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a b s t r a c t

In the last few years, research highlighted the critical role of unsupervised pre-training strategies to
improve the performance of artificial neural networks. However, the scope of existing pre-training
methods is limited to static data, whereas many learning tasks require to deal with temporal
information. We propose a novel approach to pre-training sequential neural networks that exploits a
simpler, first-order Hidden Markov Model to generate an approximate distribution of the original
dataset. The learned distribution is used to generate a smoothed dataset that is used for pre-training. In
this way, it is possible to drive the connection weights in a better region of the parameter space, where
subsequent fine-tuning on the original dataset can be more effective. This novel pre-training approach is
model-independent and can be readily applied to different network architectures. The benefits of the
proposed method, both in terms of accuracy and training times, are demonstrated on a prediction task
using four datasets of polyphonic music. The flexibility of the proposed strategy is shown by applying it
to two different recurrent neural network architectures, and we also empirically investigate the impact
of different hyperparameters on the performance of the proposed pre-training strategy.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A broad range of real-world applications involve learning over
sequential data, e.g. classifying time series of heart rates (ECG) to
decide if the data comes from a patient with heart disease, predicting
the future value of a company stock traded on an exchange,
interpreting a sequence of utterances in speech understanding, and
predicting the secondary or tertiary protein structure from its DNA
sequence. Sequence learning is a hard task and for this reason
different approaches, tailored to specific data and task features
(e.g., discrete vs. continuous valued sequences and classification vs.
prediction tasks), have been developed. All these approaches can be
grouped into three main categories: (i) feature-based approaches,
which transform a sequence into a feature vector and then apply
conventional vectorial-based methods (e.g., [1]); (ii) distance-based
approaches, which employ a distance function measuring the simi-
larity between sequences, e.g. Euclidean distance (e.g., [2]), edit-
distance (e.g., [3]), dynamic time warping distance (e.g., [4]), or a
kernel function (e.g., [5,6]); (iii) model-based approaches, such as
using Hidden Markov Models (e.g., [7,8]), or Recurrent Neural Net-
works (e.g., [9,10]), to process sequences. Methods falling into the
first category are successful only if a priori knowledge on the

application domain can be used to select the most relevant sequence
features for the task at hand. A notable example of these approaches,
in the case of discrete valued sequences, is the use of short sequence
segments of k consecutive symbols (k-grams) as features; a sequence
is represented as a vector of the presence/absence (or frequencies) of
the k-grams. The obtained vectors can then be fed into conventional
learning machines, such as decision trees [11], Support Vector
Machines [12], feed-forward neural networks [13], for any kind of
learning task (classification, prediction, ranking, etc.). The drawback
of these approaches is that the number of features to consider easily
grows exponentially with that amount of history/memory the feature
has to store (e.g., the size of k in k-grams). If a priori knowledge is not
available for pruning the feature space, feature selection strategies
(see [14]) need to be used. Moreover, ad-hoc strategies, such as
discretization, are needed to deal with continuous valued seque-
nces (e.g., [15]). Distance-based approaches treat each sequence as a
single entity and exploit a sequence similarity function to determine
how similar two sequences are. This information can then be used
within an instance-based approach for learning (e.g., k-Nearest
Neighbor [16]), or directly inside a kernel method if the used
similarity function is a proper kernel. These approaches tend to be
expensive from a computational point of view since computing the
sequence similarity function usually involves a relevant computa-
tional burden (e.g., edit-distance [17]). Moreover, these approaches
usually have problems to extrapolate the learned function to
sequences that are longer than the ones used for training. Finally,
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model-based approaches assume that the observed sequences, as
well as the function to learn, have been generated by a law (or
model). Because of that, they aim at reconstructing such model, with
the goal of successfully extrapolating the learned function to the full
sequence domain. Model-based approaches are typically computa-
tionally demanding, however, if a good approximation of the target
model is learned, very good performances on the whole sequence
domain can be obtained. Graphical models [18], and in particular
Hidden Markov Models (HMMs), are often used as learning models.
HMMs assume that each sequence item has been generated by
hidden variables that are not directly observable. The way each
sequence item observed at time t is generated is described by a
(parametric) probability distribution which depends on the state at
time t of the HMM, i.e. the values taken by the hidden variables at
time t; moreover, another (parametric) probability distribution drives
the way the values assigned to hidden variables change through
time. Learning aims at tuning these probability distributions in order
to make the observed sequences more likely to be generated when
sampling from the model. A deterministic alternative to HMMs is
given by Recurrent Neural Networks (RNNs), which can be under-
stood as non-linear dynamical systems where learning is performed
by using gradient-based approaches [13]. From an abstract computa-
tional point of view, given a graphical model for sequences, it is
possible to specify a RNN which constitutes a specific deterministic
implementation of that graphical model [19]. Due to their non-
linearity, RNNs are potentially very expressive and powerful. Because
of that, however, they are also difficult to train, mainly because
temporal dependencies introduce constraints that limit the efficacy
of gradient-based learning algorithms [20] as well as the paralleliza-
tion of computation. Despite old [21] and recent developments
[22,23], the computational burden to train RNNs still remains
very high.

It is worth to note that models can also be used to define kernels
(e.g., [24,25]). One very general way to exploit a generative model for
defining a kernel is given by the Fisher kernel approach, originally
proposed by [24]. The underpinning idea of Fisher kernel is to use the
training data to create a generative model, e.g. a HMM, and then to
define a kernel on sequences from the Fisher score vectors extracted
from the generative model. Besides being computationally very
expensive, Fisher kernel may suffer from quite bad feature representa-
tion due to maximum likelihood training which leads to develop a
large number of very small gradients (datawith high probability under
the model) and a few very large ones (data with low probability under
the model) [26]. Because of that, Fisher kernel may suffer when used
for discriminative tasks. A technique that tries to correct this problem
has been proposed in [26]. The basic idea is to learn the generative
model parameters in such a way that the resulting embedding has a
low nearest-neighbor error. This approach improves the discriminative
performance at the expenses of an increased computational cost,
which makes Fisher kernel very computational demanding when
considering long sequences.

All the above methods have difficulties in learning over long
sequences: feature-based approaches typically use features asso-
ciated to the occurrence of short temporal/positional subse-
quences, i.e., local features, which fail to capture long-term
dependencies. Distance-based approaches typically select a subset
of the training sequences as reference to perform the desired
computation1; because of that, the learned function typically has
difficulties to deal with sequences that are longer than the ones
used for training. Model-based approaches also tend to have
problems capturing long-term dependencies, either because they

have discrete finite memory (i.e., the number of different states in
which a HMM can be), such as in the most commonly used
versions of HMMs, or because learning algorithms fail to find the
“right” setting for the parameters, such as in RNNs. Notwithstand-
ing the difficulties in training RNNs, their computational power is
so high (see, for example [28]) that it is worth to study new
approaches to improve learning.

If we turn our attention to static data, recent advances in
training deep neural networks, i.e. networks composed by many
layers of non-linear processing units, now allow to reach state-of-
the-art performance in complex machine learning tasks, such as
image classification [29], speech recognition [30] and natural
language processing [31]. One reason for this progress is due to
the possibility of learning algorithms to enlarge the exploration of
the parameter space thanks to the advent of new, high-
performance parallel computing architectures, which exploit
powerful graphic processors to significantly speed-up learning
[32]. However, the breakthrough that allowed to effectively train
large-scale “deep” networks has been the introduction of an
unsupervised pre-training phase [33], in which the network is
trained to build a generative model of the data, which can be
subsequently refined using a supervised criterion (fine-tuning
phase). Pre-training initializes the weights of the network in a
region where optimization is somehow easier, thus helping the
fine-tuning phase to reach better local optima. It might also
perform some form of regularization, by introducing a bias
towards good configurations of the parameter space [34].

Going back to sequences, an interesting research question is
whether the benefits of pre-training could also be extended to the
temporal domain. Up to now, the most popular approaches to pre-
train sequential models do not take into account temporal depen-
dencies (e.g., [30,35]) and only pre-train input-to-hidden connec-
tions by considering each item of the sequence as independent of
the others. This pre-training strategy is clearly unsatisfactory,
because by definition the items belonging to the same sequence
are dependent on each other, and this information should be
exploited also during pre-training.

In this paper, we propose an alternative pre-training method.
Instead of using the same dataset for both the pre-training and the
fine-tuning phases, we propose to use an HMM with a limited
number of states to generate a new dataset, which represents an
approximation of the target probability distribution. This simpler,
smoothed dataset is then used to pre-train a more powerful non-
linear model, which is subsequently fine-tuned using the original
sequences. Importantly, this method does not require to develop
any ad-hoc pre-training algorithm: we can adopt standard gradi-
ent descent learning, and apply it first on the approximate
distribution and then on the original dataset.

We tested our method on a complex learning task, which
requires to extract the structure of polyphonic music encoded
using symbolic sequences (piano-roll MIDI format). We first
applied the HMM pre-training on a recently proposed recurrent
model [35] that has been shown to obtain state-of-the-art perfor-
mance on a prediction task for the considered dataset. We then
assessed the robustness and the generality of the method by
applying it also to a classic recurrent neural network. As a final
part of the study, we investigated the influence of various
hyperparameters on the training performance. In particular, we
performed extensive tests in order to understand how the number
and the length of the sequences that populate the smoothed
dataset affect both training times and the final quality of the
non-linear model. Our results confirm the value of the proposed
pre-training strategy, which allows us to learn an accurate model
of the data in a significantly shorter time, sometimes also leading
to improvements in prediction accuracy. A preliminary version of
this work appeared in [36].

1 For example, k-Nearest Neighbor exploits all training sequences or a subset
obtained by editing the training set (e.g., [27]); also Support Vector Machines use a
subset of the training set, i.e. the support sequences.
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1.1. Related work

As mentioned before, in the last few years the benefits of pre-
training strategies have been extensively investigated in the static
domain, where the task requires, for example, to learn the spatial
structure of images encoded as fixed-size vectors. In particular, it
has been shown that the model performance can be significantly
improved by first performing an unsupervised pre-training phase,
where the goal is to learn an accurate generative model of the data
by discovering its latent structure [37]. Notably, this approach
allows us to train large-scale, hierarchical neural networks by
using a large amount of training patterns that usually come
without any attached label. After pre-training, the generative
model can be further improved to perform classification tasks by
using labeled information during a fine-tuning, supervised phase
[33], although it has been shown that unsupervised pre-training
on deep architectures might already allow us to build high-level,
abstract representations of the input patterns [38,39] that can be
easily read-out even by a linear classifier [40].

However, it is not straightforward to extend these pre-training
techniques to the temporal domain, where the information is
provided to the system in a sequential way and the latent structure
must be gradually extracted over time [9]. Moreover, temporal
dependencies introduce processing constraints that increase the
computational complexity of learning algorithms. Although some
interesting extensions of generative models have been proposed to
deal with sequential data [41,42], they usually rely on approximate
inference and learning algorithms. Research on pre-training stra-
tegies for sequential models therefore appears to be still very
limited, and the most commonly used approaches usually ignore
temporal dependencies during pre-training. For example, deep
learning methods have been recently combined with HMMs to
obtain state-of-the-art performance in acoustic modeling [30], but
the pre-training phase did not consider the temporal structure of
the data and only focused on modeling vectors of spectral features
independently. A similar approach has been adopted to learn
music sequences [35], where input-to-hidden connections of the
generative model were pre-trained by considering each vector of
notes as independent of the other time-steps. Temporal connec-
tions were instead initialized using the weights learned by a
recurrent network trained with a second-order optimization
method [22], but according to the authors this initialization had
a minor impact on the final performance compared to the input-
to-hidden initialization.

A final approach to pre-train sequential models, fromwhich we
take inspiration in our work, is related to the idea of curriculum
learning [43]. The rationale behind this proposal is that human
learning is facilitated if we start to approach simpler concepts
before dealing with more complex ones [44]. In line with this idea,
previous studies on simple recurrent networks [45] found that
learning convergence can be improved if we first expose the
system to simpler examples, and then gradually introduce more
complex examples as learning proceeds. As explained in detail in
Section 3, we propose a similar approach, on which a simplified set
of patterns is effectively used to pre-train a sequential model. The
more complex, original patterns are then used during fine-tuning,
with the aim of refining and improving the acquired knowledge.

2. Background

In this section, we briefly review the formal characterization of
the models considered in this paper. In the mathematical notation
we adopted, scalar values are represented with lower case letters
(l), vectors with lower case letters in bold (v), matrices with upper
case letters in bold (M, and Mij denotes its element in position ij),
and variables with upper case letters (V). In each model discussed,

v constitutes the input to the model. Since the models process
sequential data, each time step in a time series is identified by an
index represented using an apex in round brackets (e.g., vðtÞ refers
to the input values at time step t).

2.1. Hidden Markov Models

Most real-world information sources emit, at each time step t,
observable events which are correlated with the internal state of
the generating process. In our case the observable events are a
vector of binary values. More importantly, the only available
information is the outcome of the stochastic process at each time
step t, i.e. the event vðtÞ, while the state of the system is
unobservable (hidden). Hidden Markov Models (HMMs) allow
modeling general stochastic processes where the state transition
dynamics is disentangled from the observable information gener-
ated by the process. The state-transition dynamics, which is non-
observable, is modelled by a Markov chain of discrete and finite
latent variables referred to as the hidden states.

The dependency relationships among the different variables
involved are typically represented by a graphical model, as
exemplified for the HMM in Fig. 1: the hidden states are latent
variables HðtÞ, while the sequence elements V ðtÞ are observed. The
conditional dependencies represented by the arrows HðtÞ-V ðtÞ

indicate that the observed element at time t of the sequence is
generated by the corresponding hidden state Ht through the
emission distribution:

ehðtÞ ðvðtÞÞ ¼ PðV ðtÞ ¼ vðtÞ jHðtÞ ¼ hðtÞÞ:
The joint distribution of the observed sequence v¼ vð1Þ;…; vðTÞ and
associated hidden states h¼ hð1Þ;…;hðTÞ can be written as

PðV ¼ v;H ¼ hÞ ¼ Pðhð1ÞÞPðvð1Þ jhð1ÞÞ ∏
T

t ¼ 2
PðhðtÞ jhðt�1ÞÞPðvðtÞ jhðtÞÞ: ð1Þ

The actual parametrization of the probabilities in Eq. (1) depends
on the form of the observation and hidden states variables. A
stationary hidden states chain, with n states, is regulated by an
n� n matrix of state-transitions Aij ¼ PðHðtÞ ¼ ijHðt�1Þ ¼ jÞ and by an
n-dimensional vector of initial state probabilities πi ¼ PðHðtÞ ¼ iÞ,
where i, j are drawn from f1;…;ng. Moreover, for discrete
sequence observations vðtÞAf1;…;mg (which is the case we are
interested in here), the emission distribution is an m� n emission
matrix E with elements

eiðkÞ ¼ Eki ¼ PðV ðtÞ ¼ kjHðtÞ ¼ iÞ:
The most common tasks performed when using an HMM are

(i) to compute the most likely sequence of states given an
observed sequence; (ii) to train a model, which consists in finding
the parameters (emission probabilities, transition probabilities,
and initial state probability) that maximize the probability of the
observed sequences contained in a training set, given the model.
The first task is achieved using the Viterbi algorithm [7], while
training an HMM is usually performed using the Baum–Welch
algorithm [46].

Probabilistic models of sequential data with hidden variables,
which act as an internal state, can capture the temporal

Fig. 1. Graphical model corresponding to a first-order Hidden Markov Model,
where the observable variables V ðtÞ are driven by the hidden states HðtÞ .
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dependencies between elements of a sequence by exploiting
different types of internal representations. HMMs use a localist
state representation, where the history of a time series is encoded
using a discrete k-state multinomial distribution, where k is the
number of hidden states in the model. This implies that in order to
model n bits of information about the past history, 2n hidden
states are required. To avoid this exponential explosion, more
powerful and expressive internal representations can be exploited.
In particular, the neural network models presented in the follow-
ing sections rely on distributed representations, where the history
of a time series is encoded by a pattern of activity distributed over
many hidden variables, and each variable is involved in represent-
ing many different entities [47]. This componential representation
allows us to greatly increment the representational capacity of the
model, which can efficiently encode history information using a
linear number of components.

2.2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a particular type of
neural networks designed to model sequential data. They are
composed of three separate layers of units: one input layer, one
hidden layer and one output layer. Each layer consists of several
units (neurons) that are not connected to each other, but that are
connected to all units in the next layer. Connections are weighted
and the weights represent the model parameters. At each time
step the corresponding elements of the sequence are given as
input to the network through the input layer. One or more hidden
layers are used to encode the latent features of the data, and the
last hidden layer is then connected to the output layer, which is
used to encode the desired network response. In our case, the task
consists in predicting, at time t, the element of the sequence that
should be generated at the next time step tþ1.

Let us consider a network with just one hidden layer. If we
denote with vð1Þ; vð2Þ;…; vðTÞARn the sequence of input vectors,
hð1Þ;hð2Þ;…;hðTÞARm the sequence of hidden states and
oð1Þ;oð2Þ;…;oðTÞARk the sequence of output vectors, the computa-
tion performed by an RNN at time t can be described by the
following equations:

hðtÞ ¼ σðWhvvðtÞ þWhhh
ðt�1Þ þbhÞ;

oðtÞ ¼ σðWohh
ðtÞ þboÞ;

where σ is the component-wise logistic function,2 bhARm and
boARk are the biases of hidden and output units, respectively, and
WhvARm�n, WohARk�m, and WhhARm�m are the input-to-hidden,
hidden-to-output and hidden-to-hidden weight matrices, respec-
tively. As mentioned above, we are interested in using the RNN in
a prediction task, where a subsequence vð1Þ; vð2Þ;…; vðτÞ, with
0rτoT , is given as input to the network and the goal is to
predict the element observed at the ðτþ1Þth time step, which
corresponds to the activation of the output units: opred ¼ oðτþ1Þ. In
our case, 8 t; vðtÞAf0;1gn, hence the input and output values will
be sequences of 0 and 1.

The standard way to train RNNs is via the back-propagation
through time (BPTT) algorithm [48], either in a batch mode or
using a stochastic gradient descent (SGD) approach. Unfortunately,
the performance of BPTT decreases in the presence of long-term
temporal dependencies due to the vanishing gradient phenom-
enon [20]. Two main possible remedies to this problem have been
proposed: the first one is called Long-Short Terms memory (LSTM)
[21] and it consists in extending the model by using special linear
memory units, while a more recent proposal relies on an Hessian-
Free (HF) optimization algorithm [22]. In our experiments, we

trained the networks using the BPTT algorithm, where the gradi-
ent at each time step t was computed according to the cross
entropy cost function:

crossEntropyðoðtÞ;dðtÞÞ ¼
Xk

j ¼ 1

�oðtÞj log ðdðtÞj Þ�ð1�oðtÞj Þlog ð1�dðtÞj Þ;

where oðtÞ is the prediction of the network and dðtÞ is the desired
target at time t. Moreover, two different regularization functions
are added to the cost function to improve generalization:

l1ðtÞ ¼ j jWðtÞ
hh j j 1þj jWðtÞ

hv j j 1þj jWðtÞ
oh j j 1;

l2ðtÞ ¼ j jWðtÞ
hh j j 22þj jWðtÞ

hw j j 22þj jWðtÞ
oh j j 22:

where WðtÞ
xy denotes the weight matrix Wxy at time step t. The final

cost computed at time t is

costðtÞ ¼ crossEntropyðoðtÞ;dðtÞÞþ l1ðtÞþ l2ðtÞ:

2.3. Recurrent Neural Networks with Restricted Boltzmann Machines

The Recurrent Neural Network-Restricted Boltzmann Machine
(RNN-RBM) [35] is a sequential neural network that combines the
best features of RNNs, which are particularly effective in learning
temporal dependencies, within an RBM, which can model complex
and multi-modal distributions. The RNN-RBM network is similar
to the RTRBM (Recurrent Temporal Recurrent Temporal Restricted
Boltzmann Machine) [41]. However, instead of exploiting a simple
connection between the RBM hidden units of two contiguous
time-steps, it hinges on the hidden units of an RNN to keep track
of the relevant temporal information, thus allowing the encoding
of long-term temporal dependencies. RNN-RBMs are nonlinear
stochastic models, for which the joint probability distribution of
hidden and input units is defined as

PðvðtÞ;hðtÞÞ ¼ ∏
T

t ¼ 1
PðvðtÞ;hðtÞ jvðt�1Þ; vðt�2Þ;…; vð1Þ; ĥ

ðt�1Þ
; ĥ

ðt�2Þ
;…; ĥ

ð1ÞÞ

where ĥ
ðtÞ ¼ σðW2vðtÞ þW3ĥ

ðt�1Þ þbĥ Þ and vðtÞ, hðtÞ and ĥ
ðtÞ

repre-
sent, respectively, the input units, the RBM-hidden units and the
RNN-hidden units, whereas bĥ represents the RNN-hidden unit
biases (for a graphical representation, see Fig. 2). This type of
network is harder to train compared to RNNs and RTRBMs, so it
requires an ad-hoc learning algorithm. The idea is to propagate the
value of hidden units ĥ

ðtÞ
in the RNN-part of the network and then

to use it to dynamically adjust some of the parameters of the RBM-
part. Specifically, time-variant biases for RBM are derived by the
hidden units of the RNN according to the following equations:

bðtÞ
h ¼ bĥ þW0ĥ

ðt�1Þ
;

bðtÞ
v ¼ bĥ þW″ĥ

ðt�1Þ
:

The RBM-part of the network can then be trained by using Gibbs
sampling and the contrastive divergence algorithm [49]. In parti-
cular, the model expectations on visible units vðtÞn can be esti-
mated using block Gibbs sampling, and the log-likelihood gradient
with respect to the RBM weights W and biases can be computed
by contrasting the model's expectations with the observed data
distribution. The log-likelihood gradient of the RBM-part of the
network can then be propagated backward through time by using
the BPTT algorithm [48], in order to estimate the gradient with
respect to the RNN-part parameters (for details on the learning
procedure, see [35]).

To obtain a good model of the data, a pre-training phase is
usually performed. In particular, the authors of the RNN-RBM
separately pre-trained the RBM-part and the RNN-part. Specifi-
cally, pre-training of the RBM-part of the model is performed by
using contrastive divergence on information associated to single2 For our experiments we used the hyperbolic tangent.

L. Pasa et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

Please cite this article as: L. Pasa, et al., Neural Networks for Sequential Data: a Pre‐training Approach based on Hidden Markov Models,
Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2014.11.081i

http://dx.doi.org/10.1016/j.neucom.2014.11.081
http://dx.doi.org/10.1016/j.neucom.2014.11.081
http://dx.doi.org/10.1016/j.neucom.2014.11.081


time steps, while the RNN-part of the model can be pre-trained
either by using SGD or Hessian-Free optimization, with the aim to
better capture temporal dependencies.

3. Our pre-training approach

The pre-training method we propose relies on an approximation
of the actual data distribution in order to drive the network weights
in a better region of the parameter space. To this aim, a linear HMM
is first trained on the real sequences (original data). We chose to use
this type of probabilistic models because they are particularly
efficient to train, and they have shown to be effective on many
sequence learning problems [7], including music modeling [35]. After
training, the HMM is used to generate a fixed number of sequences
that will populate a new dataset (smooth data). The intuition is that
the sequences generated by the linear model will constitute a
smoothed, approximated version of the original sequences, but will
nevertheless retain the main structure of the data. In order to
generate a set of sequences from the HMM, we first select the
starting hidden state according to the learned initial state probability
distribution. The first element of the sequence is then sampled
according to the emission distribution associated with that hidden
state, and the same process is iteratively repeated by selecting the
next target state according to the learned state transition probabil-
ities. A straightforward, naive implementation of the random sam-
pling process can be obtained by first computing the cumulative
probability distribution from the target distribution and then select-
ing the element corresponding to a random number drawn from the
interval [0,1]. Notably, our pre-training procedure does not need any
form of bootstrapping from the original sequences, because the
smooth dataset is generated by sampling the HMM in a completely
unconstrained fashion. The simplified, HMM-generated dataset is
then used to pre-train the more powerful nonlinear model, with the
aim of transferring the knowledge acquired by the HMM to the
recurrent neural network. The recurrent network pre-training phase
uses the same algorithm that is used for the normal training phase.
After completing the pre-training phase on the smooth dataset, the
neural network is then fine-tuned using the original music
sequences, in order to allow the nonlinear model to extract more
complex structure from the data distribution. The pseudocode for the
proposed HMM-based pre-training method is given in Algorithm 1,
and a flow chart of the procedure is illustrated in Fig. 3.

Algorithm 1. Pseudocode for the proposed HMM-based pre-
training. At the beginning, several parameters need to be initi-
alized: n and l represent, respectively, the number and length of
the sequences generated by the HMM, θhmm represents the
training hyperparameters for the HMM (e.g., number of hidden
states) and θrnn represents the training hyperparameters for the

recurrent neural network (e.g., the number of hidden units and the
learning rate).

1: begin
2: set n; l;θhmm;θrnn;
3: hmm’train_hmmðoriginalData;θhmmÞ;
4: smoothData’sampleðhmm;n; lÞ;
5: rnn’random_initialization;
6: rnn’train_rnnðsmoothData;θrnn; rnnÞ;
7: rnn’train_rnnðoriginalData;θrnn; rnnÞ;
8: returnðrnnÞ;
9: end.

Notably, the introduction of the pre-training phase before fine-
tuning does not significantly affect the computational cost of the
whole learning procedure, because both learning and sampling in
HMMs can be performed in an efficient way. In particular, our
method performs three main steps during pre-training: train the
HMM, generate the smooth dataset and pre-train the nonlinear
network. The training phase for the HMM (step 3) is performed
using the Baum–Welch algorithm, which has a complexity of order
OðN2TÞ for each iteration and observation, where T is the length of
the observation used to train the model, and N is the number of
states in the HMM [50]. The smooth sequences generation (step 4)
is performed using the Viterbi algorithm. For each generated
sequence, this algorithm has a computational complexity of order
OððNFÞ2TÞ, where F is the size of the input at a single time step, T is
the length of the generated sequence and N is the number of states
in the HMM. Finally, step 6 consists in pre-training the recurrent
neural network. In order to perform the pre-training phase we
exploit the standard training algorithm, therefore the complexity
of this step depends on the type of network that we aim to use.
Moreover, it should be noted that the improved initialization of
the network weights could allow us to speed-up convergence
during the fine-tuning phase. The number and length of the
sequences generated by the HMM are important parameters for
which it is difficult to make an operational choice. A rule of thumb
is to choose them in accord with the training set statistics. In
Section 4.4 we experimentally explore some of these issues.

4. Experimental assessment

We tested our pre-training method on both RNNs and RNN-
RBMs on a next-step prediction task over four datasets containing
polyphonic music sequences. Due to the very high computational
demand of RNN-RBMs, the assessment of the proposed method for

Fig. 2. Schematic representation of the RNN-RBM (see [35] for details).

train 
HMM 

pre-train 
RNN 

fine-tune 
RNN 

original data 

smooth data 

Fig. 3. Flow chart of the proposed HMM-based pre-training method for RNN. The
flow chart is the same if an RNN-RTRBM model is used in place of an RNN: it is
sufficient to replace the label RNN with the label RNN-RBM in the picture (in fact,
any sequential model could in principle be used as an alternative to the RNN).
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this type of network is performed using only two out of the four
available datasets.

4.1. Datasets

The polyphonic music datasets considered in our study contain
different musical genres, which involve varying degrees of com-
plexity in the temporal dependencies that are relevant for the
prediction task. Specifically, the Nottingham dataset contains folk
songs, characterized by a small number of different chords and a
redundant structure; the Piano-midi.de dataset is an archive of
classic piano music, containing more complex songs with many
different chords; the Muse Data and JSB Chorales datasets contain,
respectively, piano and orchestral classical music; moreover, the
JSB chorales are redundant and all composed by a single author, so
the songs style is largely shared by different patterns.

In Table 1 we report the main datasets statistics, including the
size of the training and test sets, and the maximum, minimum,
and average length of the contained sequences. All data that we
used for the experiments was in MIDI format. Each sequence was
converted into a binary format, where each time step was encoded
using a vector of 88 binary values that represented the 88 notes
spanning the whole piano range (from A0 to C8). In particular,
each binary value was set to 1 if the note was played at the current
time step, and 0 otherwise. The number of notes played simulta-
neously varied from 0 to 15. The output prediction was repre-
sented using the same format of the input.

4.2. Experimental setup

We tested the generality of our approach by validating it on the
two different types of sequential networks described above, i.e.,
RNNs and RNN-RBMs.

Due to the large number of hyperparameters involved in the
computation (e.g., the number of hidden variables for both HMMs
and recurrent networks, and the number and length of the
sequences generated by the HMM), a systematic exploration of
the parameters space would be unfeasible. We therefore adopted a
“probe” approach, where the model-dependent parameters that
were already known to give good results for the used datasets were
kept fixed, while the remaining parameters were probed for few
different values. Specifically, the fixed parameters for both the
sequential networks are the number of pre-training and training
epochs (which are set to 100 and 200, respectively, for the RNN-
RBM and to 2500 and 5000 for the RNN). Moreover, for both the
RNN and the RNN-RBM we used a learning rate of 0.001. Only for
the RNN-RBM, the number of hidden units was fixed to 150 for the
RBM-part, and to 100 for the RNN-part. For the pre-training of both

networks we used an HMM that was trained for 10,000 iterations
using the Baum–Welch algorithm. This setting might not be ideal,
since a large portion of the parameter space is left unexplored.
Nevertheless, the few parameter configurations we have probed
were enough to provide evidence that the proposed approach is
robust with respect to the learning parameters, since for all the
considered datasets we obtained significant improvements, either
in terms of accuracy or in terms of computation time.

Following the procedure outlined above, we started our inves-
tigation with the RNN-RBM network. Specifically, we explored the
effect of using different numbers of states for the HMM, while
keeping the number of HMM generated sequences fixed at 500, all
of length 200. As mentioned above, since training of RNN-RBMs is
very time consuming, we restricted our experiments to the
Nottingham and Piano-midi.de datasets. In order to evaluate the
experimental results, we made a comparison of our method
against the pre-existing pre-training approaches, i.e. SGD and HF,
in terms of accuracy (calculated according to the method proposed
in [51]) and computation time. For RNNs, we investigated the
impact of our pre-training approach on the learning process by
varying the number of hidden units and the number (and length)
of the sequences generated by the HMM, while keeping the
number of hidden states of the HMM fixed to 10 (i.e. the number
of hidden states that constituted to the best trade-off between
speed of training and quality of the final result in the RNN-RBM
experiments).

All the experiments were run using the Theano software [52],
on an Intelⓒ Xeonⓒ CPU E5-2670 @2.60 GHz with 128 GB of RAM,
equipped with an NVidiaⓒ K20 GPU.

4.3. Experimental results

Learning the structure of polyphonic music with HMMs was
challenging due to the potential exponential number of possible
configurations of notes that can be produced at each time step,
which would cause the alphabet of the model to have an
intractable size. We fixed this issue by only considering the
configurations that were actually present in each dataset, which
reduced the complexity of the alphabet but at the same time
maintained enough variability to produce realistic samples. We
assessed the accuracy of the models on the prediction task defined
in [35], i.e. prediction at time t�1 of the next sequence input at
time t, using the same evaluation metric and model parameters.
We also collected the total training times, which are composed of
both the pre-training time and the fine-tuning time.

For the RNN-RBM, we compared our pre-training method with
that used by the authors of the model. Pre-training was performed
for 100 epochs, and fine-tuning for 200 epochs. Total training

Table 1
Datasets statistics, including the number of sequences contained in each dataset.

Dataset Subset # Samples Max length Min length Avg length

Nottingham Training 195 641 54 200.8
Test 170 1495 54 219
Validation 173 1229 81 220.3

Piano-midi.de Training 87 4405 78 812.3
Test 25 2305 134 694.1
Validation 12 1740 312 882.4

MuseData Training 524 2434 9 474.2
Test 25 3402 70 554.5
Validation 135 2523 94 583

JSB Chorales Training 229 259 50 120.8
Test 77 320 64 123
Validation 76 289 64 121.4
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times and prediction accuracies for the HMM, SGD and HF pre-
trainings are reported in Fig. 4 for the Nottingham dataset, and in
Fig. 5 for the Piano-midi.de dataset. In both figures, information
about pre-training time is reported in the figure legend, after each
curve label. Specifically, each label is followed by a couple of values
in parenthesis that represent, for our pre-training approach, the
time required for training the HMM and the time required for the
pre-training phase, while for the other pre-training approaches
the values represent the time required for pre-training the RBM-
part and the RNN-part of the network by using HF or SGD.

In general, different pre-training methods led to similar accura-
cies (both for training and test sets) at the end of the fine-tuning
phase. However, in the more complex Piano-midi.de dataset our
pre-training obtained slightly better results. Regarding conver-
gence speed, the HMM method always significantly outperformed
the others (e.g., it saved more than 8 h of computing in the

Nottingham dataset). We also assessed the change in performance
as the number of HMM states varies. As expected, using a smaller
number of hidden states (r25) reduced pre-training times.
Interestingly, this did not affect the quality of the models after
the fine-tuning phase, which still converged to good solutions.
Using a HMM with 50 states, instead, was detrimental due to the
slow convergence speed of the HMM training. Thus, the HMM pre-
training seems to perform a better initialization of the network,
which allowed us to improve convergence speed also during the
fine-tuning phase. For example, the network pre-trained with the
HMM reached the highest accuracy after only 110/120 epochs,
compared to 200 epochs required by the other methods. It is
worth noting that the accuracies measured directly on the HMMs
were always fairly low, at best approaching 53% in the Nottingham
dataset and 10.1% in the Piano-midi.de dataset.

Concerning the experiments involving RNNs, we recall that a
single HMM with 10 hidden states for each dataset was used to
generate all the pre-training sequences of the corresponding
dataset. Three different network architectures were used contain-
ing 50, 100, and 200 hidden units. Pre-training for the network
with 50 hidden units was performed by using both 25 generated
sequences of length 25 and 500 generated sequences of length
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Fig. 5. Accuracy and running times of the tested pre-training methods, measured
on the Piano-midi.de dataset. Each curve is identified by a label followed by a
couple of execution times in parenthesis: the pattern HMM-n (time1,time2)
refers to our approach, where n is the number of hidden states used for the HMM,
time1 is the training time for the HMM, time2 is the pre-training time; with the
label HF (or SGD) we represent the Hessian Free (or Stochastic Gradient Descent)
pre-training performed in time1 time for the RBM-part, and time2 time for the
RNN-part. The final test set performance for each method is reported at the end of
each corresponding curve.
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Fig. 6. Training (top) and test (bottom) accuracy and running times for RNNs on the
Nottingham dataset. Each curve is identified by the label RNN followed by three or
two identifiers: the three identifiers pattern n1U n2 n3 refers to our approach,
where n1 is the number of used hidden units for RNN, n2 is the number of
sequences generated by an HMM with 10 states, and n3 is the length of such
sequences; the two identifiers pattern nU NoPre refers to a RNN with standard
random initialization and n hidden units. A dotted vertical line is used to mark the
end of training of RNNs, with no pre-training, after 5000 epochs. The same number
of epochs is used to train RNNs with pre-training. (For interpretation of the
references to color in the text, the reader is referred to the web version of this
paper.)

Fig. 4. Accuracy and running times of the tested pre-training methods, measured
on the Nottingham dataset. Each curve is identified by a label followed by a couple
of execution times in parenthesis: the pattern HMM-n (time1,time2) refers
to our approach, where n is the number of hidden states used for the HMM,
time1 is the training time for the HMM, time2 is the pre-training time; with the
label HF (or SGD ) we represent the Hessian Free (or Stochastic Gradient Descent)
pre-training performed in time1 time for the RBM-part, and time2 time for the
RNN-part. The final test set performance for each method is reported at the end of
each corresponding curve.
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200. For the architecture with 100 hidden units, three different
pre-training configurations were used: 250 generated sequences
of length 200, 500 generated sequences of length 50, 500
generated sequences of length 50. Finally, for the architecture
with 200 hidden units, 500 generated sequences of length 200
were used.

In Figs. 6–9 we compare, for all the four datasets, the learning
curves obtained for the training and test sets by our pre-training
method versus the learning curves obtained without pre-training.
The starting point of the curves involving pre-training takes into
consideration the pre-training time. Since the number of training
epochs for the RNNs is fixed to 5000 and it does not depend on the
presence of pre-training, in the plots we highlighted, via a vertical
dotted line, the point in time where the slowest RNN without pre-
training finished training. From the plots it can be observed that
some runs of RNNs using the same number of hidden units have a
significant difference in execution time. We believe that this is
mainly due to the Theano dynamic C code generation feature,
which can, under favorable conditions, speed-up computation in a
significant way.

From the learning curves we can notice that the performance
on the test sequences is very similar to the behavior on the

training sequences (i.e., the models did not overfit). Concerning
the effectiveness of pre-training, it is clear that using just 50
hidden units does not lead to any benefit, while pre-training turns
to be quite effective for networks with 100 and 200 hidden units,
allowing the RNN to reach very good generalization performances.
Moreover, using many short generated sequences seems to be the
best choice for all datasets, as clearly demonstrated by the net-
works using 100 hidden units and 3 different configurations for
the generated sequences. For the Nottingham and JSB databases,
pre-training seems to reach a very good starting point that is
subsequently lost by training with the original dataset. This is an
interesting behavior that needs to be more carefully investigated
in future studies. At the time marked by the vertical line (i.e. when
the slowest RNN without pre-training finished training), all the
curves associated to RNNs adopting pre-training reached a per-
formance that was very close to the final one. This suggests that
our pre-training can reach significantly better solutions using the
same amount of time used by RNNs with no pre-training.

Finally, it is interesting to compare the test performances
reached by the RNNs with the results obtained in [35]. In Table 2
we have reported, for each dataset, the test performances of their
Hidden Markov Models (HMM) using Gaussian Mixture Models
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Fig. 7. Training (top) and test (bottom) accuracy and running times for RNNs on the
Piano-midi.de dataset. Each curve is identified by the label RNN followed by three
or two identifiers: the three identifiers pattern n1U n2 n3 refers to our approach,
where n1 is the number of used hidden units for RNN, n2 is the number of
sequences generated by an HMM with 10 states, and n3 is the length of such
sequences; the two identifiers pattern nU NoPre refers to a RNN with standard
random initialization and n hidden units. A dotted vertical line is used to mark the
end of training of RNNs, with no pre-training, after 5000 epochs. The same number
of epochs is used to train RNNs with pre-training. (For interpretation of the
references to color in the text, the reader is referred to the web version of this
paper.)
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Fig. 8. Training (top) and test (bottom) accuracy and running times for RNNs on the
Muse dataset. Each curve is identified by the label RNN followed by three or two
identifiers: the three identifiers pattern n1U n2 n3 refers to our approach, where
n1 is the number of used hidden units for RNN, n2 is the number of sequences
generated by an HMM with 10 states, and n3 is the length of such sequences; the
two identifiers pattern nU NoPre refers to a RNN with standard random
initialization and n hidden units. A dotted vertical line is used to mark the end
of training of RNNs, with no pre-training, after 5000 epochs. The same number of
epochs is used to train RNNs with pre-training. (For interpretation of the references
to color in the text, the reader is referred to the web version of this paper.)
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(GMM) indices as their state, their RNN (also with HF training)
and their RNN-RBM networks, jointly with the test performances
reached by our RNNs with pre-training (PreT-RNN) as selected by
using the associated validation set. For all datasets we obtain
significantly better results, especially when considering the
HMM-based approach. The improvement is particularly large
for the JSB dataset.

It can be also observed that our pre-training on the RNN-RBM
architecture did not seem to improve on test performances.
However, we recall that we used a much smaller number of
hidden units with respect to the network used in [35], which
may explain why no significantly better results are obtained for
the Nottingham and Piano-midi.de datasets, although there was a
significant improvement in training times.

4.4. Parameters setting

Even if our experimental investigation confirms the appeal of
the proposed pre-training strategy, the optimal choice of the
parameters involved in our method is still partially unexplored.
In particular, in our experiments we fixed many learning para-
meters (e.g., learning rates and number of learning epochs) and
only coarsely explored the best values for the other parameters. In

this final section we briefly make some considerations that could
help us to better understand what is the impact of some settings
that directly affect our pre-training method, in particular, the
length of the sequences generated by the HMM.

As shown in Figs. 6–9, the best final performance is clearly
achieved when using more hidden units in the RNN (i.e., 200 units
instead of 100). However, the results do not clearly characterize
how the number and the length of the generated sequences affect
the final RNN performance. Specifically, it seems that by sampling
more sequences we usually obtain better results (compare, for
example, the blue – 250 – and the red – 500 – lines in all the above
mentioned figures). A possible reason for this phenomenon is that
by sampling more sequences we add more variability to the pre-
training sequences, which results in a better generalization. At the
same time, we face a trade-off because adding more sequences to
the smooth dataset also causes an increase in pre-training times.

The parameter representing the length of the sequences
sampled from the HMM, instead, appears to be more subtle to
optimize. In particular, it seems that we do not need to generate
very long sequences from the HMM, because good performances
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Fig. 9. Training (top) and test (bottom) accuracy and running times for RNNs on the
JSB dataset. Each curve is identified by the label RNN followed by three or two
identifiers: the three identifiers pattern n1U n2 n3 refers to our approach, where
n1 is the number of used hidden units for RNN, n2 is the number of sequences
generated by an HMM with 10 states, and n3 is the length of such sequences; the
two identifiers pattern nU NoPre refers to a RNN with standard random
initialization and n hidden units. A dotted vertical line is used to mark the end
of training of RNNs, with no pre-training, after 5000 epochs. The same number of
epochs is used to train RNNs with pre-training. (For interpretation of the references
to color in the text, the reader is referred to the web version of this paper.)

Table 2
Accuracy results for state-of-the-art models [35] vs our pre-training approach. The
acronym GMMþHMM is used to identify Hidden Markov Models (HMM) using
Gaussian Mixture Models (GMM) indices as their state. The acronym (w. HF) is used
to identify an RNN trained by Hessian Free optimization.

Dataset Model ACC%

Nottingham GMM þ HMM 59.27
RNN (w. HF) 62.93 (66.64)
RNN-RBM 75.40
PreT-RNN (200U 500 200) 80.47

Piano-midi.de GMM þ HMM 7.91
RNN (w. HF) 19.33 (23.34)
RNN-RBM 28.92
PreT-RNN (200U 500 200) 36.51

MuseData GMM þ HMM 13.93
RNN (w. HF) 23.25 (30.49)
RNN-RBM 34.02
PreT-RNN (200U 500 200) 44.96

JSB Chorales GMM þ HMM 19.24
RNN (w. HF) 28.46 (29.41)
RNN-RBM 33.12
PreT-RNN (200U 500 200) 67.36
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can already be obtained by using a length of only 50 (see black,
crossed lines in the above mentioned figures). This result might be
due to the statistics of the considered datasets, because most of
the structure to be learned could be encoded in short sequences.
The statistics reported in Table 1 only report maximum, minimum
and mean values for the sequences contained in the four datasets,
but such measures do not fully characterize the distribution of
sequences length in the different sets. Indeed, as shown in Fig. 10
which reports the datasets cumulative distributions of sequence
length, it appears that in both JSB and Nottingham datasets most
of the sequences are fairly short.

The experimental results seem to suggest that a good choice for
the length of the HMM generated sequences is to choose a value
that covers about the 50% of the cumulative distribution over the
lengths in the training set. However, the trade-off between the
length of the sequences and the required time for pre-training
must also be taken into account. Indeed, with longer sequences,
the computational burden of pre-training in terms of time
increases significantly. Besides, using long HMM generated
sequences does not guarantee that the accuracy of the pre-
trained network is going to improve. In fact, from the experi-
mental results, it can be observed that networks pre-trained with
500 sequences of length 50 (black line with crosses) get a better
accuracy with respect to networks pre-trained with 500 sequences
of length 200 (brown line with square).

A possible explanation for the worse performance obtained
when generating long sequences might be found in the short
memory of HMMs, which would cause longer sequences to “drift
away” from the correct structure as the generation proceeds. We

tested this hypothesis by plotting in Fig. 11 the HMM3 accuracy
versus the length of sequences belonging to the Muse training and
test datasets. The Muse datasets were chosen because they contain
sequences with complex structures as well as a sufficient number
of sequences to get reliable statistics. The plot is actually reporting
the average accuracy of bins of size 50 over the length. The
standard deviation for each bin is reported as well in the plot.

The plots do not seem to show the “drift away” effect described
above, although it must be recognized that we do not know the
memory size needed to cover all (or most) of the long-term
dependencies which actually occur into the Muse datasets, so it
is difficult to evaluate how many of the long-term dependencies
have been identified by the HMM. However, the fact that many
long sequences have better accuracy values than the average
(0.1265 for the training set, and 0.129 for the test set) seems to
be a good indication that there is not a memory issue with HMM.

5. Conclusions and future directions

In this paper, we proposed a novel method for pre-training
recurrent neural networks, which consists in generating a smoothed,
approximated dataset using a first-order HMM trained on the original
data. When applied to a recently proposed recurrent neural network
architecture on a prediction task involving polyphonic music, our
HMM-based pre-training led to prediction accuracies comparable (and
sometimes slightly better) than those obtained with currently avail-
able pre-training strategies, but requiring a significantly lower com-
putational time. We also tested the method on a classic recurrent
neural network, and also in this case the effectiveness of our approach
was confirmed, obtaining a large improvement in all datasets.

It should be stressed that the proposed method does not need
any ad-hoc adjustments of existing learning algorithms, because it
consists in generating a simplified dataset that is used to initialize
the parameters of the learner. Our pre-training strategy is there-
fore very general, and its benefits could be readily extended to pre-
train many other types of sequential models.

Although in this paper we tried to explore the joint parameter
space which includes both the pre-training parameters as well the
recurrent neural network parameters, further research is needed to
better understand how to reach the optimal setting for the number
and length of sequences generated by the HMM. The empirical
evidence we have collected in our experiments seems to suggest that
using too long sequences is detrimental for the fine-tuning phase. It
seems much better to use many short sequences. This may be
understood as a way to avoid overfitting by the pre-training phase:
the main mode of the data can be captured by short sequences, while
long-term dependencies are left to the fine-tuning phase. As a
consequence of that, the empirical evidence seems to suggest that it
is not important to use a Hidden Markov Model with many hidden
states. In fact, having many hidden states makes pre-training too slow
and prone to introduce overfitting. A mathematical explanation of
these empirical observations is needed, and it will constitute the main
effort for future research in the topic.
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