (as suggested by Durgin [17,18]),

or on the perception of any other luminance-based cue to

numerosity. If, instead, the task can only be performed in first-

order motion, and not in second-order motion, then one would

have to conclude that estimation of abstract numerosity does not

exist. (In the current study, we only investigate the estimation of

numerosities well beyond the so-called subitizing range of three or

four items, but of course, our technique could be applied to very

small numerosities too.).

Results

Means
One subject was neither able to perform the task in first-order

motion, nor in second-order motion, and was excluded from the

group analyses. For the first-order, and second-order, motion

conditions (Figure 2, filled and open symbols, respectively),

standard errors increased with estimated numerosity (respectively,

adjusted R2 = .90 and adjusted R2 = .81, both p,.001). Instead,

for both conditions, the coefficients of variation (i.e., standard

deviation/mean) of the numerosity estimates were unrelated to the

estimates themselves (for both conditions R2,.01, both with

coefficient means of .33). These results suggest that the standard

errors increased in direct proportion to the numerosity estimates

(scalar variability), which indicates that subjects were indeed

estimating rather than counting [39,40]. We confirmed that this

was indeed the case, with two separate regression analyses for the

first- and second-order-motion conditions, on the logarithmically

transformed data. As required [13,39], with numerosity estimation

as the independent and standard error as the dependent variable,

the regression slopes for the two conditions were both close to one

(r = .96 and r = .93).

A repeated-measures ANOVA on the logarithmically trans-

formed data revealed a main effect of motion order

(F(1,10) = 41.43, p,.001, gp
2 = .81); numerosity estimates were

higher in first-order, than in second-order, motion (Figure 2,

bottom panel). There was also a main effect of numerosity

(F(20,200) = 63.76, p,.001, gp
2 = .86); as numerosity increased so

Figure 2. Numerosity estimation in first-order and second-
order motion. A linear-linear plot (top panel), and a log-log plot
(bottom panel), of estimated numerosity in first-order motion (filled
symbols) and second-order motion (open symbols) as a function of
actual numerosity (one subject was unable to do the task even in first-
order motion and was excluded from the figures). Note that the error
bars (representing one standard error of the mean) increase with
numerosity in the linear-linear plot, but remain constant in the log-log
plot. Note also, in the bottom panel, that the relationship between
estimated and physical numerosity approximately follows the power
law mentioned in the text: log(y) = n log( Q)+c.
doi:10.1371/journal.pone.0017378.g002
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did the estimates. In addition, there was an interaction between

motion order and numerosity (F(20,200) = 1.92, p = .01, gp
2 = .16);

the difference in numerosity estimation between the first- and

second-order motion conditions was slightly larger at the high,

than at the low, numerosities (Figure 2). Results changed little

when the subject who was unable to perform the task even in first-

order motion was included in the analysis.

Figure 2 suggests that, in first-order motion, all numerosities

were overestimated with an amount that decreased with

numerosity. Figure 2 also suggests that, in second-order motion,

small numerosities were overestimated, and large ones underes-

timated. For no particular numerosity, though, did any over- or

underestimation reach significance.

Individual data
Averaging across subjects may potentially obscure important

individual differences, and hence, we also examined the individual

data. Given that item size has sometimes been found to affect

numerosity estimation [16,26,41], we also investigated the

potential effects of the differences in average bar height between

stimuli with the same numerosity (bar width did not vary). Bars

that differ in height should also be expected to activate motion-

sensitive receptive fields of different sizes, and for this reason too,

the potential effect of bar height needs to be investigated.

For each subject, we performed one multiple regression for the

first-order-motion data (Table 1) and one for the second-order-

motion data (Table 2) with numerosity and bar height as the

independent variables and estimated numerosity as the dependent

variable. As can be seen in Tables 1 and 2, the two multiple

correlations were both significant for eleven of the twelve subjects.

For one subject, neither multiple correlation was significant. These

results overwhelmingly confirm that numerosity estimation is

possible, not just in first-order, but also in second-order, motion.

As can be seen in Tables 1 and 2, for none of the subjects did

bar height have a significant positive coefficient in the regression

equation, and for two of them it had a significant negative

coefficient in the second-order motion condition. Thus, bar height

was not a good predictor of numerosity estimation, in neither first-

order, nor second-order, motion. In contrast, in both conditions,

numerosity had a significant positive coefficient in the regression

equation for seven of the eleven subjects that were able to perform

the task in the first-order-motion condition, and for eight of them

in the second-order-motion condition. For none of the subjects did

numerosity have a negative coefficient. When bar height was

removed from the regression equation, the simple correlation

between numerosity and estimated numerosity in second-order

motion was significant for all the eleven subjects that were able to

do the task in first-order motion, with correlations ranging from

r = .58 to r = .88 (all p,.001).

For each of the eleven subjects mentioned above, we calculated

the average across the six estimates of each numerosity in both

first-order, and second-order, motion and calculated the correla-

tion between the two motion conditions for each subject

separately. We found correlations ranging from r = .76 to r = .97

(all p,.001), indicating that estimates in the two motion-order

conditions were quite similar.

Discussion

We introduced a new method that, for the first time, using

second-order motion, concurrently eliminated all luminance-based

cues to numerosity in visual stimuli. We found that numerosity

estimation in second-order motion is not only possible, but also

only slightly different from that in first-order motion. Our results

show that numerosity estimation need neither be based on

occupancy (as it has been defined thus far), nor be affected by

luminance-based cues to numerosity. They also show that

numerosity estimation need neither rely on first-order spatial

filtering (as suggested by Allik & Tuulmets [14]), nor on first-order

density perception (as suggested by Durgin [17,18]).

The small difference in performance that was observed between

the two motion-order conditions may be due to the fact that the

visual system is less sensitive to second-order, than to first-order,

motion [42]. Our centrally presented items were well above

perceptual threshold, but because sensitivity decreases with

eccentricity, some peripheral items might not have been, and

the probability of that should have been largest for the items

Table 1. Multiple regression results per subject: First-order-
motion condition.

Correlations Standardized coefficients

Adj. R2 p log(num.) t(125) P log(height) t(125) p

.76 ,.01 0.96 3.14 ,.01 0.09 20.30 .77

.56 ,.01 0.81 2.01 .05 20.05 20.14 .89

.49 ,.01 0.94 2.12 .04 20.23 20.53 .60

.34 ,.01 0.70 1.36 .18 20.10 20.19 .85

.77 ,.01 0.57 1.95 .05 0.31 1.07 .29

.40 ,.01 1.44 2.64 ,.01 20.81 21.49 .14

.62 ,.01 1.13 2.93 ,.01 20.34 20.89 .38

.77 ,.01 0.39 1.27 .21 0.49 1.58 .12

.32 ,.01 0.48 0.97 .33 0.10 0.19 .85

.56 ,.01 0.53 1.31 .19 0.23 0.56 .58

.76 ,.01 0.74 2.28 .03 0.14 0.43 .67

.02 1.12 0.85 1.29 .20 20.70 21.06 .29

Note. Adj. R2 = Adjusted R2, log(num.) = log(estimated numerosity), t(125) = t-
test with degrees of freedom, log(height) = log(bar height).
doi:10.1371/journal.pone.0017378.t001

Table 2. Multiple regression results per subject: Second-
order-motion condition.

Correlations Standardized coefficients

Adj. R2 p log(num.) t(125) P log(height) t(125) p

.73 ,.01 1.21 3.57 ,.01 20.36 21.06 .29

.55 ,.01 0.13 0.29 .77 0.62 1.43 .16

.46 ,.01 0.37 0.73 .46 0.32 0.64 .52

.39 ,.01 1.79 3.70 ,.01 21.20 22.47 .02

.72 ,.01 0.72 2.22 .03 0.13 0.39 .69

.73 ,.01 0.94 2.81 ,.01 2l.09 20.26 .79

.62 ,.01 0.93 2.40 .02 20.14 20.36 .72

.81 ,.01 0.82 3.00 ,.01 0.08 0.29 .77

.34 ,.01 0.92 1.62 .11 20.33 20.59 .56

.61 ,.01 1.60 3.94 ,.01 20.82 22.03 .04

.77 ,.01 1.11 3.88 ,.01 20.23 20.81 .42

2.001 .39 0.35 0.48 .63 20.23 20.32 .75

Note. Adj. R2 = Adjusted R2, log(num.) = log(estimated numerosity), t(125) = t-
test with degrees of freedom, log(height) = log(bar height).
doi:10.1371/journal.pone.0017378.t002
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defined in second-order motion. Because, in absolute numbers,

there were more peripheral items in our large numerosities than in

our small ones, the visual system’s inferior sensitivity to second-

order motion might have caused the interaction that we observed

between motion order and numerosity. The size of the effect is

small, though, and still allows the conclusion that numerosity

estimation is not only possible in second-order motion, but also

quite similar to that in first-order motion.

As is, the occupancy models of Allik and Tuulmets [14] and

Durgin [17,18] cannot explain the data we obtained in our

second-order-motion condition, and neither can other models

based on first-order cues [15,16]. Let us examine in detail, though,

the most recent of this class of models—the occupancy model by

Durgin—and consider the possibility that it could be revised to

explain our data. In the original occupancy model of Allik and

Tuulmets influence spheres are defined around dots and have a

fixed size. Durgin showed that although this model predicts

numerosity estimation of dot collections very well at low densities,

it must necessarily fail at either high, or low, densities. In Durgin’s

revision, the size of the influence spheres decreases with density,

and occupancy is normalized by dividing it by influence-sphere

size. According to Durgin, the perceptual system avoids an

information overload by processing many items such as dots not as

distinct entities, but as integral parts of textures (for related ideas,

see also [43]). The perceptual system would create the textures by

computing summary statistics, such as the mean and variance of

item density. Subsequently, numerosity estimates would be based

on these statistics rather than on individual items (see also [44,45]).

That summary statistics are indeed computed is suggested by

the fact that we see collections of items extrapolated (filled-in) into

areas that do not receive any input (such as the retinal blindspot

and scotomas), or into areas that are weakened by adaptation

[46,47]. In addition, it has been shown that, at least under some

conditions, subjects can determine the average size of items better

than their individual sizes [48,49] and the average location of

items better than their individual locations [50]. Durgin himself

considers a large collection of dots and a copy of it from which, at

random, many dots are removed. He demonstrates that it is easy

to see that the two collections differ in density (as density

information is retained), but difficult to see that the latter is a

subcollection of the former (as, after the computation of the

summary statistics, the information about the positions of the

individual items would be lost).

Franconeri and colleagues [41] and He and colleagues [51]

challenged whether numerosity estimation would be entirely based

on the summary statistics of an unsegmented scene. Independent-

ly, both studies found that numerosity estimates are lower when

items are connected by thin lines into larger perceptual objects

than when these connections are severed by small gaps. The

authors argue that the small gaps should not have affected the

items’ summary statistics much, and hence, that numerosity

estimation can be affected by the segmentation of items into larger

objects. In the connected condition, as a result of Stroop-like

interference [16,52,53], the small number of task-irrelevant objects

could have decreased the numerosity estimates of the task-relevant

items. Both Franconeri and colleagues and He and colleagues

conclude that numerosity estimation need not be based on

summary statistics computed over unsegmented scenes.

In the studies of both Franconeri and colleagues [41] and He

and colleagues [51], however, there are more line terminations in

the unconnected, than in the connected, condition. Line

terminations are texture elements (for a review, see [54]). It is

possible that the perceptual system computes summary statistics

across both the task-relevant items and the task-irrelevant line

terminations. Numerosity estimates might then be biased upwards

in the unconnected condition, as a result of Stroop-like

interference between line terminations and items, rather than

downwards in the connected condition, as a result of Stroop-like

interference between perceptual objects and items. The two

studies, thus, do not exclude the possibility that numerosity

estimation could be entirely based on summary statistics.

The question, though, is whether a revised occupancy model

could explain our present data. We think that it is possible in

principle, but that a revision would face three problems. First, if

the new model, like Durgin’s, is to adjust influence-sphere size on

the basis of summary statistics, then it needs to be established

whether the perceptual system computes these summary statistics

across items defined in second-order motion, and whether it uses

these statistics to adjust influence spheres. The computation and

adjustment might be challenging with stimuli like ours in which

items are presented for only 133 ms, afterwards immediately

masked by the random-dot pattern of the background, and

invisible in any still image of the motion.

Second, although the density of our items was the same across

our motion-order conditions, the numerosity estimates were not.

The difference between the estimates was small, but because it was

significant, the model would have to take it into account. That is,

the model would have to be redefined in such a way that its

influence spheres would not only depend on density, but also on

motion order (or item type).

Third, as their numerosity increases, visually presented items

are forced either further into the periphery, or closer together.

Under both these conditions, even if the items remain visible, their

discriminability diminishes (crowding [55]). If the diminished

discriminability were to affect numerosity estimation, then one

would expect large numerosities to be underestimated and the

underestimation to increase with numerosity. Indeed, many

studies have found both these effects (e.g., [13,14]). A kind of

discriminability is modeled, in the occupancy models, by the size

of the influence spheres: the larger the influence spheres of two

items, the less they count as two, and the more they count as just

one. The discriminability of items, however, is a complex matter

(for a special issue on just crowding, for example, see the Journal of

Vision, 7(2)). It remains to be seen whether a revised occupancy

model could adequately account for the distinguishability of items

in general rather than only of luminance-defined dots. More

philosophically, one may wonder whether the distinguishability of

items has anything to do with numerosity estimation, or whether it

may only concern its prerequisites [16].

A density low enough to ensure that all items can be

distinguished from each other appears to be a prerequisite for

optimal numerosity estimation. It thus makes sense that density

affects numerosity estimation, even if numerosity estimation is not

based on density perception. In simultaneously presented

collections, numerosity estimates increase with the frame size of

the display [56], and decrease with item size [57,58,59,cf. 60]

(which might increase perceived display size [41]). These effects do

not concern prerequisites to numerosity estimation. Franconeri et

al., however, argue that the non-numerical quantities might be

processed separately from the numerical ones and create Stroop-

like interference only at a late response selection stage [41].

Indeed, this possibility suggests that interactions between numer-

ical and non-numerical factors by themselves cannot be taken as

evidence that the former must be based on the latter.

In conclusion, we have shown that numerosities can be

estimated almost as well in second-order motion as in first-order

motion, despite the concurrent exclusion of all first-order cues to

numerosity. The result shows that numerosity estimation need

Numerosity Estimation without Luminance Cues
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neither be based on first-order spatial filtering, nor on first-order

density perception. No perceptual model of numerosity estimation

can account for our data, and any revisions face three major

challenges. The best way forward may be to separate the issue

of item-discriminability from that of numerosity estimation itself.

In any event, our method of creating stimuli that exclude all

first-order visual cues to numerosity can be used as an effective

tool to control non-numerical variables in studies of numerosity

estimation.

Materials and Methods

Ethics Statement
The data were analyzed anonymously. Subjects verbally

provided their informed consent and confirmed it in writing by

signing a form to receive compensation for participating. The

current study has been approved by the ethics committee of the

Department of General Psychology of the University of Padova.

Subjects
Twelve naı̈ve undergraduates (aged 22–27, 4 women) of the

Università di Padova participated for a small monetary reward.

Apparatus
An IBM-compatible computer with a 170 flat-screen monitor

(75 Hz refresh rate; 10246768 resolution), and a custom E-Prime

program (Psychology Software Tools, Inc.), were used for the

millisecond-precise stimulus presentation. Viewing distance was

58 cm, controlled with a chin-and-head rest.

Stimuli
The stimuli contained a number of bars (vertically oriented

rectangles) that ranged from 10 through 30. The background,

visible throughout the experiment, consisted of random gray and

white little squares (464 pixels) that filled the screen. The bars

were each equally likely to be either 0.13u62.08u or 0.13u63.12u
large, and in half the trials they were black (first-order-motion

condition), and in half the trials they consisted of little squares

identical to those in the background (second-order-motion

condition). At the start of each trial, the bars all moved 1.84u to

the right, then 1.84u back to the left, and then disappeared. They

were visible for 133 ms, short enough to prevent subjects from

counting them, or inspecting them with multiple saccades (note

that information integration across saccades is imperfect [61]).

Each rectangle appeared at least 1.84u away from any other

rectangle to the left or right of it, and at least 0.98u away from any

rectangle above or below it. Within these restrictions, the

rectangles appeared randomly in one of the cells of a 17612

imaginary grid.

Design and procedure
Both in the first-order-motion, and second-order-motion,

condition subjects were provided with three ‘‘calibration’’ trials

in which the numerosity of twenty was shown, along with a red

numeral 20 in the lower-left corner of the screen. Such

‘‘calibration’’ trials can improve subsequent estimates of even

those numerosities for which feedback is never provided, and also

serve to reduce inter-subject variability [13]. After the calibration

trials, forty practice trials were presented, without feedback,

containing numerosities randomly chosen from the range 10

through 30. Next, the experiment proper started, which did not

provide feedback either. It had a completely randomized within-

subjects design. After each trial, following Izard and Dehaene [13],

subjects responded by typing a number on the keyboard

corresponding to their numerosity estimate. In the experiment

proper, each numerosity was presented six times, and after each

trial subjects advanced to the next by pressing the space bar.

Supporting Information

Movie S1 Numerosity defined in first-order motion.

(AVI)

Movie S2 Numerosity defined in second-order motion.

(AVI)
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