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At least 3 different types of computational model have been shown to account for various facets of both
normal and impaired single word reading: (a) the connectionist triangle model, (b) the dual-route
cascaded model, and (c) the connectionist dual process model. Major strengths and weaknesses of these
models are identified. In the spirit of nested incremental modeling, a new connectionist dual process
model (the CDP� model) is presented. This model builds on the strengths of 2 of the previous models
while eliminating their weaknesses. Contrary to the dual-route cascaded model, CDP� is able to learn
and produce graded consistency effects. Contrary to the triangle and the connectionist dual process
models, CDP� accounts for serial effects and has more accurate nonword reading performance. CDP�
also beats all previous models by an order of magnitude when predicting individual item-level variance
on large databases. Thus, the authors show that building on existing theories by combining the best
features of previous models—a nested modeling strategy that is commonly used in other areas of science
but often neglected in psychology—results in better and more powerful computational models.
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At least since Huey (1908), experimental and cognitive psychol-
ogists have been interested in describing the processes underlying
skilled reading in a precise and detailed manner. Early attempts
were purely verbal and qualitative, and box-and-arrow models of
the reading process were ubiquitous (see, e.g., Morton, 1969).

With the emergence of connectionism, the modeling of aspects of
the reading process experienced a quantum leap (McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1982; Seidenberg &
McClelland, 1989). Purely verbal theories were successively re-
placed by explicit computational models. These models can pro-
duce highly detailed simulations of various aspects of the reading
process, including word recognition and reading aloud (e.g., Colt-
heart, Curtis, Atkins, & Haller, 1993; Coltheart, Rastle, Perry,
Langdon, & Ziegler, 2001; Grainger & Jacobs, 1996; Harm &
Seidenberg, 1999, 2004; Norris, 1994; Plaut, McClelland, Seiden-
berg, & Patterson, 1996; Seidenberg & McClelland, 1989; Zorzi,
Houghton, & Butterworth, 1998b). In addition, lesioning the mod-
els in various ways made it possible to compare the behavior of the
models to that of neuropsychological patients with various reading
impairments (i.e., acquired dyslexia; see Denes, Cipolotti, & Zorzi,
1999, for a review). This type of modeling improved understand-
ing of both the fundamental processes involved in reading single
words aloud and the causes underlying various reading disorders
(see Zorzi, 2005, for a review).

Despite the huge progress in developing computational models,
each model has its own fundamental limitations and problems in
accounting for the wide range of available empirical data (see
Previous Models section). The goal of the present research was to
design a new model by building on the strengths of some of the
previous models and eliminating their weaknesses. In other sci-
ences, it is standard practice that a new model accounts for the
crucial effects accounted for by the previous generations of the
same or competing models. This strategy, often neglected in psy-
chology, has sometimes been referred to as nested modeling: A
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new model should be related to or include at least its own direct
predecessors. The new model should also be tested against the data
sets that motivated the construction of the old models before it is
tested against new data sets (Jacobs & Grainger, 1994). To some-
what preempt the results, we show that building on existing the-
ories by combining the best features of previous models results in
a better and more powerful computational model.

The article is organized as follows. We begin by describing
previous models of reading aloud, focusing on those that have been
shown to account for both normal and impaired performance in
written word naming. We then discuss the shortcomings of these
models. In the second part of the article, we describe a new
connectionist dual process model (the CDP� model), which ad-
dresses the weaknesses of its predecessors while building on their
strengths. In developing and testing the new model, we follow a
nested modeling approach: That is, the model’s architecture was
designed in a way that exploited the best features of other models.
The model was then tested against a full set of state-of-the-art
benchmark effects. In the Results section, we compare the perfor-
mance of the new model against its main competitors, and we
provide an analysis that aims at determining the source of the
improved performance.

Previous Models

The most appealing feature of computational models is their
high degree of explicitness and precision. Modelers need to specify
input–output representations, learning algorithms, connectivity,
and issues of model-to-data connection (i.e., how the data pro-
duced by the models can be related to the actual data that is
collected). Implemented models thus become testable and falsifi-
able, and they can be compared with one another in a quantitative
way.

Models are typically tested by presenting them with one or
several lists of stimuli (words and nonwords) taken from a pub-
lished study. Dependent measures of the model’s performance are
error rates and reaction times (RTs). The latter are simply the
number of cycles taken by the model to produce a final output for
each presented stimulus. Thus, the model’s response latencies are
collected for each item, and they are subsequently analyzed with
appropriate statistics to assess the significance of the effect(s). In
some cases, models can also be evaluated at the item level by
regressing a model’s latencies onto human latencies (Coltheart et
al., 2001; Spieler & Balota, 1997; see later discussion).

A number of extant models may have the potential to account
for a substantial amount of the empirical data from both skilled
reading aloud and neuropsychological disorders of reading aloud
following brain damage. Here, we examine three of them: (a) the
parallel distributed processing (PDP) model of Seidenberg and
McClelland (1989) and its various successors (e.g., Harm & Sei-
denberg, 1999; Plaut et al., 1996), (b) the dual-route cascaded
(DRC) model of Coltheart et al. (1993, 2001), and (c) the connec-
tionist dual process (CDP) model of Zorzi et al. (1998b). The main
characteristics of these models are reviewed next (see Zorzi, 2005,
for a more comprehensive review).

The Triangle Model

The computational framework described by Seidenberg and
McClelland (1989) has been referred to as the triangle model (see

Figure 1). The model assumes the existence of two pathways from
spelling to sound: One pathway is a direct mapping from ortho-
graphic to phonological representations, whereas the second path-
way maps from print to sound by means of the representation of
word meanings.

Only the direct orthography-to-phonology pathway was imple-
mented in Seidenberg and McClelland’s (1989) seminal work. In
the model, the phonology of any given word or nonword is
computed from its orthographic representation by a single process.
This process is the spread of activation through a three-layer neural
network, where the activation patterns over input and output units
represent the written and phonological form of the word, respec-
tively. The knowledge about spelling–sound mappings is distrib-
uted in the network and resides in the connections that link the
processing units.

The back-propagation learning algorithm was used to train the
network on a set of nearly 3,000 monosyllabic English words
(Rumelhart, Hinton, & Williams, 1986). Training items were pre-
sented to the network with a probability reflecting a logarithmic
function of Kuçera and Francis’s (1967) word frequency norms.
Orthographic and phonological representations of words (and non-
words) consisted of activation patterns distributed over a number
of primitive representational units following the triplet scheme of
Wickelgren (1969). This model was able to account for various
facts about the reading performance of normal participants. In
particular, it showed the classic interaction between word fre-
quency and spelling–sound regularity (e.g., Paap & Noel, 1991),
an interaction that was previously taken as evidence supporting the
dual-route model of reading (details of this model are described
later).

The model was, however, criticized (see, e.g., Besner, Twilley,
McCann, & Seergobin, 1990; Coltheart et al., 1993). Most impor-
tant, Besner et al. (1990) tested the model on several lists of
nonwords and found that it performed very poorly (more than 40%
errors). However, Plaut et al. (1996) presented an improved ver-
sion of the triangle model in which they abandoned the highly
distributed Wickelfeature representation in favor of a more localist
coding of orthographic and phonological units. This new model
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Figure 1. The triangle model. The part of the model implemented by
Seidenberg and McClelland (1989) and also by Plaut et al. (1996) is shown
in bold. From “A Distributed, Developmental Model of Word Recognition
and Naming,” by M. S. Seidenberg and J. L. McClelland, 1989, Psycho-
logical Review, 96, p. 526. Copyright 1989 by the American Psychological
Association. Adapted with permission.
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overcame some of the limitations of its predecessor; namely, the
model was able to read several lists of nonwords with an error rate
similar to that of human participants under time pressure (see also
Seidenberg, Plaut, Petersen, McClelland, & McRae, 1994), al-
though there were individual items that were pronounced differ-
ently from the way people typically pronounce them.

In more recent work, Harm and Seidenberg (2004) implemented
a semantic component for the triangle model that maps orthogra-
phy and phonology onto semantics. This allowed them to simulate
a number of effects related to semantics, including homophone and
pseudohomophone effects found in semantic categorization and
priming experiments (e.g., Lesch & Pollatsek, 1993; Van Orden,
1987). They also added direct connections between orthography
and phonology (i.e., not mediated by hidden units; see the CDP
model described later), which Plaut et al.’s (1996) model did not
have. They suggested that this modification had the effect of
further improving the generalization performance (i.e., nonword
reading) of the model (see Harm & Seidenberg, 2004, for further
details).

The DRC Model

In response to the single-route model of Seidenberg and Mc-
Clelland (1989), Coltheart and colleagues (Coltheart et al., 1993,
2001; Coltheart & Rastle, 1994; Rastle & Coltheart, 1999; Ziegler,
Perry, & Coltheart, 2000, 2003) developed a computational im-
plementation of the dual-route theory. In this model, known as
DRC, lexical and nonlexical routes are implemented as different
and representationally independent components (see Figure 2).
Moreover, the two routes operate on different computational prin-
ciples: serial, symbolic processing in the nonlexical route and
parallel spreading activation in the lexical route.

The nonlexical route of DRC applies grapheme-to-phoneme
correspondence (GPC) rules in a serial left-to-right manner; it can
be used on any string of letters and is necessary for reading
nonwords. The lexical route, which is implemented as an interac-
tive activation model based on McClelland and Rumelhart’s
(1981; see also Rumelhart & McClelland, 1982) word recognition
model joined with something similar to Dell’s (1986) spoken word
production model, operates by means of parallel cascaded process-
ing. Processing starts at a letter feature level, and then activation
spreads to letters, orthographic word nodes (i.e., an orthographic
lexicon), phonological word nodes (i.e., a phonological lexicon),
and finally a phonological output buffer (i.e., the phoneme system).
The lexical route can be used to read known words and is neces-
sary for the correct reading of exception words (also called irreg-
ular words). Irregular/exception words contain, by definition, at
least one grapheme pronounced in a way that does not conform to
the most frequent grapheme–phoneme correspondences (e.g., the
pronunciation of ea in head vs. bead).

One common type of error produced by the model is known as
a regularization error. This type of error occurs if the nonlexical
route is used to read an exception word without the lexical route
being on, because the nonlexical route generates phonology
through rules that specify only the most typical grapheme–
phoneme relationships. For example, the nonlexical route would
generate a pronunciation that rhymes with mint when presented
with the word pint. Normally, the lexical and nonlexical routes
always interact during processing (whether during the processing

of words or the processing of nonwords). However, the lexical
route runs faster than the nonlexical route, which is why irregular
words are usually (but not always) pronounced correctly by DRC,
even though the nonlexical route generates a regularized pronun-
ciation.

The CDP Model

Zorzi et al. (1998b) developed a connectionist model of reading
aloud where a dual-route processing system emerges from the
interaction of task demands and initial network architecture in the
course of reading acquisition. In this model, the distinction be-
tween phonological assembly and lexical knowledge is realized in
the form of connectivity (either direct or mediated) between or-
thographic input and phonological output patterns (see Houghton
& Zorzi, 1998, 2003, for a similar treatment of the problem of
learning the sound–spelling mapping in writing). The model thus
maintains the uniform computational style of the PDP models (i.e.,
connectionist architecture) but makes a clear distinction between
lexical and sublexical processes in reading.

Zorzi et al. (1998b) studied in great detail the performance of a
fully parallel simple two-layer associative network (i.e., a network
without hidden units) trained to learn the mapping between or-
thography and phonology. Zorzi et al. found that this network
acquired properties that are considered the hallmark of a phono-
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Figure 2. The dual-route cascaded model. The lexical–semantic route of
the model is not implemented (dashed lines). From “Models of Reading
Aloud: Dual-Route and Parallel-Distributed-Processing Approaches,” by
M. Coltheart, B. Curtis, P. Atkins, and M. Haller, 1993, Psychological
Review, 100, p. 214. Copyright 1993 by the American Psychological
Association. Adapted with permission.
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logical assembly process. In particular, Zorzi et al. showed that the
two-layer network of phonological assembly (TLA network) was
able to extract the statistically most reliable spelling–sound rela-
tionships in English (see also Zorzi, Houghton, & Butterworth,
1998a, for a developmental study of this capacity), without form-
ing representations of the individual training items (such as the
exception words). Therefore, the two-layer associative network
produces regularized pronunciations (if the input word is an ex-
ception word) and is not very sensitive to the base-word frequency
of the trained words. Nonetheless, it is highly sensitive to the
statistical consistency of spelling–sound relationships at multiple
grain sizes (from letters to word bodies), which is reflected by the
activation of alternative phoneme candidates in the same syllabic
position (especially the vowel). The model’s final pronunciation is
produced by a phonological decision system (i.e., a phonological
output buffer) on the basis of activation competition, which is a
causal factor in naming latencies. The model provides a reasonable
match to the nonword reading performance of human participants
and can also read single- and multiletter graphemes.

In the full CDP (see Figure 3), the assembled phonological code
is pooled online with the output of a frequency-sensitive lexical
process in the phonological decision system. Such an interaction
allows the correct pronunciation of exception words and produces
the latency (and/or accuracy) effects that depend on the combina-
tion of lexical and sublexical factors. Zorzi et al. (1998b) discussed
the possibility of using either a distributed or a localist implemen-
tation of the lexical network, but most of their simulations were
based on a localist version that was not fully implemented (i.e., the
lexical phonology of a word was directly activated in the model
without going through any lexical orthographic processing).

Shortcomings of Previous Models

Although the three models were able to account for many of the
critical effects in single word reading (for direct comparisons of
these models, see Coltheart et al., 2001), each model has some

fundamental limitations, both qualitatively and quantitatively.
These are summarized in Table 1 and are discussed next.

Learning

A major shortcoming of DRC is the absence of learning. DRC
is fully hardwired, and the nonlexical route operates with a par-
tially hand-coded set of grapheme–phoneme rules. These rules
include a number of context-specific rules (i.e., rules where a
phoneme is assembled on the basis of information greater than a
single grapheme) and phonotactic output rules (i.e., rules where the
assembled pronunciation is changed to respect phonotactic con-
straints). The use of such complex rules certainly increases the
performance of the model compared with one that would use only
grapheme–phoneme rules. In earlier work, Coltheart et al. (1993)
showed that a learning algorithm could, in principle, select a
reasonable set of rules. This learning algorithm was able to dis-
cover not only consistent print–sound mappings, but also incon-
sistent mappings (i.e., cases where a spelling pattern maps onto
more than one pronunciation). However, in the inconsistent cases,
the less frequent alternatives were simply eliminated at the end of
the learning phase, leaving only the most common mappings in the
rule set. Although the learning of the GPC rules was abandoned in
the most recent version of the model, the rules still operate in an
all-or-none fashion. Because of the absence of learning, DRC
cannot be used to simulate reading development and developmen-
tal reading disorders.

Both the triangle model and CDP are superior in this respect
because the mapping between orthography and phonology is
learned (see Hutzler, Ziegler, Perry, Wimmer, & Zorzi, 2004).
However, the models use different learning algorithms. CDP uses
one of the most simple learning rules, the delta rule (Widrow &
Hoff, 1960), whereas the triangle model uses error back-
propagation (e.g., Rumelhart et al., 1986). Although the latter is a
generalization of the delta rule that allows training of multilayer
networks, supervised learning by back-propagation has been
widely criticized because of its psychological and neurobiological
implausibility (e.g., Crick, 1989; Murre, Phaf, & Wolters, 1992;
O’Reilly, 1998), and it has been argued that the validity of a
network’s learning algorithm should be evaluated with respect to
appropriate learning laws and learning experiments (e.g., Jacobs &
Grainger, 1994). In this respect, CDP has an advantage over the
triangle model because delta rule learning is formally equivalent to
a classical conditioning law (the Rescorla–Wagner rule; see Sutton
& Barto, 1981, for formal demonstration and Siegel & Allan,
1996, for a review of the conditioning law), and it has been widely
applied to human learning (see, e.g., Gluck & Bower, 1988a,
1988b; Shanks, 1991; Siegel & Allan, 1996).

Consistency Effects

The second major problem for DRC is the simulation of graded
consistency effects. Glushko (1979) was the first to demonstrate the
existence of a consistency effect. He compared two groups of words
that were both regular according to grapheme–phoneme correspon-
dence rules but differed in consistency. For example, the pronuncia-
tion of a regular inconsistent word, such as wave, can be correctly
determined by rule. However, wave is nevertheless inconsistent be-
cause the –ave body is pronounced differently in have. Using such
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Figure 3. The connectionist dual process model. From “Two Routes or
One in Reading Aloud? A Connectionist Dual-Process Model,” by M.
Zorzi, G. Houghton, and B. Butterworth, 1998, Journal of Experimental
Psychology: Human Perception and Performance, 24, p. 1150. Copyright
1998 by the American Psychological Association. Adapted with permis-
sion.
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items, he showed that inconsistent words took longer to name than
consistent words of similar frequency. Subsequently, it was shown
that consistency is a graded and continuous variable. In particular,
Jared, McRae, and Seidenberg (1990) manipulated the summed word
frequency (i.e., token count) of pronunciation enemies (i.e., words
with the same body spelling pattern but a different pronunciation) and
showed that the size of the consistency effect depended on the ratio of
the summed frequency of friends (i.e., words with the same body and
rime pronunciation, including the word itself) to enemies (see also
Jared, 1997, 2002).

Obviously, DRC runs into problems simulating the consistency
effect for regular words because all-or-none regularity rather than
graded consistency determines processing in its nonlexical route.
One argument against this is that consistency might affect naming
latencies through neighborhood characteristics (i.e., the interaction
between orthographically and phonologically similar words) of the
lexical route (Coltheart et al., 2001). However, as we show later,
such influences are too weak to account for the majority of the
consistency effects reported in the literature. Also, DRC runs into
problems with nonwords that use potentially inconsistent spelling–
sound correspondences (e.g., Andrews & Scarratt, 1998). This is
because nonword pronunciations are constructed from GPC rules
that are selected in an all-or-none fashion. The fact that some
graphemes might have alternative pronunciations simply does not
enter into the model’s computations at all. Thus, graded consis-
tency effects in nonword pronunciations are a major challenge for
DRC (see Andrews & Scarratt, 1998; Zevin & Seidenberg, 2006).

Both CDP and the triangle model are able to simulate graded
consistency effects (e.g., Plaut et al., 1996; Zorzi et al., 1998b).
The triangle model exhibits a body consistency effect, for both
high- and low-frequency words (Coltheart et al., 2001; Jared,
2002). The effect depends on neighborhood characteristics and is
present in both words and nonwords. It appears, however, that the
triangle model is not sensitive to the effect of consistency defined
at the level of individual letter–sound correspondences (Jared,
1997; Zorzi, 2000). With CDP, the output of the network reflects
the relative consistency of a given mapping. That is, the model
delivers not only the most common mapping of a grapheme but
also less common mappings, which are activated to a lesser extent
(Zorzi et al., 1998b). CDP is thus able to simulate graded consis-
tency effects (also see Zorzi, 1999).

Serial Effects

Accounting for serial effects is the strength of DRC and the
weakness of the other two models. Perhaps the strongest evi-

dence for serial processing has come from the examination of
length effects. In this respect, Weekes (1997) examined how
long people would take to read aloud words and nonwords of
different orthographic lengths (i.e., number of letters). His
study examined word and nonword naming latencies for 300
monosyllabic items, which were equally divided into high-
frequency words, low-frequency words, and nonwords. Within
each of these three groups, orthographic length was manipu-
lated by having an equal number of items with 3, 4, 5, and 6
letters. The results showed a systematic length effect for non-
words; that is, the longer the nonword, the longer it took
participants to initiate pronunciation. Real words showed fewer
systematic length effects (but see the Results section for a
reanalysis of Weekes’s, 1997, data; indeed, other studies did
find systematic length effects with words, e.g., Balota, Cortese,
Sergent-Marshall, Spieler, & Yap, 2004; Jared & Seidenberg,
1990). Weekes argued that this was evidence for two interacting
processes similar to those suggested by DRC. The main idea is
that nonwords must be assembled from letters one by one,
hence causing a length effect, whereas words are also influ-
enced by a parallel lexical route, hence diminishing serial
effects of the assembled phonology mechanism. A similar in-
teraction was found by Ziegler, Perry, Jacobs, and Braun
(2001).

The position-of-irregularity effect is another effect that suggests
serial processing may occur when reading aloud (Coltheart &
Rastle, 1994; Rastle & Coltheart, 1999; Roberts, Rastle, Coltheart,
& Besner, 2003). The effect was based on the observation that the
size of the regularity effect declines as a function of the position of
a word’s irregular grapheme–phoneme correspondence: Words
with an irregular correspondence in the first position (e.g., chef)
are read aloud more slowly than words with an irregular corre-
spondence in the second position (e.g., pint), which are in turn read
aloud more slowly than words with an irregular correspondence in
the third position (e.g., blind). At the third position, words with an
irregular correspondence are read aloud at a speed similar to that
of words without an irregular correspondence (e.g., Coltheart &
Rastle, 1994; Cortese, 1998; Rastle & Coltheart, 1999). This effect
was taken to suggest that the generation of nonlexical phonology
occurs in a left-to-right (serial) fashion, rather than a parallel
fashion. More precisely, it was suggested that if a parallel and a
serial route compete with each other at an output level (as they do
in DRC), regularized phonology (i.e., phonology assembled incor-
rectly) should be more harmful early in processing (i.e., phonology
assembled in early word positions), because it would allow more
time to create conflict with the lexical route.

The triangle model does not show the interaction between
regularity and position of the irregular grapheme (Coltheart et al.,
2001) in the same way that people do. Zorzi (2000), however,
showed that CDP was able to simulate the effect even though it is
a purely parallel model. He therefore suggested that the position-
of-irregularity effect is probably due to the fact that the position-
of-irregularity manipulation is confounded with grapheme–
phoneme consistency, a variable the CDP model is sensitive to.
Subsequently, however, Roberts et al. (2003) replicated the
position-of-irregularity effect using a group of stimuli that neither
CDP nor the triangle model was able to simulate.

Table 1
Qualitative Performance of DRC (Coltheart et al., 2001), the
Triangle Model (Plaut et al., 1996), and CDP (Zorzi et al.,
1998b) Across Different Theoretically Challenging Domains

Model Learning Serial effects
Consistency

effects
Database

performance

DRC no yes no mixed
Triangle yes no yes poor
CDP yes mixed yes mixed

Note. DRC � dual-route cascaded model; CDP � connectionist dual
process model.
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Predicting Item-Level Variance

One of the main advantages of computational models is that
they can predict performance at the item level. As Spieler and
Balota (1997) pointed out,

This is an important aspect of these models because they have the
ability to reflect the more continuous nature of relevant factors (e.g.,
frequency, regularity) in addition to the categorical manipulations
reflected in the designs of typical word recognition studies. (p. 411)

Thus, one of the most challenging tests is to evaluate models at the
item level by regressing model latencies onto human latencies
(e.g., Coltheart et al., 2001; Spieler & Balota, 1997; Zorzi, 2000).

To facilitate model evaluation and comparison at the item level,
Spieler and Balota (1997) collected naming latencies of 2,870
words. They then compared the triangle model’s output with the
mean naming performance of participants at the item level. They
suggested that successful models should pass two critical tests:
First, the amount of variance predicted by computational models
should be at least as strong as the strongest correlating single
factor. Second, the amount of variance predicted by computational
models should be similar to the correlation derived from factors
that are typically shown to be involved in reading, such as log
word frequency, orthographic neighborhood, and orthographic
length. These factors accounted for 21.7% of the variance of word
naming latencies in the human data. Unfortunately, the three
models accounted for much less variance (see Coltheart et al.,
2001). CDP accounted for 7.73%, DRC accounted for 3.49%, and
the triangle model accounted for 2.54% of the variance of the
human naming latencies. Similar numbers were obtained on the
Wayne State database (Treiman, Mullennix, Bijeljac-Babic, &
Richmond-Welty, 1995), which contains RTs for all monosyllabic
words that have a consonant–vowel– consonant phonological
structure. Here, CDP accounted for 4.70% of the variance, whereas
DRC and the triangle model accounted for 4.89% and 1.67%,
respectively.

For predicting item variance, so far the biggest advantage of
DRC over the other two models was obtained on a small-scale
database, the so-called length database of Weekes (1997). Whereas
the three models did not account for much variance in word
reading (�5%), in accounting for variance in nonword reading,
DRC showed clearly better performance (39.4%) than the other
two models, which accounted for a nonsignificant amount of
variance (�2% for both models).

CDP�: A Connectionist Dual Process Model of Reading
Aloud

The development of a new model was motivated by an attempt
to address the shortcomings of the previous models discussed
earlier. The principle of nested modeling dictates that the new
model should be related to or include, at least, its own direct
precursors and that it should also be tested against the data sets that
motivated the construction of the old models before it is tested
against new data sets. Our approach was to combine the best
features of some of the previous models into a single new model.
The new model was then tested on the classic data sets and on
those data sets that constituted a challenge to the previous models.

The second goal of our modeling approach was strong inference
testing (Platt, 1964). The core idea of strong inference testing is to
devise alternative hypotheses and a crucial experiment with alter-
native possible outcomes, each of which exclude one or more of
the hypotheses. When applied to the area of modeling, strong
inference testing requires the implementation of alternative mod-
els, which are then tested on a crucial experiment, the outcome of
which excludes one or more of the models. Of course, it is not
always possible to find effects that exclude an entire class of
models. Therefore, we need to be able to compare the descriptive
adequacy of models, that is, the degree of accuracy of a model in
predicting a data set both at the qualitative and quantitative level.
Therefore, throughout the article, we compare the performance of
the new model with that of the three other models discussed before
(i.e., DRC, triangle, and CDP).

Architecture of the Model: Combining the Best of CDP
and DRC

The development of a new model should start by considering the
weaknesses of previous models with respect to the critical effects
discussed in the previous section. From Table 1, it is apparent that
CDP offers a good starting point. Indeed, CDP is a learning model
that accounts for consistency effects and, to some extent, for
hypothesized serial effects in nonword reading aloud (even though
it itself is a parallel model). Moreover, it accounts for a fair amount
of variance on single word reading aloud (equal or slightly supe-
rior to DRC).

One way CDP can be significantly improved is by augmenting
it with a fully implemented lexical route. Thus, in the spirit of
nested modeling, we implemented a localist lexical route that is as
close as possible to that of DRC and is based on the interactive
activation model of McClelland and Rumelhart (1981). The ad-
vantage of this solution is that it should allow us to capture effects
related to orthographic processing and lexical access previously
simulated by Coltheart et al. (2001) and Grainger and Jacobs
(1996). We discarded the alternative solution of implementing the
semantic pathway of the triangle model (e.g., Harm & Seidenberg,
1999) for two main reasons. First, the ability of distributed models
to account for lexical decision performance is still hotly disputed
(see Borowsky & Besner, 2006, and Plaut & Booth, 2006, for
opposing views). Second, the role of semantics in both normal and
impaired naming of written words is controversial (see the General
Discussion section). On a more practical side, using a symbolic
localist lexical route makes it much simpler to evaluate the non-
lexical part of the model.

A further problem for CDP, as well as for any connectionist
learning model, is the relatively high error rate in nonword reading
in comparison with DRC. Indeed, the ability of connectionist
models to generalize the knowledge of spelling–sound mappings
to novel items (i.e., nonwords) has been a source of concern and
controversy since the seminal work of Seidenberg and McClelland
(1989; also see Besner et al., 1990; Plaut et al., 1996; Seidenberg
et al., 1994). However, one way of reducing the nonword error rate
in connectionist models is to improve learning of spelling–sound
relationships by using graphemes as orthographic input instead of
single letters. This effectively alleviates the dispersion problem,
which was identified by Plaut et al. (1996) as the main reason for
the poor nonword reading performance of the triangle model. In

278 PERRY, ZIEGLER, AND ZORZI



this case, by using better input and output representations, the
frequency at which the same letters map onto the same phonemes
is generally increased. This allows the most common statistical
relationships in the data to be more easily learned.

A similar approach was taken by Houghton and Zorzi (2003) in
their connectionist dual-route model of spelling, which contains a
level of grapheme representations. The existence of grapheme
representations in their model was explicitly linked to the notion of
a graphemic buffer, which is endorsed by cognitive models of the
spelling system (e.g., Caramazza, Miceli, Villa, & Romani, 1987;
Ellis, 1988; Shallice, 1988). Specifically, Houghton and Zorzi
assumed that “graphemic representations are syllabically struc-
tured, and complex graphemes (e.g., SH, TH, EE) are locally
represented” (p. 112). The results of several studies of individuals
with a specific acquired disorder of the graphemic buffer (e.g.,
Caramazza & Miceli, 1990; Caramazza et al., 1987; Cotelli,
Abutalebi, Zorzi, & Cappa, 2003; Cubelli, 1991; Jónsdóttir, Shal-
lice, & Wise, 1996) provide the primary motivation for the as-
sumption that the representation is structured into graphosyllables,
with onset, vowel, and coda constituents (Caramazza & Miceli,
1990; Houghton & Zorzi, 2003). Also, the data from normal
readers suggest that graphemes are processed as perceptual units.
Rey, Ziegler, and Jacobs (2000), for instance, showed that detect-
ing a letter in a word was harder when this letter was embedded in
a multiletter grapheme (e.g., o in float) than when it corresponded
to a single-letter grapheme (e.g., o in slope). They suggested that
this finding supports the idea that graphemes are functional units
above the letter level (see also Martensen, Maris, & Dijkstra, 2003;
Rey & Schiller, 2005).

We therefore implemented the graphemic buffer of Houghton
and Zorzi (2003) as the input level of the sublexical orthography-
to-phonology route in the new model. This choice was further
motivated by the hypothesis that a common graphemic buffer is
involved in both reading and spelling (Caramazza, Capasso, &
Miceli, 1996; Hanley & Kay, 1998; Hanley & McDonnell, 1997),
which received further support from the recent study of Cotelli et
al. (2003). However, this also leads to the problem of how gra-
phemic parsing is achieved. One solution is to perform a serial
parsing of the string of letters from left to right and to submit each
individuated grapheme to the sublexical network. This has the
effect of serializing the sublexical route (i.e., the TLA network),
which indeed resembles the serial assembly in the GPC route of
DRC. Note, however, that we specifically link serial processing to
the problem of graphemic parsing and more specifically to spatial
attention mechanisms that control attention shifts from left to right
over the letter string (Facoetti et al., 2006; see later discussion).

To illustrate the grapheme parsing mechanism, take, for exam-
ple, the word check. On the basis of a syllabic representation, the
first largest grapheme encountered, ch, should be assigned to the
first onset position of the graphemic buffer. The next grapheme
among the remaining letters (eck) is the vowel letter e, which
should be assigned to the vowel position. The remaining two
letters, ck, correspond to a single grapheme that should be assigned
to the first coda position (a more detailed explanation is given
later). Note that the serial nature of phonological assembly is
simply a byproduct of the graphemic parsing process, because
assembly in the sublexical network starts as soon as any grapheme
is available as input. Nonetheless, the existence of serial operations
in the new model should significantly improve the poor correlation

with human nonword naming latencies exhibited by CDP (see
Coltheart et al., 2001). Indeed, serial processing in DRC seems to
be a major strength with regard to its ability to account for the
nonword length effect and for a much larger proportion of variance
in nonword reading compared with any other model.

In summary, the new model combines the sublexical network of
CDP (updated with graphemic representations and serial graphe-
mic parsing) with the localist lexical network of DRC. The point
of interaction between the two routes is the phonological output
buffer, a competitive network where lexical and sublexical pho-
nological codes are pooled online to drive the final pronunciation.
This component of the model is representationally identical to the
phonological decision system of CDP, which uses an onset–
vowel–coda organization of the phonemes.1 We refer to the new
model as CDP�. The name acknowledges the greater similarity of
the new model to one of its parent models (CDP) as compared with
the other (DRC). A summary of the differences between the new
model and its two parents is provided at the end of this section.
Moreover, as is shown in the Results section, it turns out that the
fully implemented lexical route (i.e., the component of the model
that is taken from DRC) provides only a minor contribution to the
new model’s success in simulating a broad range of phenomena in
written word naming. The architecture of CDP� is depicted in
Figure 4.

Implementation of the Model

Lexical Route

In our model, we implemented the lexical route of DRC, which
is a fully interactive network based on McClelland and Rumel-
hart’s (1981) interactive activation model. We had to modify the
output of DRC’s lexical network to be compatible with the output
of our sublexical route, however. There are five levels in the
lexical route of DRC (see Coltheart et al., 2001, for implementa-
tion details): a letter feature level, a letter level, an orthographic
lexicon, a phonological lexicon, and a phonological output buffer.
Activation begins at the feature level. The feature level is the same
as the interactive activation model of McClelland and Rumelhart,
except that instead of four feature detectors (one for each letter
position) there are eight. Words of any length up to eight letters
can be presented, but the absence of a letter at any of the eight
positions must be represented by the activation of a null letter,
which is coded by having all features of the corresponding detector
on. For example, in terms of word coding, the null letter is put on
to the end of all words up to the maximum number of letters in the
model (which is eight for both CDP� and DRC). Thus, the
orthographic representation of each word should be thought of as
the letters in the word plus the null letters (e.g., cat*****, or
stong***, where each asterisk is a null letter). Thus all ortho-
graphic words in the model are in fact eight letters long if we
consider the null letter to be a letter no different from any others
(which is what the model does). This coding scheme is used for
any string presented to the model, including nonwords. Thus, if a
three-letter nonword like zat is presented to the model, the last five
empty positions are filled with null letters (i.e., zat*****).

1 Note that in Zorzi et al. (1998b), the term rime was used to refer to both
the vowel and the coda, whereas here we use the separate terms.
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Activation in the lexical route begins when all the features of the
letters in a letter string are turned on. The feature detectors then
activate the letter level, where all letters in each of the eight
positions are activated on the basis of the overlap they have with
the features activated at the feature detector level (including the
null letters). These letters then activate orthographic entries on the
basis of the letter overlap they have with the word and inhibit other
words that do not share the letters. Letters are mapped onto words
according to a simple position-specific one-to-one correspon-
dence: The first letter at the letter level activates/inhibits the first
letter in a word, the second letter activates/inhibits the second
letter, and so on. Entries in the orthographic lexicon then activate
entries in the phonological lexicon. There is no inhibition between
these levels. Finally, activated entries in the phonological lexicon
activate/inhibit phoneme units in the phonological output buffer.
One crucial feature of the interactive activation model is that
feedback occurs by means of recurrent connections that exist
among all levels. Thus, for instance, phoneme units can activate
entries in the phonological lexicon, and entries in the orthographic
lexicon can activate the letter level.

The lexical route of the new model is identical to that of DRC
all the way up to and including the phonological lexicon, excluding
the null characters that do not exist in the phonological lexicon of
the new model. The equations governing its functioning are fully
described in Coltheart et al. (2001, p. 215; note that their equations
differ slightly from those of Rumelhart & McClelland, 1982). The
phonological output buffer was also changed so that its represen-
tation was identical to the phonological decision system of CDP.
Thus, instead of the phonemes being aligned as a contiguous
string, the phonemes were aligned so that they respected the
onset–vowel–coda distinction (see later discussion). In addition,
unlike DRC, there was no null phoneme in the output to signify the

absence of a phoneme in a particular position. This was necessary
so that phonological activation produced by the two-layer associa-
tive network (sublexical phonology) and by the lexical route
(lexical phonology) could be integrated, because the sublexical
route does not produce null phonemes. Finally, the frequencies of
the words in the phonological lexicon were changed so that they
were phonological rather than orthographic frequencies (unlike the
current implementation of DRC).

Note that the lexical route in CDP was simply simulated as a
frequency-weighted activation function of the lexical phonology,
an approach similar to that used by Plaut et al. (1996) to model the
contribution of the semantic route. In the new model, the dynamics
at the output level reflect the online combination of activation from
the fully implemented lexical route and the TLA network de-
scribed later.

Sublexical Route

Input and output representation. As justified earlier, we added
an orthographic buffer to the sublexical route. The orthographic
buffer was taken from the spelling model of Houghton and Zorzi
(2003) and was implemented in the input coding scheme used with
the two-layer associative network. Thus, single input nodes do not
represent individual letters only, as in CDP, but also complex
graphemes such as ck, th, and so forth. The set of complex
graphemes specified by Houghton and Zorzi (see Appendix A)
includes 10 onset graphemes, 41 vowel graphemes, and 19 coda
graphemes. When letters combine to form one of these graphemes,
the grapheme is activated instead of the letters (i.e., conjunctive
coding). Note that the complex graphemes are basically the most
frequent ones that occur in English (see Perry & Ziegler, 2004, for
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Figure 4. Schematic description of the new connectionist dual process model (CDP�). O � onset; V � vowel;
C � coda; TLA � two-layer assembly; IA � interactive activation; L � letter; F � feature.
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a full analysis), although they are by no means the entire set that
can be found.

The input representation is constructed by aligning graphemes
to a graphosyllabic template (Caramazza & Miceli, 1990; Hough-
ton & Zorzi, 2003) with onset, vowel, and coda constituents. There
are three onset slots, one vowel slot, and four coda slots. Each
grapheme is assigned to one input slot. If the first grapheme in a
letter string is a consonant, it is assigned to the first onset slot, and
the following consonant graphemes are assigned to the second and
then to the third onset slots. Slots are left empty if there are no
graphemes to be assigned. The vowel grapheme is assigned to the
vowel slot. The grapheme following the vowel is assigned to the
first coda slot, and subsequent graphemes (if any) fill the succes-
sive coda slots. Thus, for example, black would be coded as
b-l-*-a-ck-*-*-*, where each asterisk represents a slot that is not
activated by any grapheme. Similarly, a nonword like sloiched
would be coded as s-l-*-oi-ch-e-d-*.

The phonological output of the network has a representational
structure identical to that described in Zorzi et al. (1998b), except
that instead of using three onset, one vowel, and three coda slots,
it uses three onset, one vowel, and four coda slots. Thus, when
training patterns are presented to the network, the output (phonol-
ogy) is broken down in a way that respects an onset–vowel–coda
distinction. The addition of a fourth coda slot was motivated by the
existence of words with four coda phonemes in the database used
to train the model. Thus, a word like prompts (/prɒmpts/) with four
consonants in the coda can be handled by the model and would be
coded as p-r-*-ɒ-m-p-t-s.

TLA network. The sublexical network is a simple two-layer
network, identical to the sublexical route of CDP apart from the
number of input and output nodes. The input nodes encode the
orthography of the word according to the grapheme buffer repre-
sentation described earlier. Thus, graphemes are encoded over 8
slots in the input layer (3 onset slots � 1 vowel slot � 4 coda
slots), where each slot consists of 96 grapheme nodes (26 single
letters � 70 complex graphemes). The phonology of the word is
encoded at the output layer of the network, which contains 43
phoneme nodes for each of the 8 available slots (3 onset slots � 1
vowel � 4 coda slots). This means that there are 768 input nodes
and 344 output nodes (i.e., 8 � 96 and 8 � 43). Replicating an
identical coding scheme across slots means that the entire set of
orthographic (or phonological) units is potentially available at any
position. However, this choice was made only for the sake of
simplicity, and it has no practical consequences. Indeed, nodes that
are never activated (like codas in onset positions, vowels in coda
positions, etc.) are completely irrelevant for the network: That is,
nodes that never get any input in training never cause any output
(see Equation 2 of Zorzi et al., 1998b, p. 1136), and because of the
way the representation is constructed, these irrelevant nodes are
never activated. Thus, performance of the network would be
identical if we had used a coding scheme based on a slot-specific
set of orthographic (or phonological) units divided into three main
sections (onset, vowel, coda).

Note that an onset–vowel–coda distinction was also used by
Plaut et al. (1996). Their orthographic and phonological represen-
tations, however, did not use slots to encode the order of grapheme
or phoneme units. Their solution was to arrange the units within
each set (onset, vowel, or coda) with an order that allows only
orthotactically/phonotactically legal sequences to occur. In the

case of consonant clusters that have two possible orderings (e.g.,
/ts/ vs. /st/), an additional node was activated to disambiguate
between them. Another difference between CDP� and the triangle
model is that a multiletter grapheme is coded only by the activation
of the grapheme unit with CDP�, whereas in Plaut et al., both the
grapheme and the individual letters were activated.

The breakdown of input and output nodes into slots does not
imply a built-in network structure (e.g., a specific pattern of
connectivity); it only reflects the representational scheme used to
activate the nodes. Accordingly, input and output nodes are fully
connected, with no hidden units between them. Thus, any given
input node has the potential to activate any given output. Activa-
tion of output nodes is calculated on the basis of the activation of
input nodes in a manner identical to the one used by Zorzi et al.
(1998b), and indeed the same parameters are used (see Appendix
B). The equations used and how they work are described in full
detail by Zorzi et al. (pp. 1136–1137) and in Appendix C.

It is worth noting that learning of a given input–output relation-
ship, in any connectionist model, strictly depends on its existence
in the training corpus and on how the inputs and outputs are coded.
For example, our network cannot learn to generalize relationships
from parts of words such as onset consonants to parts of words
such as coda positions. Thus, a grapheme does not map to any
phoneme if it is never activated in a specific position during
learning. Though this is rather uncommon, one example is the
consonant j in the coda position. Accordingly, a nonword like jinje
cannot be correctly named by the model. However, the fact that the
letter j never occurs after the letter n in English orthographic codas
suggests that the word might be treated as disyllabic at an ortho-
graphic level (i.e., jin-je; see Taft, 1979, for a discussion of
orthographic syllable boundaries). However, regardless of the is-
sue of orthographic syllables, a model learning multisyllabic words
would not have any difficulties with jinje because the –nj pattern
does occur in words such as injure and banjo (see Plaut et al.,
1996, for a similar argument).

Training corpus. The training corpus was extracted from the
English CELEX word form database (Baayen, Piepenbrock, & van
Rijn, 1993), and it basically consists of all monosyllables with an
orthographic frequency equal to or bigger than one. The database
was also cleaned. For example, acronyms (e.g., mph), abbrevia-
tions, and proper names were removed. Note that we did not
remove words with relatively strange spellings (e.g., isle). A
number of errors in the database were also removed. This left
7,383 unique orthographic patterns and 6,663 unique phonological
patterns.2

Network training. In previous simulation work (Hutzler et al.,
2004), we have shown that adapting the training regimen to ac-
count for explicit teaching methods is important for simulating
reading development. Explicit teaching of small-unit correspon-
dences is an important step in early reading and can be simulated
by pretraining a connectionist model on a set of grapheme–
phoneme correspondences prior to the introduction of a word
corpus.

The two-layer associative network was initially pretrained for
50 epochs on a set of 115 grapheme–phoneme correspondences
selected because they are similar to those found in children’s

2 We are grateful to Max Coltheart for providing the cleaned database.
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phonics programs (see Hutzler et al., 2004, for further discussion).
They consist of very common correspondences but are by no
means all possible grapheme–phoneme relationships. The same
correspondence (e.g., the correspondence L3 /l/) may be exposed
in more than one position in the network where it commonly
occurs. The list of correspondences used appears in Appendix D.
Note that the total number differs from that of Hutzler et al. (2004)
because of the different coding scheme (their simulations were
based on the CDP model). Learning parameters were identical to
those in Zorzi et al. (1998b; see Appendix C).

After this initial training phase, the network was trained for 100
epochs on the word corpus (randomized once before training).
Input (orthography) and output (phonology) of each word were
presented fully activated. The number of learning epochs was
greater than that reported in Zorzi et al. (1998b). We used a longer
amount of training because Perry and Ziegler (2002) noticed that
nonword generalization performance slightly increased with
longer training times than those reported in Zorzi et al. (see also
Hutzler et al., 2004). Performance of the network, in terms of the
number of errors on nonwords, had well and truly reached an
asymptote at the end of training. Training parameters used were
the same as in Zorzi et al., except that we added some frequency
sensitivity to the learning. This was done for each word by mul-
tiplying the learning rate by a normalized orthographic frequency
value (see Plaut et al., 1996, for a discussion of frequency effects
in training), which was simply the ratio of the log frequency of the
word and the log frequency of the most common word (the;
frequency counts were augmented by 1 to avoid the potential
problem of words with a frequency of 0).

Graphemic parsing. Letters must be parsed and segmented
into graphemes to obtain a level of representation compatible with
the graphemic buffer (i.e., the input of the TLA network). Input to
the sublexical route is provided by the letter level of the model
(which is activated by the feature level; see the lexical network
section). The letter level contains single letters that are organized
from left to right according to their spatial position within the
string (i.e., a word-centered coordinate system; Caramazza &
Hillis, 1990; Mapelli, Umiltà, Nicoletti, Fanini, & Capezzani,
1996). We assume that graphemic parsing relies on focused spatial
attention that is moved from left to right across the letters (this
issue is taken up in the General Discussion section).

Graphemic parsing begins when a letter in the first slot position
of the letter level becomes available. We assume that letters
become available to the sublexical route when their activation is
above a given threshold (.21 in our simulations). Graphemic pars-
ing—and hence the identification and selection of letters—
proceeds from left to right. A fixed number of cycles (15 in the
current simulations) elapses between each of the parsings to ac-
count for the attention shift that allows for the next letter to be
entered into the process and for the processing time required by
grapheme identification. This way, each letter slot is examined in
a serial fashion, and the single most activated letter in each
position is assumed to be identified and selected. This process
continues until the most active letter in each of the eight letter
positions has been identified and selected or until the most acti-
vated letter in a given position is the null letter (see the lexical
network section). In this case, no more letters are selected.3

Because the biggest complex graphemes have three letters (e.g.,
tch), graphemic parsing can best be conceived of as an attentional

window spanning three letters: the leftmost letter available and the
following two letters (if any) at each step. That is, the window is
large enough that the biggest existing graphemes can be identified
and inserted into the appropriate grapheme buffer slots (e.g., the
first consonant grapheme is placed in the first onset slot). This
process of finding graphemes in the window continues as the
window is moved across the letters and is repeated until there are
no letters left. Each step in the graphemic parsing process results
in additional graphemes that become available to the sublexical
network, and a forward pass of the network activates the corre-
sponding phonemes. Graphemes inserted in the buffer are fully
activated and remain active throughout the naming process.

There are in fact two choices to be made with respect to the
parsing of graphemes in the moving window. The first is whether
only a single grapheme is ever assembled in the window or
whether all potential graphemes are assembled. In the latter, which
is the one we used, all letters in the window at any given time are
segmented into graphemes.4 The second choice we needed to make
was when to start graphemic processing. We did this as soon as a
single letter occurs in the window. Thus, it was assumed the right
edge of the window begins at the first letter of the word rather than
the third, and this causes very minor processing differences. We
did not explicitly simulate grapheme identification; however, it
would be relatively straightforward to implement a network that
takes three letters as input and produces as output the biggest
grapheme that is formed by the leftmost letters together with the
following letters.

Another important aspect of the assembly process is that it
assumes that the graphemic parsing process causes inputs into the

3 Note that tying the onset of the grapheme parsing process to the first letter
in the string does not have important consequences for the results, and it could
be replaced, for instance, with a criterion based on the activation of any letter
position or the summed activation of all active letters. Further empirical work
is clearly needed to differentiate between these alternative assumptions. In
principle, there is the possibility that the activation of the first letter may drop
below the activation criterion needed to start the grapheme parsing process or
that the most active letter at one slot in the letter level may change from one
cycle to the next. In the simulations reported here, this never happens on any
words or nonwords that are presented in isolation, but it does happen when
words are primed. Whenever this occurs, it is assumed that the assembly
processes begin again at the first letter. In terms of the operations of the
attentional window, resetting the parsing process can be conceived of as if an
exogenous attention shift had occurred because of the detection of a sudden
change in the stimulus.

4 This means that the model can incorrectly segment graphemes as the
window moves, because the window is limited to three letters; thus, if, say,
the first letter is used to create a grapheme, the two potential letters left may
then be incorrectly assigned to the wrong grapheme because the number of
letters left in the window is not enough to construct the correct grapheme.
For example, take the word match; if the window initially contained the
letters [atc], it would assign the graphemes –a, –t–, and –c to the network.
However, after moving the window across the letter string, the new letters
would become [tch], and thus the grapheme –tch would be chosen. In this
case, it is assumed that the earlier graphemes incorrectly assigned to the
network are revised and that this should be possible because they are still
in the window. The alternative to this scan-all-and-revise type of process
would be to stop identifying graphemes once a single one has been found
and then to start processing again once the window had moved fully over
the letters that were used in the grapheme that was identified.
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sublexical network to be fully activated, even if they are not
activated when taken from the letter level. This is not the case for
DRC, where the activation of letters in the nonlexical route is
identical to that of the letter level in the lexical route. The latter
assumption is problematic, as pointed out by Reynolds and Besner
(2004; see also Besner & Roberts, 2003). The DRC model predicts
that if the activation buildup at the letter level is slowed because of
the presentation of degraded stimuli, nonword length and stimulus
quality should have underadditive rather than additive effects,
which is contrary to what is found in human participants. Reynolds
and Besner offered thresholded processing at the letter level as a
potential solution to accommodate such a finding with DRC. The
sublexical part of CDP� essentially operates as if thresholded
processing were used at the letter level, and it therefore produces
an additive effect of stimulus quality and nonword length. Thresh-
olded processing would certainly fix the DRC model, but the
assumption that letters above a specific threshold are given full
activation before entering the GPC system seems somewhat post
hoc. Our proposal, instead, is that letters above threshold are
submitted to a graphemic parsing process that is controlled by
focused spatial attention. Each grapheme is fully active when
inserted into the graphemic buffer simply because it represents the
output of grapheme identification taking place within the attended
portion of the letter string.

As a note of caution, we should point out that a literal translation
of our implementation of the serial parsing process into operations
of a spatial attention mechanism is potentially misleading. The
empirical data are extremely sparse, and they currently do not
permit any principled assumption regarding, for instance, the span
of the attention window or how many attention shifts are needed to
parse a string of letters of a given length. Nonetheless, our explicit
proposal points to an area where much research is needed (also see
the General Discussion section).

Combining the Networks

Activation from the sublexical and lexical routes of the model is
combined by summing the activation from both the lexical and the
sublexical networks at the phonological output buffer. This acti-
vation is used as raw input before being transformed by means of
the standard interactive activation equations. The parameters and
equations used for calculating the activation of a given unit in the
sublexical network were identical to those reported in Zorzi et al.
(1998b). The network was updated at each cycle.

The way our model determines reading aloud latencies had to be
different from Zorzi et al.’s (1998b) method simply because our
output scheme combines activation from a fully interactive lexical
network with that of a serialized associative network. In addition,
it had to be different from that of DRC, because our model does
not use a null character, which tells DRC when to finish process-
ing. We therefore used a settling criterion, which is commonly
used in recurrent networks to terminate processing (e.g., Ackley,
Hinton, & Sejnowski, 1985). According to such a settling criterion,
processing is stopped once nothing interesting is happening at the
phonological output buffer (i.e., the network has settled). Thus,
processing was stopped once the activation of all phonemes below
the phoneme naming activation criterion did not change from one
cycle to the next. Such a settling criterion was also used in one of
the attractor network simulations of Plaut et al. (1996). Because no

activation is produced at the phonological output buffer at the
beginning of each word presentation, the settling criterion was
operative only after one phoneme had risen above the phoneme
naming activation criterion.

More specifically, the activation produced by the network in the
phonological output buffer is examined at each cycle. Processing
is terminated (a) when at least one phoneme is above the phoneme
naming activation criterion and (b) when, in all phoneme positions
where no individual phoneme is above the phoneme naming acti-
vation criterion, the absolute difference in the activation between
the current cycle and the previous cycle of all individual phonemes
is below a small constant (.0023 in all simulations reported here).
Note that an identical scheme could be used for DRC, which would
allow the removal of the end null character. Such a change would,
however, modify the activation dynamics of the network.

After processing stopped, the pronunciation produced was de-
termined by taking the most highly activated phoneme in each
position of the phonological output buffer. The activation had to be
above the phoneme naming activation criterion, except for the
vowel. For the vowel, the phoneme with the highest activation was
chosen. Note that although it makes little difference, we allowed
such a consonant–vowel difference because all words in English
must contain a vowel. Zorzi et al. (1998b) and Plaut et al. (1996)
used the same logic.

Parameter Set

When trying to get CDP� to produce values that closely re-
semble the human data, it is not possible to systematically search
through the parameter space because of the large number of
parameters in the model. Our strategy was to manipulate a small
number of theoretically important parameters and to choose the
current set on the basis of how well the model performed on a
small number of data sets (see later discussion). These parameters
control (a) the time course of phonological assembly, (b) the
strength of lexical phonology, and (c) the strength of feedback
from the phonological output buffer to the phonological lexicon.

The first step was to determine the appropriate balance between
lexical and sublexical phonology, which in turn largely depends on
the speed at which the serial process of grapheme parsing occurs.
These parameters need to be chosen together, because slower
grapheme parsing speeds reduce the amount of sublexical phonol-
ogy in the model, and faster speeds increase it. Performance on
irregular words provides a particularly important benchmark for
parameter setting. In this respect, the study of Jared (2002) pro-
vided the most reliable set of experimental stimuli because it also
controlled for body neighborhood characteristics (see the Consis-
tency Effects section). Therefore, we manipulated the impact of
sublexical phonology in the model until we obtained a marginal,
nonsignificant latency cost for low-frequency irregular words with
more friends than enemies, as well as a nonsignificant effect for
low-frequency inconsistent words with more friends than enemies
(Jared, 2002, Experiment 1).

The second step was to manipulate the strength of feedback
from the phonological output buffer to the phonological lexicon.
Weak or absent feedback results in the lack of a pseudohomophone
effect when reading a set of pseudohomophonic nonwords (Mc-
Cann & Besner, 1987). On the other hand, excessively strong
feedback results in the activation of spurious lexical items, which
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causes many lexicalization errors on nonwords (i.e., nonwords are
read aloud using phonologically similar word names).

We did not try to optimize the parameters for any other exper-
iments. Importantly, we did not optimize the parameter set to boost
item-level correlations on large-scale databases. All parameters of
the model appear in Appendix B. The results reported in the text
refer to this unique set of parameters. Any parameter changes are
noted in the text, and they were implemented only to simulate the
effect of brain damage (acquired dyslexia) or strategy manipula-
tions.

Summary of Differences Between CDP� and DRC

1. The database was changed so that phonological word
frequencies were used in the phonological lexicon instead
of orthographic frequencies.

2. The network does not use a null character to signify when
to stop running.

3. The network terminates processing on the basis of the
settling criterion described earlier.

4. The phonological output buffer is not a linear string.
Rather, it uses an onset–vowel–coda distinction.

5. The lexical route was changed so that the phonological
component used the same output representation as the
one used by CDP.

6. The grapheme–phoneme rule system was replaced by a
new sublexical orthography–phonology network (similar
to the TLA network of CDP).

7. Individual graphemes fed to the graphemic buffer (and
hence to the sublexical assembly network) are always
fully activated, unlike DRC’s rules.

8. Graphemes begin to be fed to the graphemic buffer after
the first letter rises above a given threshold.

9. Different parameters are used.

Summary of Differences Between CDP� and CDP

1. The lexical route, up to and including the phonological
lexicon, was replaced with that from DRC.

2. The network terminates processing on the basis of the
settling criterion described earlier.

3. The input layer of the sublexical orthography–phonology
network is a graphemic buffer with the same graphosyl-
labic structure as that described in the spelling model of
Houghton and Zorzi (2003).

4. Input into the sublexical network was serialized as a
result of the graphemic parsing process.

5. Different parameters are used for the integration of lex-
ical and sublexical activation.

Results

Two methods were used to evaluate the goodness of fit between
model and data: (a) the factorial method and (b) the regression
method. The former consists of analyzing RTs and/or errors of the
model through analyses of variance (ANOVAs) to evaluate
whether effects found to be statistically significant in the human
data are also significant in the model data (conversely, effects that
are not significant in the human data should not be significant in
the model data). The second method is related to the issue of
predicting item-level variance (Spieler & Balota, 1997; see also
Besner, 1999). It consists of computing the proportion of variance
(R2) in human RTs that is accounted for by the model at the level
of single items. This method is a particularly tough test when
applied to large word corpora, such as Spieler and Balota’s (1997)
database, which contains almost 3,000 words. The regression
method is also very stringent when applied to the items of one
specific small-scale experiment.

All results from Zorzi et al.’s (1998b) original CDP model were
calculated with a new network trained on the CELEX (Baayen et
al., 1993) database for 20 cycles. All results for the triangle
network were calculated with a newly trained network set up in a
manner identical to that of the log10 frequency trained feedfor-
ward network in Plaut et al. (1996). As in the original model,
Kuçera and Francis’s (1967) database was used to train the model
because we did not want to change the input and output represen-
tations of the network, which would have been necessary if the
CELEX database had been used. Error scores were calculated with
a cross-entropy measure. All data from the models were examined
with a 3 standard deviation (SD) cutoff criterion. The attempt to
account for a large amount of empirical data derived from many
different studies calls for a stringent (i.e., conservative) strategy in
statistical testing. Thus, when we compare the model with effects
that are significant in the human data, unless otherwise stated, we
do so only for the effects that were significant in the item data
according to a standard between-groups comparison.

The nested modeling approach dictates that a new model should
be tested on the data sets that motivated the development of its
predecessors before being tested on new data. We therefore sim-
ulated all the naming studies reported by Coltheart et al. (2001),
excluding those that have been superseded by more controlled
experiments (e.g., pseudohomophone effects; Reynolds & Besner,
2005). However, to avoid distracting the reader with a long list of
effects that do not necessarily adjudicate among different models
(e.g., effects of frequency and lexicality), we postpone the presen-
tation of these results to the Other Phenomena in Word Naming
section. To anticipate our main findings, CDP� was able to
successfully simulate all benchmark effects reported by Coltheart
et al. (2001) except for the whammy effect whose empirical
robustness is still a matter of debate (see later).

The Results section is organized in the following way: First,
before embarking on simulations of particular reading phenomena
with any computational model of reading, we show the global
performance of CDP� on word and nonword naming. Second, we
focus on the effects that were able to adjudicate among different
models: (a) consistency effect for words and nonwords, (b) serial
effects, and (c) performance on large-scale databases. In the spirit
of strong inference testing, for all effects, we present a comparison
of CDP� performance with that of the other three models. For the
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sake of clarity in the data presentation, we focus on specific
subsets of data in the main text. However, all results of our
simulations (both with CDP� and with the other models) are fully
reported in the Appendixes. Finally, in the Credit Assignment and
Componential Analyses section, we assign credit for the compo-
nents that are responsible for the superior performance of the
CDP� model.

Overall Performance on Words and Nonwords

In terms of word naming, when confronted with the 7,383 words
of its lexicon, CDP� gets 98.67% correct. Heterophonic homo-
graphs were considered correct if they yielded any of the potential
pronunciations. These simulations were obtained with the standard
parameter set (see Appendix B). Of the errors, 70% were either
regularization errors or alternative readings of the word that used
commonly found grapheme–phoneme relationships. Accuracy for
reading aloud words can be easily increased by changing the
parameters of the lexical route. In fact, when we increased the
amount of letter-to-orthography inhibition (to stop more than one
word from ever being activated at a time) while turning off the
sublexical route, the model made only four errors (0.05% errors).

To examine the overall nonword reading performance of
CDP�, we tested the model on the only large-scale nonword
reading database that is currently available (Seidenberg et al.,
1994). In this database, 24 participants named 592 nonwords.
Using the lenient error scoring criterion proposed by Seidenberg et
al. (1994), according to which a nonword response was correct if
the phonology given by the model corresponded to any grapheme–
phoneme or body–rime relationship that exists in real words, the
model made 37 errors (6.25%). The model’s error rate is therefore
very similar to the human error rate reported by Seidenberg et al.
(7.3%). Of these errors, 16 (43%) displayed the pattern where a
phoneme that should have been activated was indeed activated but
not enough to get above the phoneme naming activation criterion.
In these cases, the underactivated phoneme was not taken into
account, and hence the final pronunciation looked as if it was
missing that phoneme (e.g., /w∧ l/ for wulch). Given that nonwords
in the model generally produce far less activation than words
(because they do not have lexical entries), we reduced the pho-
neme naming activation criterion from .67 to .50 to simulate a
lower threshold that people may use when reading aloud lists of
nonwords only. When this was done, the model produced only 17
errors (2.87%). In the Consistency Effects in Nonword Reading
section, we go beyond this rather superficial assessment of the
model’s nonword reading ability by investigating whether the
model’s responses actually look like those that people give when
asked to read certain types of nonwords.

Consistency Effects

The issue of whether consistency or regularity (or both) best
characterize the difficulty associated with naming a word has been
controversial since the seminal work of Glushko (1979). More
recently, the debate has been polarized by the fact that only
regularity is a critical variable in DRC, whereas consistency is
more relevant in the triangle model. In this section, we examine the
effect of consistency in three different ways: First, we examine the
effect of consistency on word naming latencies (Jared, 2002), and

then we investigate the consistency effect on nonword naming
(Andrews & Scarratt, 1998). Finally, we look at the effect of
consistency on the impaired performance of an individual with
surface dyslexia (Patterson & Behrmann, 1997).

Consistency Effects in Word Reading

In a recent influential study, Jared (2002) argued quite convinc-
ingly that there were a number of potential confounds in almost all
of the data sets examining regularity and consistency used in
previous studies of word naming. Jared’s stimuli therefore repre-
sent probably the best controlled stimulus set for examining con-
sistency and regularity effects. The main results of Jared’s study
can be summarized as follows. First, there was clear evidence for
an effect of word-body consistency, regardless of whether the
word was regular or irregular. There was little evidence of a
regularity effect over and above the effect of consistency. Second,
the effect of consistency was modulated by the neighborhood
characteristics of the stimuli, that is, the ratio between friends and
enemies. Only words with more enemies than friends showed a
latency cost. Third, there was very little evidence for a Fre-
quency � Regularity/Consistency interaction when neighborhood
characteristics were controlled.

Jared (2002) showed that different aspects of these data chal-
lenge DRC and the triangle model. DRC was challenged in two
ways. First, it did not show any hint of a consistency effect for
regular words. Second, the latency cost for irregular words (i.e.,
regularity effect) was not modulated by the friend–enemy ratio.
The triangle model correctly predicted the existence of a consis-
tency effect for both regular and irregular words, but it also
produced a strong interaction with frequency, which was not
present in the human data. We simulated all four experiments
reported by Jared with CDP� and with the three other models. In
the text, we focus on some of the results that clearly adjudicate
between the different models. The full set of simulations (all
experiments and all models) can be found in Appendix E.

Jared’s (2002) Experiment 1 investigated whether there are
effects of GPC regularity independent of effects of consistency for
low-frequency words. Naming performance on exception (e.g.,
breast) and regular inconsistent words (e.g., brood) was compared
with performance on matched regular consistent words. A further
manipulation was performed on the first two groups: Half of the
words in each group had more friends than enemies, whereas the
other half had more enemies than friends. Results showed longer
naming latencies for both the exception and regular inconsistent
words, but only for the groups with more enemies than friends (see
Figure 5A).

CDP� produced a pattern almost identical to that of the human
data (see Figure 5B). In particular, there were main effects of
consistency/regularity combined, F(1, 147) � 17.73, MSE �
1,281, p � .001. There was no Consistency/Regularity � Group
interaction (i.e., exception vs. regular inconsistent words), F(1,
147) � 2.69, MSE � 194, p � .10. However, there was a
Regularity/Consistency � Friend–Enemy Ratio interaction, F(1,
147) � 5.09, MSE � 367, p � .05. Pairwise comparisons showed
that both groups with more enemies than friends were significantly
slower than their controls: 10.41 cycles for low-frequency excep-
tion words, t(35) � 3.08, SE � 3.38, p � .005, and 7.30 cycles for
low-frequency inconsistent words, t(38) � 2.89, SE � 2.52, p �
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.01, whereas both groups with more friends than enemies were not
slower than their controls: 4.58 cycles for low-frequency exception
words, t(37) � 1.74, SE � 2.63, p � .09, and 0.82 cycles for
low-frequency inconsistent words (t � 1). As discussed earlier,
DRC showed a completely different pattern of results (see Figure
5C). The striking difference between CDP� and DRC can be also
seen in the amount of item-level variance accounted for by the two
models: CDP� accounted for 24%, whereas DRC accounted for
just 1% of the variance. The triangle model accounted for 7% (for
details see Appendix E).

Before Jared (1997), one of the long-held beliefs about regular-
ity and consistency effects in English was that they only occurred
with low-frequency words. Jared (1997) argued that this may not
be due to word frequency per se, but rather may be due to the fact
that most high-frequency words also have fewer enemies of a
higher frequency. In Experiment 2, Jared (2002) therefore inves-
tigated the Regularity � Frequency interaction in words matched
for neighborhood characteristics. The human data showed that
there was a main effect of regularity but no reliable Regularity �
Frequency interaction. The effect of regularity was 13 ms for
high-frequency words and 19 ms for low-frequency words. Addi-
tionally, the size of the regularity effect was modulated by the
friend–enemy ratio, with a reliable effect only for words with more
enemies than friends (see Figure 6A).

When confronted with the items of Jared (2002, Experiment 2),
CDP� displayed a pattern that was similar to the human data (see
Figure 6B). Statistical analyses confirmed significant main effects
of regularity, F(1, 144) � 20.43, MSE � 1,493, p � .001, and
frequency, F(1, 144) � 145.44, MSE � 10,628, p � .001, but no
interaction between the two (F � 1). The Neighborhood (friend–
enemy ratio) � Regularity interaction was significant, F(1, 144) �
4.59, MSE � 336, p � .05. As in the human data, pairwise
comparisons showed that the regularity effect was significant in
both low- and high-frequency words for the groups with more
enemies than friends, t(35) � 3.08, SE � 3.38, p � .005, and
t(37) � 2.75, SE � 2.94, p � .01, for low- and high-frequency
words, respectively. This was not the case for words with more
friends than enemies, however, with neither the low- nor high-
frequency groups being significant, t(37) � 1.74, SE � 2.63, p �
.09, and t(35) � 1.04, SE � 1.94, p � .31.

As discussed earlier, the triangle model does not fully capture
the human data because it shows a strong Regularity � Frequency
interaction (see Figure 6C). The advantage of CDP� over the
triangle model is further testified to by the striking difference in
the amount of item-level variance accounted for by the two mod-
els: CDP� accounted for 40%, whereas the triangle model ac-
counted for less than 1%. Although DRC correctly captured the
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RT � reaction time; CDP� � new connectionist dual process model; DRC � dual-route cascaded model.

Irregular Control

elgnairT+PDCataD namuH

70

80

90

100

110

120

M
ea

n
R

T
 (

C
yc

le
s)

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ea

n
R

T
 (

E
rr

o
r)

400

450

500

550

600

650

M
ea

n
R

T
 (

m
s)

70

80

90

100

110

120

M
ea

n
R

T
 (

C
yc

le
s)

0

0.05

0.1

0.15

0.2

0.25

0.3

400

450

500

550

600

650

F<E F>E F<E F>EF<E F>E F<E F>E F<E F>E F<E F>EF<E F>E F<E F>E F<E F>E F<E F>EF<E F>E F<E F>E

Frequency:  High          Low                               High Low                               High          Low

A. B. C.

Figure 6. Human data (in milliseconds) and CDP� and triangle model simulations of Jared’s (2002)
Experiment 2. RT � reaction time; CDP� � new connectionist dual process model; F � friends; E � enemies.

286 PERRY, ZIEGLER, AND ZORZI



absence of a Frequency � Regularity interaction, it accounted for
only 9% of the variance (for additional details, see Appendix E).

The two final experiments of Jared (2002) investigated the
Frequency � Regularity � Consistency interaction on words with
more enemies than friends (Experiments 3 and 4 differed only with
respect to a blocked vs. mixed list composition) and confirmed the
overall pattern of results. As for the previous experiments, simu-
lations with CDP� provided a very good match to the human data.
The model accounted for a striking proportion of item-level vari-
ance (52% for Experiment 3 and 46% for Experiment 4), a pro-
portion at least three times larger than the variance accounted for
by DRC and the triangle model (for full simulation details, see
Appendix E).

Consistency Effects in Nonword Reading

Consistency manipulations are possible not only on real words
but also on nonwords. The main issue, debated since the study of
Glushko (1979), is whether nonword reading relies on the use of
grapheme–phoneme correspondences or whether larger spelling
units, like word bodies (orthographic rimes), play a role. Incon-
sistent nonwords, that is, letter strings containing a word body with
more than one common pronunciation (e.g., ove may be pro-
nounced as in stove, wove, grove, etc. or as in love, glove, shove),
often produce much more varied distributions of answers (i.e.,
multiple different pronunciations) compared with consistent non-
words (see Seidenberg et al., 1994).

Andrews and Scarratt (1998) performed two experiments exam-
ining the extent to which people use grapheme–phoneme and
larger sized spelling–sound relationships when reading aloud non-
words. In Experiment 1, they examined the consistency of the
initial consonant–vowel cluster (CV consistency) and body-rime
consistency. All of the nonwords in the groups shared a body with
at least one other word that could be pronounced with a regular
pronunciation (i.e., a word whose phonology could be derived by
means of the use of the most common grapheme–phoneme rules).
Thus, for instance, the nonword bive has a body that can be given
an irregular pronunciation (e.g., give), but at least one word that it
shares an orthographic body with does have a regular pronuncia-
tion (hive). Thus, a regular analogy can be made by using the
body-rhyme correspondence from the word hive. They also exam-
ined how people would read a group of stimuli that had no regular
analogies, that is, nonwords that shared a body only with words
that have an irregular pronunciation (note that their definition of
regularity was not that of Coltheart et al., 1993, but was very
similar). Thus, for example, the nonword valk has the body –alk.
However, all words that have that body (e.g., walk, talk, chalk) do
not use a regular body pronunciation, which would be /ælk/.

The results from Andrews and Scarratt (1998) showed that in
the regular-analogy group (e.g., bive), people tended to read such
nonwords according to the most common grapheme–phoneme
relationships. That is, they chose the regular pronunciation that
rhymes with hive and not give. They also did not appear to use CV
relationships often, as the difference between nonwords with rel-
atively inconsistent CV relationships and nonwords with relatively
consistent CV relationships was small. In contrast, in the no-
regular-analogy group, where nonwords used a body that was not
shared with any other words that used a regular grapheme–
phoneme based pronunciation, participants showed a marked pref-

erence for using a body pronunciation that would not be generated
by a set of grapheme–phoneme rules.

An ANOVA performed on regular response probabilities of
CDP� showed that nonwords with inconsistent bodies were pro-
nounced with less regular pronunciations than nonwords with
consistent bodies, F(1, 183) � 10.34, MSE � 0.41, p � .005.
However, the effect of onset consistency was weak (F � 1). This
was similar to the human data. The crucial issue for computational
models, however, is the performance in the no-regular-analogy
group. That is, if GPC rules are used to read nonwords, as postu-
lated by DRC, little or no deviation from the regular pronunciation
is expected (which is not what Andrews & Scarratt, 1998, found).
In terms of the no-regular-analogy group, the proportion of regular
answers given by CDP� was very similar to that of the human
data. The results appear in Figure 7A along with a comparison of
the other models. As can be seen, CDP� and CDP fit the observed
pattern better than DRC or the triangle model, both of which
produced too many regular responses (for further details, see
Appendix F).

In Experiment 2, Andrews and Scarratt (1998) examined four
groups of nonwords. In two of the groups (i.e., the regular-analogy
groups), body-rime consistency was manipulated in a dichotomous
manner. Words in these groups shared their bodies with at least
one other word that had a regular pronunciation. In the other two
groups, the word bodies had no regular analogy, but the two
groups differed in terms of the size of the body neighborhood (i.e.,
many vs. few body neighbors). The results showed that nonwords
in the regular-analogy groups were generally given regular pro-
nunciations. Nonwords in the no-regular-analogy group were gen-
erally not given regular pronunciations, and that was particularly
true of nonwords that had many body neighbors.

The simulations of this experiment again showed a very good
match between CDP� and the human data (see Figure 7B). In
contrast, DRC and the triangle model produced too many regular
responses in the no-regular-analogy group with many body neigh-
bors (for further details, see Appendix F). It appears that a different
version of the triangle model produces a slightly better fit to the
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Figure 7. Human data (response probabilities for regular pronunciations)
and simulations of all models for no-regular-analogy words (Experiment 1)
and no-regular-analogy words with many body neighbors (Experiment 2)
of Andrews and Scarrat (1998). CDP� � new connectionist dual process
model; CDP � connectionist dual process model; DRC � dual-route
cascaded model.
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data (Zevin & Seidenberg, 2006). This is not surprising as con-
nectionist models should be more sensitive to consistency than
rule-based GPC models. However, the triangle model used by
Zevin and Seidenberg (2006) still overestimates the proportion of
regular pronunciations in the no-regular-analogy group, whereas
CDP� does not.

Consistency Effects in Surface Dyslexia

MP is probably the most well-documented individual surface
dyslexic (Bub, Cancelliere, & Kertesz, 1985; see also Behrmann &
Bub, 1992). When reading aloud irregular (or inconsistent) words,
MP has the tendency to give regularized pronunciations (i.e.,
words are read as if they were nonwords). There is a very impor-
tant pattern in MP’s errors, which was noted by Patterson and
Behrmann (1997). They observed that the number of regularization
errors MP made was a function of how inconsistent the word was.
MP made more regularization errors on words that were very
inconsistent compared with words that were less inconsistent.
Indeed, Patterson and Behrmann investigated MP’s performance in
much the same way as did Jared (1997, 2002). That is, two groups
of irregular words were used, one in which the words had more
friends than enemies and another in which the words had more
enemies than friends. Patterson and Behrmann also used a group in
which an inconsistent vowel was made relatively consistent by its
preceding onset consonants (typically, words starting with wa; see
also Treiman, Kessler, & Bick, 2003).

The existence of consistency effects in the naming data of MP
is problematic for DRC, which uses a set of rules with relatively
little context sensitivity. At least in its current form, the model is
not able to capture that effect. In contrast, when the model of Plaut
et al. (1996) was “lesioned” by removing the semantic component
of the model, the results showed that the model was generally able
to simulate this pattern (see Patterson & Behrmann, 1997, for
further discussion). This simulation, however, relied on the as-
sumption that surface dyslexia is caused by semantic impairment.
In a survey of a number of different cases of surface dyslexia,
Coltheart et al. (2001) showed that this explanation may have some
problems. They noted that, in spite of the relatively strong asso-
ciation between semantic dementia and surface dyslexia, it was
possible to find cases of severe surface dyslexia in patients who
had a completely functioning semantic system, and most notably,
it was possible to find patients with severe dementia who did not
show any signs of surface dyslexia (see the General Discussion
section).

Because we agree with Coltheart et al. (2001) that attributing
surface dyslexia to a semantic deficit is problematic from a theo-
retical point of view, our goal was to simulate the surface dyslexic
pattern of MP through a simple manipulation of the lexical route
(also see Zorzi et al., 1998b). To do this, we simply reduced the
contribution of lexical phonology to the final pronunciation by
reducing the amount of lexical activation into the phonological
output buffer. That was done by setting the inhibition parameter
from the phonological lexicon to the phonological output buffer to
zero and by setting the excitation parameter from the phonological
lexicon to the phonological output buffer to 0.055. This meant that
only a comparatively small amount of lexical activation reached
the phonological output buffer compared with usual. A similar
type of lesion was used by Houghton and Zorzi (2003) to simulate

surface dysgraphia: The underlying assumption was that the as-
ymptotic strength of the lexical output has been reduced following
neural damage (e.g., because of lowered excitability of the neural
structures encoding lexical knowledge). The size of the frequency
parameter was also increased to 0.8 from 0.4 to simulate potential
difficulties in lexical access (this second strategy was also pursued
by Coltheart et al., 2001). That is, instead of the frequency of items
in the orthographic and phonological lexicons being coded be-
tween 0 and �0.4, they were coded between 0 and �0.8 on the
basis of the normalization procedure in Coltheart et al. (2001, p.
216). The effect of this was to increase the difference in the
amount of input that is needed to activate low- and high-frequency
words in the lexicon. Thus, low-frequency words become compar-
atively harder to activate than high-frequency ones.

We should note here that whether the activation that combines
with the phonological assembly route is actually lexical or seman-
tic is not especially relevant for this simulation. Rather, what is
important is that the contribution of lexical/semantic activation is
comparatively very small. In the same vein, the “semantic” lesion
in Plaut et al.’s (1996) simulation of surface dyslexia is imple-
mented by removing the contribution of an external input to the
phoneme units of the orthography-to-phonology network. There-
fore, the models differ with respect to the functional interpretation
of the lesion within the broader lexical system, but they simulate
the phenomenon in a very similar way. The issue of the role of
semantics in reading aloud is taken up in the General Discussion
section.

With the parameter changes detailed earlier, CDP� displayed a
pattern very similar to that of MP. In particular, it correctly
predicted that the more consistent irregular words have a greater
chance of being named correctly. Of the 32 errors the model made
for irregular words, all but 2 were regularization errors, which was
also very similar to the performance of MP, who also produced
only 2 errors on the irregular words that were not regularizations.
Of the 3 errors the model made on regular words, all were
pronunciations that could be found in irregular words that shared
the same orthographic body. MP also showed that pattern. The
performance of CDP� on irregular words appears in Figure 8.

We also tried to simulate the results of MP with DRC. Follow-
ing Coltheart et al. (2001), we increased the response threshold to
simulate the lack of speed pressure in the task, and we modified the
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Figure 8. Performance of surface dyslexic patient MP on irregular words
together with CDP� and DRC simulations. The graph shows the percent-
age of correct responses for three lists of irregular words that differ in their
degree of consistency. CDP� � new connectionist dual process model;
DRC � dual-route cascaded model.
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frequency scaling parameter in the orthographic lexicon (to sim-
ulate difficulty in retrieving the orthographic form of the words).
However, no matter what we did, we were not able to cause an
effect of graded consistency. The results of DRC are visible in
Figure 8 (note that the orthographic frequency scaling parameter
was set to 0.20, rather than to the value of 0.25 used by Coltheart
et al., 2001, because it gave slightly better results). It is thus the
only model that does not simulate MP’s results, as both CDP and
the triangle model (see Zorzi, 1999, and Patterson & Behrmann,
1997, respectively) can simulate this pattern (see Appendix G for
further details).

Another factor that interacts with consistency in surface dys-
lexia is word frequency. In general, low-frequency irregular words
are more likely to be read aloud incorrectly than high-frequency
irregular words. This pattern was documented in an earlier study
with MP by Behrmann and Bub (1992) and in KT, one of the most
extreme surface dyslexic patients reported (McCarthy & War-
rington, 1986; see also Patterson, 1990). KT is of particular inter-
est, because he was able to read only 47% of high-frequency and
26% of low-frequency exception words correctly, despite very
good performance on regular words (100% and 89% correct for
high- and low-frequency regular words, respectively). It is impor-
tant to show that the model can simulate this effect, because both
DRC and the triangle model can (also see Zorzi et al., 1998b, for
simulations with CDP).

The Frequency � Regularity interaction of both patients (MP
and KT) was simulated with CDP� by making the same parameter
changes as in the previous MP simulation, except that we increased
the frequency scaling parameter slightly from 0.8 to 1.0. For KT,
we examined the model’s performance on Taraban and McClel-
land’s (1987) high- and low-frequency regular and exception
words. According to Patterson (1990), Taraban and McClelland’s
exception words are very similar to the words actually presented to
KT. For MP, we used the monosyllabic words that were actually
presented.

The results showed that CDP�’s error pattern was very similar
to that of KT: The model read only 50% of the high-frequency and
29% of the low-frequency exception words correctly, but read
100% of the high-frequency and 96% of the low-frequency regular
words correctly. Similarly, CDP� also produced results very
similar to those of MP. In particular, for words from the six
categorical frequency bands reported (frequencies: 1–9, 10–19,
20–49, 50–99, 100–199, �199), for which MP made 7, 6, 9, 5, 2,
and 19 correct responses, respectively, CDP� made 9, 6, 9, 6, 4,
and 16 correct responses. The fit between our model and MP is
actually closer than the fit between DRC and MP reported in
Coltheart et al. (2001). Together, these simulations show that
CDP� can simulate some of the most extreme cases of surface
dyslexia reported.

Summary: Consistency Effects

Simulating the detailed pattern of consistency effects in word
and nonword naming has turned out to be one of the most dam-
aging but also one of the most challenging areas for previous
models of reading aloud. Here, we have successfully simulated
seven consistency experiments. CDP� not only captured the qual-
itative pattern of the seven experiments, but it also predicted up to
52% of the item-specific variance. In contrast, DRC failed on

almost every data set, both qualitatively and quantitatively. Sur-
prisingly, the triangle model was not much better than DRC
quantitatively (i.e., it never accounted for more than 7% of the
variance in any of the word consistency experiments), and there
were also some qualitative deviations from the human data.

Serial Effects

Here we focus on two effects that have been widely cited in the
literature as evidence for serial processing in reading aloud: (a)
length effects in nonword reading (Weekes, 1997; Ziegler et al.,
2001) and (b) the position-of-irregularity effect (Rastle & Colt-
heart, 1999).

Length Effects

Weekes (1997) used three-, four-, five-, and six-letter words and
nonwords to study length effects in reading aloud. The words were
of either low or high word frequency. He found a main effect of
length that was qualified by a significant Length � Lexicality
interaction. This interaction reflected the fact that the length effect
was stronger for nonwords than for words. Weekes also suggested
that low-frequency words produced bigger length effects than
high-frequency words. A reanalysis of his item data on words
showed, however, that the Frequency � Length interaction did not
reach significance, F(3, 190) � 1.71, MSE � 1,451, p � .16. He
further argued that the length manipulation is naturally confounded
with orthographic neighborhood (the longer the word, the smaller
the number of neighbors). However, even with orthographic neigh-
borhood used as a covariate (as was done in Coltheart et al., 2001),
there was no significant Length � Frequency interaction, F(3,
189) � 1.97, MSE � 1,635, p � .12. Finally, to make sure that we
did not miss a potential Frequency � Length interaction because
of a lack of power, we submitted Weekes’s items to the English
Lexicon Project (Balota et al., 2002), which contains naming data
for thousands of words collected from over 400 participants. This
analysis showed that even in this database, Weekes’s word set did
not produce a significant Length � Frequency interaction (F � 1).
All together then, the correct pattern that needs to be predicted by
current models is a main effect of length and a Length � Lexi-
cality interaction but no Length � Frequency interaction for real
words.

The simulation results of Weekes (1997) are presented in Figure
9. CDP� showed a main effect of length, F(3, 274) � 37.06,
MSE � 3,806, p � .001, a main effect of lexicality, F(1, 274) �
1,191.82, MSE � 122,397, p � .001, and a Length � Lexicality
interaction, F(3, 274) � 18.32, MSE � 1,889, p � .001. As in the
human data, there was no significant interaction between the
effects of length and frequency when words were examined sep-
arately: for length, F(3, 186) � 83.84, MSE � 2,924, p � .001; for
frequency, F(1, 186) � 289.19, MSE � 10,081, p � .001; for
Length � Frequency, F � 1. Thus, CDP� predicts the correct
overall pattern.

The simulation results of all other models are shown in Appen-
dix H. As previously noted by Coltheart et al. (2001), Weekes’s
(1997) data were not fully captured by CDP or the triangle model.
In brief, CDP produced a length effect but no Length � Lexicality
interaction, whereas the performance of the triangle model was
markedly different from the human data. In terms of item-level
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variance, CDP� accounted for at least twice as much of the
variance as the other models on the word data. In contrast, DRC
still outperformed all other models on the nonword data; nonethe-
less CDP� was greatly superior to the other connectionist models
as it accounted for 31% of the variance, whereas CDP and the
triangle model accounted for less than 3%.

It is worth noting that there has been a debate about whether
length has a unique contribution to naming or whether length
effects are simply the result of other confounding variables. Along
this line, Seidenberg and Plaut (1998) suggested that length effects
might be due to articulatory factors. However, because the length
effect disappeared in delayed naming (Weekes, 1997, Experiment
2), it is unlikely that the effect is due to articulation. On the other
hand, Weekes (1997) himself suggested that length does not pro-
duce a unique effect on word naming because length did not
account for any unique variance in a regression analysis after
partialing out orthographic neighborhood and phoneme length.
However, the strong conclusion of Weekes that there are no unique
effects of length was contested in a comprehensive study of Balota
et al. (2004), who analyzed the unique effects of length in a
large-scale database of 2,428 words. Their results clearly show that
length has a unique contribution to word naming (for similar
results, see also Baayen, Feldman, & Schreuder, 2006). For the
interested reader, Balota et al. gave several plausible arguments for
why their results differed from those of Weekes.

Body Neighborhood and Length

As mentioned earlier, the stimulus set of Weekes (1997) pre-
sents some confounds that are not related to length. These included
orthographic neighborhood size and body neighborhood (e.g.,

Brown, 1987; Forster & Taft, 1994; Jared et al., 1990; Ziegler et
al., 2001). The effect of body neighborhood size simply reflects the
frequency at which orthographic bodies occur, regardless of the
way they map onto phonology (Ziegler & Perry, 1998). For in-
stance, take the two nonwords veap and veep. Both of these
nonwords have completely consistent orthographic bodies. That is,
the bodies -eap and -eep are only ever pronounced one way in real
words. However, the frequencies at which the bodies occur is
markedly different: -eap occurs in 5 words whereas -eep occurs in
13. This is known as orthographic body neighborhood. When
Ziegler et al. (2001) examined this effect in a Lexicality (words vs.
nonwords) � Orthographic Length (3–6 letters) � Body Neigh-
borhood (high vs. low) design, they found that there was an effect
of body neighborhood that appeared to occur with both words and
nonwords, and there was no significant Body Neighborhood �
Length interaction. However, there was the standard Length �
Lexicality interaction. The study of Ziegler et al. therefore pro-
vided a highly controlled test of the length effect. It also provided
an additional important constraint for strong inference testing
because previous models make opposite predictions as to whether
body neighborhood should play a role in reading aloud (e.g., the
DRC predicts no influence of body neighborhood, whereas the
CDP predicts an influence).

CDP� displayed essentially the same pattern as the human data:
It produced significant main effects of length, F(1, 140) � 53.59,
MSE � 6,615, p � .001, lexicality, F(1, 140) � 877.64, MSE �
108,327, p � .001, and body neighborhood, F(1, 140) � 4.98,
MSE � 615, p � 05. The effects of length and lexicality interacted,
F(3, 140) � 19.85, MSE � 2,500, p � .001, whereas body
neighborhood did not interact with either length or lexicality (both
Fs � 1). No other model was able to produce this result: DRC
failed to produce a body neighborhood effect (F � 1), CDP failed
to produce a Length � Lexicality interaction, F(1, 137) � 1.97,
MSE � 1.27, p � .1, and the triangle model failed to produce the
correct shape of the length effect. The mean results appear in
Figure 10. Finally, CDP� accounted for a much larger proportion
of item-level variance in Ziegler et al.’s (2001) set of nonwords
than the other models, including DRC (for further details, see
Appendix I).

The results suggest that the only model able to capture both the
Length � Lexicality interaction and the additive body neighbor-
hood effect was CDP�. Thus, the model can show both the effects
of simple frequency of occurrence at a subsyllabic level as well as
consistency.

Position of Irregularity

Rastle and Coltheart (1999) found that the cost of irregularity
was modulated by the position of the irregular grapheme in the
word. That is, the regularity effect was stronger for first position
irregular words compared with second position irregular words,
and it was stronger for second position irregular words than for
third position irregular words. Although the original CDP model
can simulate this effect even with completely parallel input (Zorzi,
2000), it remains a challenging effect because it cannot be simu-
lated by at least one of the models (i.e., the triangle model). Our
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Figure 9. Human data (in milliseconds) and simulations of Weekes’s
(1997) experiment, which manipulated length, frequency, and lexicality.
RT � reaction time; CDP� � new connectionist dual process model;
CDP � connectionist dual process model.
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aim here is simply to show that the new model accounts for the
effect at least as well as DRC and CDP.5

When confronted with the items of Rastle and Coltheart (1999),
CDP� displayed a pattern of results very similar to that of the
human data. Planned comparisons showed that the first position
irregular words were significantly slower than their controls (9.20
cycles), t(38) � 2.13, SE � 4.32, p � .05, and the second position
irregulars were significantly slower than their controls (6.47 cy-
cles), t(74) � 2.57, SE � 2.52, p � .05, but the third position
irregulars were not significantly slower than their controls (2.79
cycles), t � 1. The human data showed a similar pattern, although
the second position irregular items were only marginally signifi-
cant: for first position, 61.15 ms, t(38) � 4.94, SE � 12.38, p �
.001; for second position, 12.87 ms, t(75) � 1.74, SE � 7.41, p �
.086; for third position: 0.07 ms, t � 1.

CDP� accounted for 21% of the item-level variance, which is
almost twice as much as the variance explained by DRC (13%) and
CDP (12%; see Appendix J for further details). As noted in
Coltheart et al. (2001), the position-of-irregularity effect was not
captured by the triangle model.

In response to Zorzi’s (2000) demonstration that the results of
Rastle and Coltheart (1999) could be simulated by CDP (despite
being a purely parallel model) and that these results were likely
due to a grapheme consistency confound in their stimuli, Roberts
et al. (2003) ran a new study examining the position-of-irregularity
effect with a different set of words. These were chosen beforehand
such that CDP could not simulate a position-of-irregularity effect
with them. Only second and third position irregular words were
used.

As previously found by Rastle and Coltheart (1999), Roberts et
al. (2003) showed bigger regularity effects with second than with

third position irregular words. However, the Regularity � Position
interaction was only marginally significant in the item data—even
more marginal if a between measures rather than repeated mea-
sures comparison was done, F(1, 100) � 2.47, MSE � 0.83, p �
.12.6 The absolute RTs also looked a little different, with the
second and third position irregular words displaying very similar
mean RTs and the mean RT of the control words in the two groups
differing. Although Roberts et al. were not able to give a definitive
reason why this difference existed compared with Rastle and
Coltheart’s data, they did point out that it might be due to factors
such as differences in the voicing of initial phonemes across the
two groups. Thus, RTs without such problems might in fact look
more like those they expected.

Despite potential difficulties in interpreting Roberts et al.’s
(2003) data, we examined how the different models would simu-
late the results that were found. CDP� showed a pattern relatively
similar to that of the data. The second position irregular words
were significantly slower than their controls, t(63) � 4.40, SE �
2.77, p � .001, and although the effect was smaller, unlike the
data, so were the third position irregular words, t(34) � 2.83, SE �
2.49, p � .001. Just like the data, however, the interaction was not
significant, F(1, 97) � 1.53, MSE � 154, p � .22.

Further investigation of DRC, CDP, and the triangle model
showed that all of them in fact predicted a significant effect on
third position irregular items that did not appear in the human data:
for DRC, t(34) � 3.40, SE � 0.64, p � .005; for CDP, t(32) �
2.36, SE � 0.32, p � .05; for triangle, t(30) � 2.59, SE � 0.018,
p � .05. In terms of the Regularity � Position interaction, only
DRC incorrectly predicted a significant interaction, F(1, 96) �
34.36, MSE � 509, p � .001 (CDP: F � 1; triangle: F � 1). The
item-level correlations with the human data also differed across the
models, with only CDP� explaining a significant amount of the
variance (CDP�: 6.29%, p � .01; CDP: 1.56%, p � .24; triangle:
2.59%, p � .10; DRC: r � �.066 [0.44% in the incorrect direc-
tion], p � .52). Overall, although hard to interpret, these results
suggest that the CDP� was at least as good as the other models in
simulating this experiment. For further details, all results are
presented in Appendix K.

5 One problem with trying to interpret the data is that, apart from the
confound in the stimuli set mentioned by Zorzi (2000), there are also a few
other potential difficulties. The stimuli differ across groups on both ortho-
graphic frequency (average frequencies for irregulars at Positions 1, 2, and
3 are 663, 440, and 277 and for controls are 102, 107, and 102; average log
frequencies for irregulars are 1.94, 2.29, and 2.08 and for controls are 1.79,
1.83, and 1.77) and phonological frequency (average phonological frequen-
cies for irregulars at Positions 1, 2, and 3 are 2,277, 2,809, and 156 and for
controls are 73, 317, and 35; average log phonological frequencies for
irregulars are 2.17, 2.12, and 1.48 and for controls are 1.07, 1.19, and 0.99).
Thus, some of the regularity effect may have been obscured by frequency
confounds. A further difficulty for this study is that Rastle and Coltheart
(1999) used randomization tests, rather than more standard t tests. For the
sake of consistency in analyzing and reporting data across different exper-
iments, we recalculated the results of Rastle and Coltheart with pairwise t
tests and did not use covariates.

6 This analysis was also done on RTs converted into z scores, as they
were the only item results made available to us.
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Figure 10. Human data (in milliseconds) and simulations of Ziegler et
al.’s (2001) experiment, which manipulated word length, lexicality, and
body neighborhood. N � neighborhood; RT � reaction time; CDP� �
new connectionist dual process model; DRC � dual-route cascaded model.
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Summary: Serial Effects

Traditionally, serial effects have been thought to challenge
parallel models. Particularly damaging for previous connectionist
models was their difficulty in handling length effects in nonword
naming. Here we showed that CDP� successfully simulated
length effects in nonword reading and the Length � Lexicality
interaction. In this respect, CDP� was largely superior to its
connectionist predecessors (the triangle and CDP model) and was
comparable with DRC. In addition, CDP� was able to account for
the position-of-irregularity effect; it even accounted for more of
the item-specific variance than DRC, whose theoretical commit-
ment to serial processing was at the very origin of this research.
We assess later what aspect of CDP� was responsible for the
improved performance.

Item-Level Database Performance

A particularly hard modeling test concerns the prediction of
item-level variance in large-scale databases. Spieler and Balota
(1997) argued that a successful model of reading aloud should be
able to account for at least as much variance as the three most
important factors that affect written word naming. In their analy-
ses, conducted on their database of almost 3,000 monosyllabic
words, the three factors were log word frequency, orthographic
neighborhood, and orthographic length, which collectively ac-
counted for 21.7% of the variance. Strikingly, none of the com-
putational models came even close to this result. In fact, the
proportion of variance accounted for by the three models on the
human latencies in Spieler and Balota’s database was between 3%
and 7% (see Coltheart et al., 2001), which is less than the variance
accounted for by the single factor log word frequency.

Setting aside the (often small) discrepancies among models in
accounting for specific experimental findings, we agree with
Spieler and Balota (1997) that the issue of item variance is the
most critical challenge faced by computational models of reading
aloud. Thus, the critical test was to check how much variance
CDP� would account for both in comparison with its competitors
and in comparison with the three most important factors. We
computed the percentage of variance accounted for by the different
models across the most relevant large-scale databases: (a) Spieler
and Balota (1997), (b) Balota and Spieler (1998), (c) Treiman et al.
(1995), and (d) Seidenberg and Waters (1989). Because of the

large number of items in all of the databases, we did not use a 3 SD
cutoff. The results appear in Table 2.

The data showed that CDP� was far superior to all of its
competitors in predicting item-level variance. On average, it ac-
counted for more than three times the variance accounted for by
any of the other models. Moreover, CDP� passed the second and
probably even harder modeling test by accounting for as much of
the variance as the three most important factors in reading aloud
together. We consider this to be a major advancement in the area
of computational modeling of reading aloud.

Other Phenomena in Word Naming

In the spirit of nested modeling, in the following section, we
examined the model’s performance on a number of relevant phe-
nomena (benchmark effects) reported in Coltheart et al. (2001).
Note that we did not attempt to simulate every single experiment
reported in Coltheart et al. because some are still controversial and
others have been superseded by more important experiments.
Furthermore, we discuss and simulate a few additional empirical
phenomena that have important theoretical implications.

The parameter set used in the following simulations was iden-
tical to that used in all of the simulations reported earlier, except
for the dyslexia simulations. We did not simulate any of the lexical
decision results because the focus of the model presented here is
reading aloud. Note, however, one advantage of the nested mod-
eling approach is the fact that CDP� is equipped with a lexical
route that is identical to that of DRC up to the level of the
phonological lexicon, and as such it could perform lexical decision
in exactly the same way as DRC.

Benchmark Effects Reported by Coltheart et al. (2001)

Here, we go through the list of benchmark effects chosen by
Coltheart et al. (2001). We discuss how CDP� accounts for each
effect and how relevant each is as a benchmark for computational
modeling studies.

1. Frequency effect. Reading aloud is faster for high-
frequency words than for low-frequency words (e.g., Forster &
Chambers, 1973). The model’s sensitivity to frequency was shown
in the previous section because several of the simulated experi-
ments included a frequency manipulation (see Figures 6 and 10).

Table 2
Percentage of Variance Accounted for (R2) by the Models, by Word Frequency, and by the
Three Most Important Factors (Orthographic Length, Frequency, and Orthographic
Neighborhood) on Four Databases

Database

Model data Factors

DRC CDP Triangle CDP� Frequency Three factors

Spieler and Balota (1997) 3.69 5.87 3.3 17.28 7.3 21.8
Balota and Spieler (1998) 5.45 6.67 2.9 21.56 12.2 21.8
Treiman et al. (1995) 4.81 6.51 3.3 15.91 4.6 8.2
Seidenberg and Waters (1989) 6.05 2.67 3.0 9.62 1.9 10.1

Note. Results for the triangle model are taken from Balota and Spieler (1998). DRC � dual-route cascaded
model; CDP � connectionist dual process model; CDP� � new connectionist dual process model.
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2. Lexicality effect. Reading aloud is faster for regular words
than for nonwords (e.g., McCann & Besner, 1987). Several of our
simulations have shown a robust lexicality effect (e.g., the simu-
lations of Weekes, 1997, and Ziegler et al., 2001; see also Figures
9 and 10).

3. Regularity effect. Reading aloud is faster for regular words
than for irregular words. Previous simulation studies focused on
the fact that regularity is reliable for low-frequency words but
smaller or absent for high-frequency words (as in the studies of
Paap & Noel, 1991; Seidenberg, Waters, Barnes, & Tanenhaus,
1984; Taraban & McClelland, 1987). However, as discussed be-
fore, all the earlier studies have methodological shortcomings,
although they were certainly state-of-the-art experiments at the
time. Today, the best controlled regularity experiments are Jared’s
(2002) showing that regularity affects both high- and low-
frequency words when neighborhood characteristics are controlled
for. We note that CDP� was the only model that successfully
simulated all of Jared’s experiments. Indeed, when the stimuli of
one of the earlier studies (Paap & Noel, 1991) are submitted to
CDP�, the model shows a robust Frequency � Regularity inter-
action. A simulation of Paap and Noel’s (1991) study is reported
in Appendix L.

4. Position-of-irregularity effect. The size of the irregularity
cost declines as a function of the position at which irregular words
have their exceptional grapheme–phoneme correspondence (Rastle
& Coltheart, 1999). This effect was successfully simulated in an
earlier section (see Appendix J).

5. Pseudohomophone effect. Pseudohomophonic nonwords
(i.e., nonwords that can be pronounced like words, e.g., cheet) are
read aloud faster than nonpseudohomophonic nonwords (McCann
& Besner, 1987; Seidenberg, Petersen, MacDonald, & Plaut, 1996;
Taft & Russell, 1992). A simulation of McCann and Besner’s
(1987) study showed significantly faster latencies for
pseudohomophones compared with nonwords that were not
pseudohomophones (137.4 cycles vs. 145.24 cycles), t(123) �
2.32, SE � 3.39, p � .05; 14 errors; 3 outliers. The model also
correlated significantly with the individual item results, r � .21,
p � .05 (N � 125).

There is an ongoing debate over whether one should expect a
base-word frequency effect for pseudohomophones. According to
the recent review of Reynolds and Besner (2005), there is no
evidence for a reliable base-word frequency effect when reading
aloud pseudohomophones in standard experimental conditions,
that is, when pseudohomophones are mixed with nonwords. In-
stead, they suggested that the effect of base-word frequency was
found only in studies in which pseudohomophones of different
base-word frequencies were presented in separate blocks. An ad-
ditional difference they noted that appears to be caused by pre-
senting stimuli in separate blocks is that people also name
pseudohomophones more slowly than nonword controls.

To assess whether CDP� would show a base-word frequency
effect, we correlated the base-word frequency of the pseudohomo-
phones in McCann and Besner (1987) with CDP�’s naming
latencies. The correlation was weak and only marginally signifi-
cant (r � �.23, p � .08, N � 60). However, keep in mind that
base-word frequency effect is present only in a blocked design, in
which pseudohomophones take a longer time to be read than
nonwords in pure lists. This might suggest that, in a pure list of
pseudohomophones, participants adopt a higher response criterion

to allow more time to retrieve a lexical pronunciation. Accord-
ingly, we ran a simulation with CDP�, in which the phoneme
naming activation criterion was increased from .67 to .73. The
results showed that under these conditions, the correlation between
base-word frequency and the model’s latencies became significant
(r � �.30, N � 61, p � .05). Conversely, reducing the criterion
to .64 to simulate a mixed-list condition reduced the correlation
with base-word frequency (r � �.099, N � 61, p � .47) but did
not eliminate the pseudohomophone effect (133.08 vs. 139.66
cycles), t(124) � 1.90, SE � 3.46, p � .06. Thus, the results
suggest that the higher the response criterion used in the model, the
greater the size of the base-word frequency effect, and that this
effect may not necessarily be significant even when the
pseudohomophone effect is.

It is worth noting that our explanation for the occurrence of a
base-word frequency effect in pure lists is much more parsimoni-
ous than the one proposed by Reynolds and Besner (2005). These
authors suggested that DRC could simulate a base-word frequency
effect by changing four different parameters of the models. In-
stead, we suggest that it is sufficient to strategically change a
single parameter to simulate the full pattern reported by Reynolds
and Besner. This is achieved in the following way: (a) Mixed lists
are read aloud with a low phoneme naming activation criterion (.64
in our simulation), as are lists of nonhomophonic nonwords (as
shown earlier, in mixed lists there is no base-word frequency
effect); (b) pure pseudohomophone lists are read aloud with a
higher phoneme naming activation criterion (.73 in our simulation)
that results in a base-word frequency effect; and (c) because
pseudohomophones are read aloud with a higher phoneme naming
activation criterion in pure lists, they are read aloud more slowly
compared with nonwords in pure nonword lists. Thus,
pseudohomophones in pure lists (.73 criterion) appear to have a
disadvantage compared with nonwords in pure lists (.64 criterion),
as was indeed found in the human data (pseudohomophones in the
.73 criterion condition: 148.92 cycles; nonwords in the .64 crite-
rion condition: 139.66 cycles), t(124) � 2.66, SE � 3.44, p � .01.

6. Orthographic neighborhood (N) effect. Nonwords with
many orthographic neighbors are read aloud faster than nonwords
with few or no such neighbors (e.g., Andrews, 1997). Coltheart et
al. (2001) used a list of 244 nonwords randomly selected from a
database to examine the effect in DRC and obtained a significant
correlation of �.154 between neighborhood size and naming la-
tency. On the same set of stimuli, CDP� produced an almost
identical correlation (r � �.13, p � .05, N � 224).

Andrews (1989, 1992) also reported a facilitatory orthographic
neighborhood effect for real words, especially when they were of
low frequency. DRC failed to simulate this effect (Coltheart et al.,
2001, p. 224). To our great surprise, CDP� also failed to simulate
Andrew’s N effect: for Andrews (1989), F � 1; for Andrews
(1992), F(1, 92) � 2.63, MSE � 158, p � .11. We therefore tried
to understand why orthographic neighborhood effects appeared to
cause problems for current models of reading aloud.

A review of the recent literature made clear that the empirical
situation around orthographic N effects for words is actually far
from settled. In a recent analysis of naming latencies from a
large-scale database containing 2,284 words, Baayen et al. (2006)
concluded that the unique variance accounted for by orthographic
neighborhood was rather small (0.36%). Although orthographic
neighborhood had a facilitatory effect in their analysis, the effect
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tended to asymptote quickly (no extra facilitation for words with
more than five neighbors). More important, in a methodologically
very stringent small-scale study, Mulatti, Reynolds, and Besner
(2006) did not find N effects for words. Indeed, Mulatti et al.
argued that previous studies might have found facilitatory N ef-
fects because they confounded orthographic neighborhood with
phonological neighborhood. In fact, when Mulatti et al. controlled
for phonological neighborhood, they no longer found a reliable
effect of orthographic neighbors (for a similar pattern, see also
Peereman & Content, 1997), whereas they still found a facilitatory
effect of phonological neighbors.

We therefore submitted Mulatti et al.’s (2006) highly controlled
stimulus set to CDP�. Note that neither DRC with its standard
parameter set nor any version of the triangle models (including the
triangle network) was able to capture their data (see Mulatti et al.,
2006). However, with the standard parameter set, CDP� accu-
rately predicted both the absence of an orthographic N effect (high
vs. low orthographic neighbors: 100.3 vs. 98.76 cycles, respec-
tively), t � 1, as well as the presence of a facilitatory phonological
N effect (high vs. low phonological neighbors: 96.8 vs. 102.0
cycles), t(58) � 2.22, SE � 2.36, p � .05.

Given that the empirical situation around orthographic N effects
is not yet settled, we believe that at present, it is not warranted to
take neighborhood size effects on words as a major benchmark. In
contrast, orthographic neighborhood at a slightly larger grain size
(bodies instead of letters) has consistently shown a facilitatory
effect in a number of word naming experiments (e.g., Brown,
1987; Forster & Taft, 1994; Ziegler et al., 2001). The latter effect
is simulated by CDP� (see simulation of Ziegler et al., 2001,
Figure 10). Given the reliability of the body neighborhood effect,
it might be a better benchmark than the effects of orthographic
neighborhood.

7. Priming of reading aloud. Priming can be studied using
either conscious (unmasked) or unconscious (masked) primes.
Masked priming (e.g., Forster & Davis, 1991) is a paradigm in
which primes are presented so quickly and are masked such that
they are typically not open to conscious awareness. Clearly, the
data from masked priming are more relevant for the evaluation of
computational models because unmasked priming is subject to all
kinds of high-level strategies that are beyond the scope of the
models (see, e.g., Borowsky & Besner, 2006; Neely, 1977; Plaut &
Booth, 2000). Although there are extremely constraining data from
masked priming on the time course of orthographic and phono-
logical activation in French and Hebrew (Ferrand & Grainger,
1992, 1993, 1994; Frost, Ahissar, Gotesman, & Tayeb, 2003;
Ziegler, Ferrand, Jacobs, Rey, & Grainger, 2000), such detailed
time-course data are not available in English. Therefore, most
previous simulation efforts have focused on the onset effect in
masked priming (Forster & Davis, 1991).

The onset effect reflects the finding that people are faster in
reading aloud a target word when the prime shared the same onset
with the target word (an onset prime) compared with when the
prime did not share any phonology with the target word (a control
prime) and also compared with when the prime rhymed with the
target word but did not share the same onset (a rhyme prime). In
addition, there was no significant difference between the group
where the primes rhymed with the target words and the group
where they did not share any phonology (but see Montant &
Ziegler, 2001, for an explanation of this null effect).

Coltheart, Woollams, Kinoshita, and Perry (1999) simulated
these results with DRC by presenting the prime word for a small
number of cycles before the target word was presented to the
model. To simulate this effect with CDP�, we used the same
strategy as Coltheart et al. and used the same items that were used
in the DRC simulation (i.e., a number of items were removed
because they were disyllabic and therefore nonextant in the
model). We used the same parameters as the normal model,
although this was mainly for convenience, and we leave open the
possibility that when primes are used, the parameters people use
when reading aloud may be different from those when primes are
not used. This may be particularly the case with word primes,
because readers may need to reduce interference coming from the
prime. To simulate the priming effect, we presented prime words
to the model for 25 cycles and then presented the target word
without any changes to the activation in the model that had built up
from the processing of the prime word. The results showed essen-
tially the same pattern as the data. Words preceded by a prime that
shared the same onset were read aloud 8.26 cycles (SD � 3.21)
faster than unrelated controls. Words preceded by a prime that
shared the same rime were read aloud only 2.15 cycles (SD �
2.24) faster than unrelated controls. A set of t tests confirmed that
CDP� read aloud target words preceded by an onset prime sig-
nificantly faster than controls, t(18) � 11.32, SE � 0.74, p � .001.
Surprisingly, despite the small size of the effect, CDP� also read
aloud words preceded by a rhyme prime significantly faster than
the controls, t(18) � 4.19, SE � 0.52, p � .005. While the
presence of a rhyme priming effect is inconsistent with the original
null effect of Forster and Davis (1991), it is worthwhile pointing
out that Montant and Ziegler (2001) managed to show a facilita-
tory rhyme priming effect in masked priming once they neutralized
the strongly inhibitory influence of the mismatching onset by
replacing the onset with a hash mark (i.e., #ake primed make but
fake did not prime make). Thus, CDP� not only simulates the
onset effect but it seems sensitive to the residual effects of rhyme
priming.

Miscellaneous Effects

1. Whammy effect. Rastle and Coltheart (1998) reported that
five-letter nonwords that contained multiletter graphemes such as
ph, for which the pronunciation of the first letter is different from
the pronunciation of the whole grapheme, were read aloud more
slowly than five-letter nonwords made of simple one-letter graph-
emes. They called this effect the whammy effect. CDP� was
presented with these rather difficult nonwords (e.g., fooph). On the
positive side, CDP� made only two errors, which is an important
achievement given that its predecessor, CDP, produced around
50% errors. On the negative side, however, CDP� predicted no
significant difference between the “whammied” group (complex
graphemes) and the “unwhammied” group (152.35 vs. 153.52
cycles, respectively; t � 1).

We tried to understand why CDP� failed to predict a difference
between these two groups. The first question one needs to ask is
whether the effect is empirically robust. The answer is not very
encouraging. First, in Rastle and Coltheart’s (1999) own item data,
the whammy effect was significant only when a within-item re-
peated measures ANOVA was used. However, it was no longer
significant when a between-items comparison was used, F(1,
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46) � 2.82, MSE � 3,816, p � .10. Because one can never match
items on all critical variables, it is more conservative when factors
that rely on comparisons between different items are analyzed
using between-groups comparisons (this has been done throughout
the article across all studies).

Second, there are a number of studies that cast doubt on the
reliability and meaningfulness of the whammy effect (e.g., An-
drews, Woollams, & Bond, 2005; Martensen, Maris, & Dijkstra,
2003). Most important, Lange and Content (2000) showed that
grapheme complexity (whammy status) is confounded with graph-
eme frequency. Whammied items tend to have graphemes of a
lower frequency than unwhammied items. When Lange and Con-
tent controlled for grapheme frequency, they actually found that
nonwords with complex graphemes were named faster than non-
words with simple graphemes (the opposite of the whammy ef-
fect).

Nevertheless, one could argue that even if there is ongoing
debate about what mechanism explains the whammy effect (com-
petition between rules or grapheme frequency), a model should
still be able to account for the data to the extent that the data are
empirically robust. We agree. If the robustness of the effect were
established in further studies, there would be at least two possi-
bilities to account for the effect in CDP�. First, we could make the
graphemic buffer sensitive to grapheme frequency. Because the
whammied items in Rastle and Coltheart (1999) had lower graph-
eme frequencies, the model should be able to simulate the effect.
Second, we could implement competition in the graphemic buffer.
At present, for any given slot, single letter graphemes are in no
competition with multiletter graphemes. By making grapheme
parsing competitive, we would have a reasonable chance of pick-
ing up the whammy effect.

2. Strategic effects. Rastle and Coltheart (1999) examined the
effect of regular word and nonword reading in two conditions. In
one, the hard condition, first-position irregular words were used as
fillers; in the second, the easy condition, third-position irregular
words were used as fillers. The results showed that both words and
nonwords were read aloud more slowly in the hard condition than
in the easy condition. The effect appeared to differ in absolute size
for words and nonwords, with words showing about half of the
latency cost exhibited by the nonwords (11.7 ms vs. 22.6 ms).
Rastle and Coltheart tried to model this finding by slowing down
the GPC route, that is, by increasing the amount of time it took to
assemble each letter from 17 to 22 cycles. This caused a latency
increase that was much stronger with nonwords (23.11 cycles) than
with words (0.68 cycles). We carried out a similar manipulation
with CDP�. Decreasing the speed of graphemic parsing had an
effect very similar to that observed in the human data. For in-
stance, when the delay between the processing of each letter was
increased from 15 to 17 cycles, it resulted in a mean latency
increase of 7.94 cycles for nonwords and 2.94 cycles for words.
Note that DRC, unlike CDP�, seems to markedly overestimate the
ratio of nonword to word latency increase induced by the strategic
manipulation.

3. Surface dyslexia. Patients show a specific impairment of
irregular word reading, which is modulated by word frequency
(Behrmann & Bub, 1992; McCarthy & Warrington, 1986) but also
by the consistency ratio of the words (Patterson & Behrmann,
1997). We have already shown in the previous section that CDP�
(but not DRC) can perfectly capture this pattern of performance.

4. Phonological dyslexia. One effect that is particularly chal-
lenging is that some (but not all) phonological dyslexic patients
read pseudohomophones more accurately than nonpseudohomo-
phonic nonwords (see patient LB; Derouesné & Beauvois, 1985).
Moreover, pseudohomophones that are orthographically close to
their base word are named more accurately than pseudohomo-
phones that are orthographically far from their base word (e.g.,
sead vs. phocks; see Coltheart et al., 2001, for a review). This
suggests that when reading nonwords, these phonological dyslex-
ics may try to boost their performance with some sort of lexical
support strategy.

Coltheart et al. (2001) modeled the performance of patient LB
with DRC by changing two parameters: (a) They reduced the
speed at which phonology is assembled, and (b) they increased the
phoneme activation criterion to simulate nonspeeded reading
aloud. This approach, however, implies that the effect of brain
damage is simply a slowing down of phonological assembly.
Instead, we have opted for a different approach, according to
which neural damage results in lower excitability of the neural
structures encoding specific knowledge and in increased suscepti-
bility to noise. Accordingly, we simulated phonological dyslexia
with the following manipulation: (a) the sublexical network to
phonological output buffer activation was reduced from 0.085 to
0.06 (i.e., we reduced the amount of phonology, rather than the
speed of its generation), and (b) the strength of all inhibitory
connections in the model was halved. The latter has the effect of
increasing the amount of noise in the model because it allows
competing representations to be activated that would otherwise
have been suppressed by means of inhibition. Note that the non-
lexical network does not produce a clean phonological output
representation, but it generates multiple phoneme candidates for
any given letter string, particularly for the vowel position (see
Zorzi et al., 1998b, for detailed analyses). Thus, inhibition helps in
removing competing representations (i.e., noise) that can lead to
spurious outputs.

The changes to the parameters led to a set of results that looked
very much like those of LB, with the pseudohomophones display-
ing a strong effect of orthographic similarity (see Figure 11).
Orthographically similar pseudohomophones were named much
more accurately than orthographically dissimilar ones (72.5% vs.
32.5%) and were named more accurately than two matched non-
word control groups (32.5% and 38.5%). In contrast, the model
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Figure 11. Proportion of correct responses on orthographically close and
orthographically distant pseudohomophones and their respective nonword
controls for patient LB and CDP�. PSH � pseudohomophone; CDP� �
new connectionist dual process model.
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was still fairly accurate in word reading. On the stimuli of Jared
(2002), which we used because the original stimuli LB was tested
on were not available, the model produced a slightly higher error
rate with the dyslexic compared with the normal parameter set
(14.03%). Note that the error rate on words was slightly increased
in LB too.

Reading Aloud Strange Nonwords

An important challenge for a connectionist account of nonword
reading is the ability to read nonwords with spelling patterns that
are extremely uncommon or even illegal in real words (such as
jinje or rhawnce). Although the CDP� model can deal with
difficult nonwords like the set of Rastle and Coltheart (1998) with
very low error rates (also see the Credit Assignment and Compo-
nential Analyses section), there might still be a problem with the
most odd-looking or illegal nonwords, such as scklyb and
ghroumn.7 It is at present unclear how people actually read these
letter sequences. It is very clear, however, that illegal nonwords are
processed in a qualitatively different way from legal nonwords;
they do not seem to enter the normal word processing circuit (see
Petersen, Fox, Snyder, & Raichle, 1990; Ziegler, Besson, Jacobs,
Nazir, & Carr, 1997, for neuroimaging and electrophysiological
evidence). Our suggestion is that different strategies are used when
nonwords like ghauxte or sckryb are encountered. The most obvi-
ous strategy would be an individual grapheme read-out strategy.

Such a strategy can be simulated with CDP� by processing the
graphemes one at a time in the sublexical route. For instance, the
nonword scklyb can be broken into the graphemes s–ck–l–y–b
simply by using the normal method with which letter strings are
broken down by the model. These can then be presented to the
model individually. The problem of finding a grapheme pronun-
ciation at uncommon or illegal positions (e.g., the grapheme ck
does not occur as an onset in English and therefore it does not
produce any activation in an onset position) can be solved by
presenting it in the first available position where it does produce
activation (e.g., s*******, ****ck**, **l*****, ***y***,
****b**). Because the model is quite good at reading single
correspondences, this strategy allows the model to adequately read
these nonwords (note that a similar strategy might also be used
with CDP and the triangle model). Clearly, more empirical data are
needed before one should take reading illegal nonwords as a viable
benchmark for the evaluation of computational models of reading
aloud.

Credit Assignment and Componential Analyses

An important component of our nested modeling approach is the
attempt to identify the source of the improved performance of
CDP� compared with its predecessors. Indeed, the new model is
more than a simple upgrade of CDP because important changes
have been introduced even to the nonlexical part (i.e., the graphe-
mic buffer and serialized input). It is also a major departure from
DRC because it dispenses with the hardwired production system of
GPC rules and because it also uses a different phonological output
system (with onset–vowel–coda organization and no null pho-
nemes).

Later, we present analyses that aim at assigning credit to the
major changes. First, we look at the effect of the graphemic buffer

as a determinant of the improved nonword reading performance.
Second, we investigate the effect of serializing the nonlexical
network by comparing CDP� with a parallel version of the same
model. Third, we examine the contribution of the nonlexical net-
work to the simulations of the consistency effects, using a version
of CDP� where feedback and neighborhood effects are eliminated
from the lexical route. Finally, we look at the contribution of
isolated lexical and sublexical routes in predicting item latencies in
large-scale databases.

Role of the Graphemic Buffer in Nonword Reading

Perhaps the most important failure of Zorzi et al.’s (1998b) CDP
model was the high error rates it produced in reading difficult
nonwords such as the whammy stimuli of Rastle and Coltheart
(1998), where it produced an error rate of about 50%. This data set
can therefore be considered the best test for evaluating the effect of
replacing the letter-based input of the TLA network (i.e., the
sublexical route) with graphosyllabic representations, that is, the
graphemic buffer of Houghton and Zorzi’s (2003) dual-route
model of spelling. We therefore ran just the nonlexical network of
CDP� on the whammy data set. The model produced only one
error out of 48 items, reading glect as /glest/ (note that the full
model made two errors instead of one because it produced one
lexicalization error when the lexical route was on). It therefore
appears that the nonlexical network of CDP� is much superior to
its predecessor. It should also be noted that the set of graphemes
used in the graphemic buffer is the subset selected by Houghton
and Zorzi, which is far smaller than the entire set that can be found
in English words (for an analysis, see Perry & Ziegler, 2004).

Parallel Versus Serial Nonlexical Route

A second change to the nonlexical route of CDP was the
serialization of input. Therefore, we investigated how CDP�
performs when the sublexical network is not serialized but works
in parallel like CDP. Perhaps the most uncontroversial benchmark
effect for serial processing in reading aloud is the nonword length
effect (see earlier discussion). To examine this, we compared the
performance of CDP� on Weekes’s (1997) nonwords with that of
a parallel version of the model. For this purpose, rather than
inputting the graphemes into the sublexical part of the model in the
serial way as was described previously, we simply presented all
graphemes to the model at the same time. This caused the model
to produce four errors. More important, the results showed that
there was no hint of a length effect. In fact, the fastest latencies
were obtained for the longest words. Moreover, the item correla-
tions were particularly poor. The parallel CDP� accounted for
only 4.92% of the variance, whereas the normal CDP� accounted
for 30.77%. It therefore appears that serial processing in the model
is crucial for capturing one of the benchmark effects. The results
appear in Figure 12.

A further question is how crucial the serial processing is for the
performance on real words. For this purpose, we compared the
parallel model with the serial model on the large-scale database of
Spieler and Balota (1997). The results are reported in Table 3. The

7 We thank Max Coltheart for suggesting that we consider this issue.
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parallel CDP� accounted for only 7.72%, whereas the normal
CDP� accounted for 17.27%. Clearly then, serial processing in the
model helps not only nonword reading but word reading as well.

Lexical Route and Consistency Effects

The simulations of Zorzi et al. (1998b) and Zorzi (2000) with
CDP showed very clearly that consistency effects arise in the
sublexical route, that is, in the TLA network. They cannot arise in
the lexical route simply because it was not implemented beyond
the provision of frequency-weighted lexical phonological activa-
tion. However, as suggested by Coltheart et al. (2001), consistency
might also affect naming latencies through neighborhood charac-
teristics of the lexical route. As shown by the simulations with
DRC, lexical influences are too weak to account for the majority
of the consistency effects reported in the literature. Nonetheless, it
is useful to investigate whether the fully implemented lexical route
in CDP� plays any role in its success in simulating Jared’s (2002)
data.

To examine the contribution of the interactive recurrent process-
ing in the lexical route, we turned CDP� into a purely feedforward
model, and we completely eliminated the activation of ortho-
graphic neighbors. To do this, we set all of the feedback param-
eters in the model to zero. Thus, unlike the normal parameter set,
there was no excitation/inhibition from the phonological output
buffer to the phonological lexicon; the phonological lexicon did
not activate the orthographic lexicon; and there was no excitation/
inhibition from the orthographic lexicon to the letter level. The
setting of these parameters to zero causes the activation in the

network to build up at the phonological output buffer slightly more
slowly than normal; to compensate for this, we increased the
phonological lexicon to phonological buffer excitation parameter
from .128 to .135. Finally, we increased the strength of inhibition
from the letter level to the orthographic lexicon from �0.55 to
�1.00. Increasing this parameter to such a strong level means that
no orthographic neighbors of a word are ever activated. Note that
these changes mean that the lexical route of the feedforward
CDP� simply produces frequency-weighted lexical phonological
activation, much like in the simulations of Zorzi et al. (1998b) with
CDP.

The performance of the feedforward CDP� on the items of
Jared’s (2002) study was virtually identical to the normal CDP�.
All effects that were significant with the normal parameter set
were still significant, and all effects that were not significant with
the normal parameter set were not significant in the feedforward
CDP�. In addition, the correlations with the item data were almost
the same (the r squares were all within .03 of each other). Thus, the
feedforward CDP� allowed us to isolate the source of the consis-
tency effects and to firmly establish that they are entirely produced
by the sublexical network.

One additional issue that can be addressed by examining the
performance of the feedforward CDP� is that of the contribution
of a fully implemented lexical route to explaining item-level
variance on the large-scale databases. The variance accounted for
by the feedforward CDP� on Spieler and Balota’s (1997) data set
was almost identical to that accounted for by the normal CDP�
(see Table 3). This shows that the improved performance of CDP�
cannot be attributed to the addition of a fully implemented lexical
route.

Contribution of Lexical and Sublexical Routes in
Predicting Item Latencies

As another test related to the issue of credit assignment, we
examined how the lexical and nonlexical parts of the model
contributed in accounting for item-specific variance on the large-
scale databases of Spieler and Balota (1997) and Balota and
Spieler (1998), which had 2,807 words that were also in the
database used by CDP�. To examine the lexical part of the model,
we turned off the nonlexical part of the model. The model made 1
error (note that heterographic homophones were considered cor-
rect as long as they produced one of the potential pronunciations).
To test the sublexical part of the model, we simply ran the model
with the lexical route switched off. The model made 268 (9.55%)
errors (note that because it uses only a two-layered network, the
model cannot reach 100% accuracy on irregular words, unlike the
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Figure 12. Mean response times (RT) of the new connectionist dual
process model (CDP�) and the parallel CDP� on the nonwords of
Weekes’s (1997) experiment, which varied as a function of orthographic
length.

Table 3
Percentage of Variance Accounted for (R2) by the Different Variants of CDP�, by Frequency, and by the Three Most Important
Factors (Orthographic Length, Orthographic Frequency, and Orthographic Neighborhood) on Two Databases

Database

Model data Factors

Normal CDP� Parallel CDP� Feedforward CDP� Lexical CDP� Nonlexical CDP� Frequency Three factors

Spieler and Balota (1997) 17.28 7.72 17.30 9.24 5.83 7.3 21.8
Balota and Spieler (1998) 21.56 12.11 20.69 15.26 4.06 12.2 21.8

Note. CDP� � new connectionist dual process model.
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triangle model). Of the errors, 199 (74.25%) appeared to be legit-
imate alternative readings (e.g., reading blood to rhyme with food).
The other errors were varied and consisted of responses unlikely to
be found with normal readers, including missing phonemes, un-
likely spelling–sound translations, cases where the same phoneme
was repeated (e.g., /wυdd/ for would), and combinations of these
problems.

As can be seen from Table 3, reading aloud latencies produced
by the isolated nonlexical part of the model correlated quite poorly
with the human data. More important, however, neither the lexical
nor the nonlexical part of the model was able to fulfill the criterion,
suggested by Spieler and Balota (1997), that models should be able
to perform at least as well on item data as a simple correlation with
well-established factors (i.e., orthographic frequency, orthographic
neighborhood, and orthographic word length). However, as shown
by the simulations with the feedforward CDP�, there is little or no
contribution of the lexical phonology beyond the simple effect of
frequency. These results therefore show that single parts of the
model are inadequate when used in isolation and provide a base-
line as to how well the individual parts of the model perform
compared with the model as a whole. They also show that a simple
feedforward lexical route can account for amounts of variance on
the large databases similar to those accounted for by the network
used with feedback connections.

General Discussion

Computational modeling of reading aloud has become one of
the most sophisticated and advanced areas of cognitive psychol-
ogy. One potential criticism, however, is that an incremental and
nested modeling approach, according to which a new model should
contain the best features of the previous models, is far from being
a standard strategy in computational cognitive psychology. As a
matter of fact, new models rarely include the old model as a special
case, and new models are rarely tested against the data that
motivated the development of the earlier model (Jacobs &
Grainger, 1994). In the present research, we combined the best
features of some of the previous models into a single new CDP�
model of reading aloud. As its name implies, CDP� belongs to the
family of dual-route models like DRC. Unlike DRC, however, it
uses a fully connectionist architecture, whereas DRC includes a
symbolic system based on production rules (see further discussion
later). As required by a nested modeling strategy, the new model
was tested both on standard benchmarks as well as on more
theoretically and empirically challenging data sets.

Our starting point was to use the basic architecture of CDP
developed by Zorzi et al. (1998b). Of particular importance was
the sublexical component of their model, the TLA network. The
TLA network is sensitive to the statistical distribution of the
spelling-to-sound relationships, but it cannot learn whole-word
associations; moreover, it has been shown to account for various
aspects of reading development (Hutzler et al., 2004; Zorzi et al.,
1998a). The distinction between sublexical and lexical processing,
a basic tenet of dual-route theories, is therefore supported by a
computational account that led to the development of connectionist
dual-route (or dual process) models of both reading aloud (Zorzi et
al., 1998b) and spelling (Houghton & Zorzi, 2003). Note that even
the most recent PDP modeling work (e.g., Harm & Seidenberg,

2004) converged on the importance of a direct mapping between
orthographic and phonological units.

The ability of connectionist models to generalize the knowledge
of spelling–sound mapping to novel items (i.e., nonwords) has
been a major source of controversy since the seminal work of
Seidenberg and McClelland (1989). The advantage of DRC over
its competitors in nonword reading performance is in large part
due to an optimized, handcrafted set of explicit rules that encode
grapheme–phoneme correspondences. However, we substantially
improved nonword reading performance in the TLA network by
replacing the letter input level with the graphemic buffer of
Houghton and Zorzi’s (2003) model of spelling. This choice is
further motivated by the hypothesis that a common graphemic
buffer is involved in both reading and spelling (Caramazza et al.,
1996; Cotelli et al., 2003; Hanley & Kay, 1998; Hanley & Mc-
Donnell, 1997). Furthermore, input into the sublexical network
was serialized as a result of graphemic parsing, which was con-
ceived as a process that operates through an attentional window
moving from left to right over the letter string (see further discus-
sion later).

The lexical route was not fully implemented in CDP. In most of
the simulations of Zorzi et al. (1998b), lexical phonology was
simply implemented as a frequency-weighted activation that was
pooled online with the sublexical phonology. For the new model,
we used the lexical route of DRC up to the phonological lexicon.
The use of a localist, interactive activation model of the lexical
route is consistent with our nested modeling approach. The advan-
tage of this solution is that the interactive activation model can
account for a large number of phenomena related to orthographic
processing and lexical access (see Coltheart et al., 2001; Grainger
& Jacobs, 1996).

Our results showed that CDP� was able to simulate not only
Coltheart et al.’s (2001) selection of benchmark effects but also all
of the critical marker effects that were chosen for their potential to
adjudicate between models (i.e., consistency effects, serial effects,
etc.). All of the previous models had qualitative shortcomings in
some form or other: DRC had difficulties simulating the effects of
consistency both on words and nonwords, the triangle model had
problems simulating serial effects and the additive effects of
regularity and frequency, and finally, CDP had difficulties with
simulating length effects. All previous models were also rather
limited in their potential to capture item-level variance in large-
scale experiments. We now turn to these issues one by one. We
then propose an updated list of benchmark effects and discuss
which of the components of CDP� are responsible for its superior
performance. We close by indicating some shortcomings and fu-
ture directions.

Consistency and Regularity

Simulating graded consistency effects has been a major chal-
lenge for model development (see Zevin & Seidenberg, 2006).
Connectionist models are well prepared to simulate these effects
because in these models the naming of a word is potentially
influenced by all other words that the network knows or learns
(Treiman et al., 1995). The inability of DRC to account for
consistency effects in words (Jared, 2002) and nonwords (Andrews
& Scarratt, 1998; Treiman et al., 2003) falsifies its current imple-
mentation.
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The success of CDP� in accounting for consistency effects is
entirely due to the associative learning network of the sublexical
route. Note that the issue of how the sublexical route is conceived
has important theoretical implications. DRC is not a connectionist
model because its GPC route is a production system based on
symbolic rules. The combination of a lexical memory with a rule
system that allows productivity in language has indeed a long-
standing tradition in cognitive science (e.g., Marcus, Brinkmann,
Clahsen, Wiese, & Pinker, 1995), and it has faced fierce opposition
from the connectionist community (e.g., Seidenberg & Mac-
Donald, 1999). DRC offers a dual-mechanism account of reading
aloud that is simply one specific instantiation of the more general
class of dual-route models. Thus, falsifying DRC does not falsify
dual-route models in general. In fact, CDP� is a connectionist
dual-route model that captures consistency effects better than all of
its competitors. Because it is a dual-route model, it can simulate
acquired surface and phonological dyslexia in very much the same
way as DRC.

There are a number of ways that one might go about upgrading
DRC so that it could deal with consistency effects. Perhaps the
simplest way would be to suggest that some sort of frequency or
consistency weighting applies to the rules that are used. However,
having an associative network that learns the statistical distribution
of spelling-to-sound correspondences seems to be more elegant
and parsimonious than having to find a set of frequency sensitive
rules capable of doing a similar job (for a discussion, see Pacton,
Perruchet, Fayol, & Cleeremans, 2001). Clearly, consistency ef-
fects on words (Jared, 2002) and nonwords (Andrews & Scarratt,
1998) should be in the list of benchmark effects that need to be
accounted for by the next generation of reading aloud models (see
later in the article for an updated list of benchmark effects).

Serial Processing

Over the past years, there has been a lively debate over whether
phonological assembly occurs in a serial or parallel manner (for a
review, see Coltheart et al., 2001). The data come from a number
of sources: (a) the nonword length effect, (b) the position-of-
irregularity effect, and (c) cross-language comparisons.

Length effects are the first class of effects that are often put
forward in favor of serial processing in word and nonword reading.
The typical result from English is that nonwords produce a robust
length effect, whereas real words produce a much smaller length
effect (Weekes, 1997; cf. Baayen et al., 2006; Balota et al., 2004).
CDP� perfectly captures this interaction. It also accounts for at
least twice as much variance than the other models with words.
Models with a serial assembly mechanism explain this effect by
suggesting that there is an interaction between phonology gener-
ated in parallel by the lexical route and phonology generated
serially by the phonological assembly mechanism (Coltheart et al.,
2001). Two alternative explanations exist for parallel models. One
is to attribute the effect to dispersion. The idea is that longer words
and nonwords tend to have less frequent and more difficult
spelling–sound correspondences. Thus, long nonwords tend to be
slower simply because it is more likely that people will encounter
a correspondence that is difficult to process. When real words are
presented to the network, this effect may be eliminated or reduced
because of either a parallel lexical process (according to CDP), or
better whole-word orthography to whole-word phonology learning

(according to the triangle model). Simulations show that CDP does
indeed produce a serial-like effect in English (Perry & Ziegler,
2002; Zorzi, 1999), whereas the triangle model does not.

Traditionally, the position-of-irregularity effect has been given
strong theoretical significance (Rastle & Coltheart, 1999). How-
ever, the utility of the position-of-irregularity effect as a marker
effect for serial processing has been called into question. Most
important, Zorzi (2000) simulated the serial position-of-
irregularity effect despite the fact that the letters were presented all
at the same time (i.e., in parallel) to CDP. Zorzi attributed the
success of a parallel model in simulating an apparently serial effect
to a confound in the stimuli used by Rastle and Coltheart (1999).
He suggested that if the irregular correspondences in their irregular
words were examined in terms of the statistical degree to which
they conformed to typical spelling–sound patterns, then early
spelling–sound correspondences appeared more atypical and in-
consistent than the later ones. Thus, for instance, the way ch in chef
is pronounced is very rare, whereas the way oo in book is pro-
nounced is not, yet both are irregular according to the definition of
Coltheart et al. (1993). Zorzi suggested that his model was sensi-
tive to this kind of grapheme consistency and that this is why CDP
showed the same pattern as the human data. Note that CDP� was
also able to simulate the position-of-irregularity effect. It ac-
counted for almost twice as much of the item-specific variance as
did DRC. However, given that all models (except the triangle
model) can simulate the position-of-irregularity effect, this effect
is not the strongest benchmark for the evaluation of models of
reading aloud.

One other way to defend parallel models in the light of serial
effects is to suggest that the serial effects are simply peripheral to
the task of reading aloud and therefore beyond the scope of these
models. For example, Seidenberg and Plaut (1998) argued that
length effects found in reading aloud may not actually reflect
reading aloud per se but rather visual input or articulatory output
processes that are currently not captured in the model. An argu-
ment against such a possibility is that it is quite difficult to find
length effects in picture naming tasks that also require articulation.
This difficulty occurs even though the length manipulations in
picture naming tend to be more extreme than those in reading
aloud (i.e., syllables vs. single letters; e.g., Bachoud-Levi, Dupoux,
Cohen, & Mehler, 1998).

Cross-language studies of reading aloud (e.g., Ziegler et al.,
2001) also provide particularly good evidence against the hypoth-
esis that length effects are due to peripheral factors, such as
articulation. The German–English comparison is particularly
meaningful because word length can be manipulated while holding
orthography and phonology constant by using cognates (e.g., land,
bank, sand, etc.). When identical words and nonwords are tested in
both languages, the results show greater length effects in German
compared with English (Ziegler et al., 2001). Given that articula-
tory and orthographic differences are controlled by using identical
items across languages, it seems quite clear that length effect
differences cannot be due to peripheral factors. Instead, this find-
ing provides very compelling evidence for a serial mechanism or
a mechanism that produces serial-like behavior. Moreover,
spelling–sound dispersion in German is less than in English (Perry
& Ziegler, 2002). Therefore, any account based on this concept
must predict a smaller length effect in German than in English,
which is the opposite of what was observed (Perry & Ziegler,
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2002). Thus, even if some proportion of the length effect might be
due to visual input or articulatory output factors, the greater serial
effect in German than in English must reflect serial mechanisms
beyond input and output processes.

Plaut (1999) offered an account of the length effect based on a
simple recurrent network (Elman, 1990) that was trained to gen-
erate a sequence of phonemes as output in response to letter
strings. The network was also trained to maintain a representation
of its current position within the string and to use this signal to
refixate a peripheral portion of input when it encountered difficulty
in generating a pronunciation. Although this network is very
different from the standard triangle model and it gives up the idea
of purely parallel processing, one critical issue in this approach is
the use of the number of fixations made by the network in pro-
nouncing a word as a measure of naming latency. In particular,
there is no empirical evidence that readers typically use more than
one fixation when reading monosyllabic words. What seems more
plausible to us is the hypothesis that serial processing depends on
covert focusing of attention on each sublexical unit (single letter or
letter cluster). Note that the operations of Plaut’s network on the
input could be redescribed in terms of attention shifts rather than
fixations, in which case it would be very similar to CDP�.

Serial processing in CDP� is explicitly linked to graphemic
parsing, a process that is likely to involve left-to-right shifts of
spatial attention over the letter string (also see Facoetti et al.,
2006). Left-to-right processing implies spatial coding of the letters;
thus, we assume that the letter level, although abstract, is spatially
organized according to a word-centered coordinate system (Car-
amazza & Hillis, 1990; Mapelli et al., 1996).8 The graphemes
inside an attentional window spanning three letters are identified
and inserted into the graphemic buffer (where they are kept active
throughout the entire naming process). The window is then moved
to a new position, graphemes are found, and so on until all the
letters have been processed. The role of spatial attention is dis-
cussed at some length in a later section. Note, however, that even
the other computational models must implicitly assume some
attentional operations to achieve the level of representation on
which the spelling–sound conversion mechanism operates. The
triangle model uses a syllabically structured input based on graph-
eme units, whereas DRC scans the input string in a letter-by-letter
fashion, and at any assembly cycle it performs a full search
through the set of GPC rules.

Accounting for Item-Level Variance

It has been a common practice to evaluate models with regard to
their qualitative fit to the data. However, in recent years, modelers
started to evaluate and compare models with regard to quantitative
fits as well (Coltheart et al., 2001; Spieler & Balota, 1997). This
model evaluation and comparison strategy was made possible by
the existence of a number of databases that were collected in
large-scale experiments.

The results from our study showed that CDP� accounted for
much more variance in the large-scale databases of human naming
latencies compared with the other models. Furthermore, CDP�
accounted for as much variance as the three factors mentioned in
Spieler and Balota (1997; orthographic length, frequency, ortho-
graphic neighborhood). Thus, in this respect, CDP� is greatly
superior to the other models. It is important to note that, given that

the lexical route is essentially the same as that of the DRC, this
difference in the amount of the variance accounted for must
represent the different way in which sublexical processing is
realized and the way in which it influences the final pronuncia-
tion.9

One general problem with the regression approach is that it
somewhat penalizes the models. This is because the parameters
that the model uses are always kept the same across all databases
and all experiments. However, there is considerable variability due
to differences in task or stimulus conditions, such as blocking
effects, list effects, context effects, effects of stimulus degradation,
and so forth (e.g., Stone & Van Orden, 1993; Visser & Besner,
2001). For example, in one task condition, frequency might play a
bigger role than in another task condition, yet the model uses the
same frequency scaling value for both. This means that the pa-
rameters are not optimized for each data set. This is very different
from a large-scale regression analysis (e.g., Balota & Spieler,
1998), in which the regression weights are optimized for a given
analysis. In our models, the parameters are chosen as if the entire
set of words from all the experiments were put into a regression
equation. One way to obtain higher correlations would be to allow
parameter variation, as done, for instance, by Dell, Burger, and
Svec (1997) in their model of spoken word production. However,
given that CDP� already accounts for a substantial portion of the
variance, and given the potential problems associated with allow-
ing parameter changes, we did not follow this strategy.

The New List of Benchmark Effects

On the basis of these discussions, we are now able to propose a
new list of benchmark effects that should help modelers to develop
and test the next generation of computational models of reading
aloud. Note that we did not include studies that were not signifi-
cant by items or whose robustness is still strongly debated. The
benchmark effects appear in Table 4. All item sets and the corre-
sponding item data can be downloaded at http://ccnl.psy.unipd.it/
CDP.html.

Credit Assignment

Our componential modeling approach made it possible to in-
vestigate which parts of CDP� were responsible for its improved
performance in comparison with its predecessor and its competi-
tors.

First, to investigate the efficiency of the orthographic buffer, we
switched off the lexical route and compared CDP� against Zorzi
et al.’s (1998b) CDP model. Note that both CDP� and CDP have

8 Spatial attention can operate on any level of representation that is
spatially organized. In the case of number processing, for example, the
input level may not be explicitly spatial (e.g., a one-digit number), but
spatial attention operates on the abstract semantic representation (i.e., a
left-to-right oriented mental number line; see Zorzi, Priftis, & Umiltà,
2002).

9 Note that the item correlations of DRC on large-scale databases can be
improved by changing different parameters of the model. However, such
an upgraded DRC would then need to be tested on the old as well as the
new benchmark effects simulated in the present article (for an updated list,
see Table 4).
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an identical nonlexical phonological system except for the ortho-
graphic buffer. These models were then tested on one of the
hardest nonword reading sets, the whammy nonwords (Rastle &
Coltheart, 1998). Whereas CDP had an error rate of around 50%,
CDP� had an error rate of only 2.1% (i.e., one error). Clearly, the
graphemic buffer tremendously increased the model’s accuracy in
nonword reading.

Second, we investigated the effect of serializing the sublexical
route by comparing a serial version of CDP� with a parallel
version of the same model (parallel CDP�). The results were very
clear. The serial version of the model was able to simulate length
effects in nonword reading (Weekes, 1997; Ziegler et al., 2001),
whereas the parallel version of the model completely lost the
ability to capture these effects. We also compared the two versions
of CDP� on large-scale databases of real word reading. The
results show that serializing the sublexical route, besides being

crucial for simulating the length effect on nonwords, does signif-
icantly improve the correlation with word naming latencies.

Third, we investigated whether the superiority of CDP� with
respect to simulating the consistency effects reported by Jared
(2002) could be attributed, at least in part, to the orthographic
properties of the inconsistent words (e.g., an orthographic neigh-
borhood confound, see Coltheart et al., 2001). To examine the
contribution of the interactive recurrent processing in the lexical
route, we turned CDP� into a purely feedforward model, and we
completely eliminated the activation of orthographic neighbors
(feedforward CDP�). This allowed us to isolate the source of the
consistency effects and to firmly establish that they were entirely
produced by the sublexical network. In the simulation with the
feedforward CDP�, we also examined to what extent the fully
implemented lexical route in CDP� contributed to explaining
item-level variance on the large-scale databases. The feedforward

Table 4
New List of Benchmark Effects

Name of effect Benchmark data set Description Triangle DRC CDP�

Frequency Jared (2002, Experiment 2) High-frequency words are faster/more accurate
than low-frequency words.

� � �
Weekes (1997)

Lexicality McCann and Besner (1987) Words are faster/more accurate than
pseudowords.

� � �
Weekes (1997)

Frequency � Regularity Paap and Noel (1991) Irregular words are slower/less accurate than
regular words. Jared (2002) reported no
interaction with frequency.

� � �
Jared (2002, Experiment 2)

Word consistency Jared (2002, Experiment 1) Inconsistent words are slower/less accurate
than consistent words. The size of the effect
depends on the friend–enemy ratio.

� � �

Nonword consistency Andrews and Scarratt (1998) Nonword pronunciations show graded
consistency effects; that is, people do not
always use the most common grapheme–
phoneme correspondences.

� � �

Length � Lexicality Weekes (1997) Nonword naming latencies increase linearly
with each additional letter.

� � �
Ziegler et al. (2001)

Position of irregularity Rastle and Coltheart (1999) The size of the regularity effect is bigger for
words with first position irregularities (e.g.,
chef) than for words with second- or third-
position irregularities.

� � �

Body neighborhood Ziegler et al. (2001) Words with many body neighbors are faster/
more accurate than words with few body
neighbors.

� � �

Masked priming Forster and Davis (1991) Words preceded by an onset prime are faster/
more accurate than words preceded by
unrelated primes.

? � �

Pseudohomophone advantage McCann and Besner (1987) Nonwords that sound like real words (e.g.,
bloo) are faster/more accurate than
orthographic controls.

� � �
Reynolds and Besner (2005)

Surface dyslexia Patterson and Behrmann (1997) Patient MP showed specific impairment of
irregular word reading, which was
modulated by the consistency ratio of the
words.

� � �

Phonological dyslexia Derouesné and Beauvois (1985)a Patient LB showed specific impairment of
nonword reading, which was reduced when
nonwords were orthographically similar
pseudohomophones.

�b � �

Large-scale databases Spieler and Balota (1997) Naming latencies of the model were regressed
onto the average naming latency of each
item in large-scale databases containing
thousands of items.

� � �
Balota and Spieler (1998)

Note. DRC � dual-route cascaded model; CDP� � new connectionist dual process model; � � success; � � failure; ? � not sure.
a Because the items were in French, Coltheart et al. (2001) created an English list for the simulations. b Harm and Seidenberg (1999) simulated not the
patient LB but the patient MJ (Howard & Best, 1996).
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CDP� accounted for a proportion of variance almost identical to
that accounted for by CDP�. This shows that a fully implemented
lexical route does not add much over and above the effect of a
frequency-weighted activation of lexical phonology. However, it
should be noted that not all phenomena in word naming can be
explained by a feedforward model; in particular, our simulation of
the pseudohomophone advantage in nonword naming (McCann &
Besner, 1987) relies on the existence of feedback connections in
the model.

Fourth, we examined how much of the item-level variance in
large-scale databases could be accounted for by either lexical or
nonlexical parts of the model alone. The results showed that
neither the lexical nor the sublexical parts of the model by them-
selves were able to pass the Spieler and Balota (1997) test, ac-
cording to which models should be able to perform at least as well
on item data as a simple correlation with well-established factors
(i.e., orthographic frequency, orthographic neighborhood, and or-
thographic word length). The sublexical part of the model corre-
lated quite poorly with the data sets, suggesting that, by itself, it
does not account for the human performance. The lexical part of
the model obtained a stronger correlation, but it did not fare much
beyond the simple effect of frequency. These results therefore
show that the singular parts of the model are inadequate at ex-
plaining the data, even at a superficial level.

On the Role of Spatial Attention in Reading Aloud

A number of authors have claimed that spatial attention is a
necessary condition for word recognition to begin (e.g., Lachter,
Forster, & Ruthruff, 2004; McCann, Folk, & Johnston, 1992; Stolz
& McCann, 2000), but this assumption has not been incorporated
in computational models of reading aloud. Our model is not
different in this respect, because it does not contain attention
mechanisms operating at the input (i.e., feature) level; that is,
processing initiates as soon as a stimulus is visually presented. Our
contention, instead, is that a specific form of spatial attention, that
is focused spatial attention, is involved in the assembly of pho-
nology from print (but not in lexical access) and more specifically
in the graphemic parsing process.

It is well known that focused spatial attention enhances visual
processing not only in terms of processing speed but also in terms
of improved sensitivity (i.e., spatial resolution), reduced interac-
tions with near stimuli (spatial and temporal masking), and elim-
ination of illusory conjunctions (e.g., Braun, 2001; Carrasco &
McElree, 2001). Therefore, it is likely to be extremely important
for graphemic parsing and segmentation (and in turn for nonword
reading). Indeed, some studies suggest that focused visuospatial
attention is more important for nonword reading than for word
reading. For instance, Sieroff and Posner (1988) used spatial cuing
to manipulate focused visual attention during reading. Participants
made more errors in reporting the letters from the unattended side
of nonwords compared with words (also see Auclair & Sieroff,
2002). Moreover, patients with hemispatial neglect made more
errors on the contralesional side of nonwords compared with
words (e.g., Sieroff, Pollatsek, & Posner, 1988). Crucially, patients
with severe neglect dyslexia showed preserved lexical–semantic
access in reading (Ladavas, Shallice, & Zanella, 1997; Ladavas,
Umiltà, & Mapelli, 1997), suggesting an interaction between the
attentional system and the different reading routes. That is, the

lexical–semantic route is much less affected by neglect than the
phonological route because the latter requires a narrower atten-
tional focus to control the sequence of parts of the input string to
be admitted to the spelling-to-sound translation process (Ladavas,
Shallice, & Zanella, 1997). Most notably, focused spatial attention
has been specifically linked to nonword reading performance in
developmental dyslexia (Facoetti et al., 2006). Indeed, an RT
index of attention orienting accounted for a large proportion of
variance in the nonword reading accuracy of dyslexic children,
even after partialing out the effects of age, IQ, and phonological
skills.

Important support for our proposal is also provided by a recent
study of Reynolds and Besner (2006) that used the psychological
refractory period paradigm to investigate the attentional demands
posed by reading aloud. They found that processing up to the
activation of the orthographic lexicon (thus including activation of
feature and letter levels) did not require attentional resources. In
contrast, phonological assembly was found to be attention de-
manding. As Reynolds and Besner put it, “Unless there is some as
yet unspecified process occurring subsequent to letter identifica-
tion, but prior to assembled phonology, the observation . . . sug-
gests that assembled phonological recoding uses central attention
during reading aloud” (p. 1309). Notably, such an “unspecified
process” does indeed exist in CDP�, and it corresponds to an
explicit component of the model: the graphemic buffer. Graphemic
parsing is attention demanding because it requires shifts of focused
spatial attention. In contrast, phonological assembly per se is less
likely to be attention demanding because it requires only spread of
activation from grapheme nodes to phoneme nodes.

In summary, although the empirical data are far too sparse to
allow principled assumptions regarding the precise nature of the
attentional operations related to the print-to-sound conversion, our
proposal of an explicit link between serial processing in the sub-
lexical route and focused spatial attention points to an area where
there is still a lot of research to be done.

On the Role of Semantics in Reading Aloud

Although the computational models discussed in this article may
vary to a large degree in terms of their specific architectures and
processing assumptions, the emerging consensus view is that the
interaction between two different sources of phonological infor-
mation must be assumed to account for both skilled reading aloud
and acquired dyslexia (Zorzi, 2005). After the presentation of a
printed word, phonology is retrieved through a lexical–semantic
pathway (or network) as well as assembled (or activated) through
a spelling–sound mapping process. One major controversy, how-
ever, concerns the role of semantics. At the heart of this debate is
the interpretation of neuropsychological data from patients with
acquired surface dyslexia and/or semantic disorders (for reviews,
see Coltheart, 2006; Zorzi, 2005). The conflicting theoretical
views are reflected in the way surface dyslexia is accounted for in
DRC as opposed to the triangle model (see the Consistency Effects
in Surface Dyslexia section for a discussion).

Classic dual-route models such as DRC assume that the lexical
route can be further divided into two processing routes (note that
this distinction means that the dual-route model is in fact a three-
route model). That is, phonological word forms can be activated
directly from the orthographic lexicon (direct lexical route) or
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through the mediation of word meanings (lexical–semantic route).
The distinction between a lexical–semantic route and a direct
lexical (i.e., nonsemantic) route was first suggested by Schwartz,
Saffran, and Marin (1980) in their case study of the acquired
dyslexic patient WLP, who could read aloud words (including
exception words) that she could not understand. However, follow-
ing the seminal work of Patterson and Hodges (1992), a series of
studies reported a consistent pattern of association between seman-
tic dementia and surface dyslexia (e.g., Funnell, 1996; Graham,
Hodges, & Patterson, 1994). The hypothesis that correct exception
word reading is dependent on semantic representations (Patterson
& Hodges, 1992) was later incorporated into the triangle model,
and it formed the basis of Plaut et al.’s (1996) account of surface
dyslexia (see also Woollams, Lambon-Ralph, Plaut, & Patterson,
in press). According to this model, differences among patients not
only reflect a different severity of the lesion, but in particular
reflect their different premorbid reading competence, that is, the
degree of redistribution of labor between semantic and phonolog-
ical pathways. However, this hypothesis is challenged by cases of
patients showing the corresponding dissociation (i.e., intact read-
ing in the presence of semantic deficits). Indeed, the pattern of
lexical nonsemantic reading shown by patient WLP is not an
exceptional case, and there are now numerous patient case reports
that support the independence of semantic and phonological pro-
cessing (e.g., Blazely, Coltheart, & Casey, 2005; Cipolotti &
Warrington, 1995; Gerhand, 2001; Lambon-Ralph, Ellis, & Frank-
lin, 1995).

One way to reconcile these data with the triangle model is to
treat the dissociation between surface dyslexia and semantic de-
mentia as extremes that still fall within the full distribution of cases
of semantic impairment (Woollams et al., in press). However, one
alternative explanation for the association between semantic de-
mentia and surface dyslexia is that it reflects pathological involve-
ment of functionally and anatomically closely related brain regions
(see also Cipolotti & Warrington, 1995). In other words, this
specific form of cortical degeneration would lead to semantic
impairments but also (and perhaps most often) to the disruption of
lexical processing (both orthographic and phonological). This hy-
pothesis would seem to gain support from a recent study that
compared the reading performance of patients with different types
of dementia (Noble, Glosser, & Grossman, 2000). Despite the
presence of a semantic impairment, patients with Alzheimer’s
disease, frontotemporal dementia, and progressive nonfluent apha-
sia did not show a pattern of reading difficulty consistent with
surface dyslexia; only those with semantic dementia showed the
predicted pattern of reading impairment. These data would seem to
pose a challenge to the triangle model because any form of
semantic impairment in the model should produce a surface dys-
lexic pattern (unless simulations can prove otherwise).

A related issue is whether semantics contributes to word naming
in skilled readers. Strain, Patterson, and Seidenberg (1995) dem-
onstrated that a semantic variable, imageability, can have an im-
pact on naming of isolated words. However, the imageability
variable affected only the naming of low-frequency exception
words (i.e., the words that usually yield the longest naming laten-
cies). This result would not be problematic for dual-route models:
Processing of low-frequency words in a model such as DRC is
sufficiently slow to allow semantic effects to emerge from pro-
cessing in the lexical–semantic route. To complicate the picture,

however, Balota et al. (2004) obtained a significant imageability
effect in their large-scale study of naming, whereas the interaction
with consistency and frequency reported by Strain et al. did not
reach significance. Moreover, Baayen et al. (2006) reanalyzed
Balota et al.’s data with regression techniques that are better suited
for dealing with collinearity and nonlinearity and found even
weaker (i.e., nonsignificant) effects of semantic variables in the
naming task.

In summary, it appears that word meaning does not have an
important contribution in written word naming. Indeed, it has been
argued that reading is fundamentally phonological, because even
tasks such as semantic categorization, in which the activation of
phonology is, in principle, irrelevant, are strongly affected by the
phonological characteristics of the stimuli (see Frost, 1998, for a
comprehensive review). In this regard, it should be noted that
phonological assembly in CDP� is fast enough to be consistent
with fast phonology theories of reading (see Berent & Perfetti,
1995; Frost, 1998; Rayner, Pollatsek, & Binder, 1998; Van Orden,
Pennington, & Stone, 1990). This is a departure from classic
dual-route models, where the interaction between lexical and as-
sembled phonology is best characterized as a horse race (Paap &
Noel, 1991). Classic dual-route models (e.g., Coltheart, 1978;
Meyer, Schvaneveldt, & Ruddy, 1974) give a predominant role to
the visual route, because the assembly of phonology is believed to
be too slow to affect lexical access.

Limitations of the Model and Future Directions

The current model is a hybrid of a number of other models, but
one aspect that may have detracted from its performance is the
lexical route, which is basically the interactive activation model of
McClelland and Rumelhart (1981). As discussed earlier, our
choice was primarily motivated by the nested modeling strategy.
Accordingly, CDP� incorporates a model of the lexical route that
has been used to account for a large amount of empirical data
regarding perceptual identification and lexical decision tasks (see
Grainger & Jacobs, 1996, for a review), but it may also inherit
some of its problems. For example, the interactive activation
model has been criticized for its failure to account for letter
transposition or body neighborhood effects in lexical decision
(e.g., Andrews, 1996; Ziegler & Perry, 1998).

However, there is a good deal of recent work examining ways to
model lexical access in a more plausible fashion (e.g., Davis &
Bowers, 2004; Houghton & Zorzi, 2003; Shillcock, Ellison, &
Monaghan, 2000). If some of these models turn out to offer a better
account of the data than the interactive activation model, then there
is no reason to think that the lexical route of CDP� could not be
replaced by them. This possibility is facilitated by our finding that
the contribution of the lexical route to the overall performance of
the model is practically limited to the provision of frequency-
weighted lexical phonology (see simulations with the feedforward
CDP�). If any of these new lexical routes allow the model to
explain more variance than the current model, then it is likely that
the strength of the correlation of the model with human data would
be much higher than the factors suggested by Spieler and Balota
(1997), which would certainly mark a milestone in the modeling of
reading aloud.

A current limitation of the model is the absence of learning in
the lexical route. The model simulates the lexical route as a localist
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interactive-activation network, in which each known word is rep-
resented by a dedicated node. It is important to note that such
representations can be formed in neural networks with, for in-
stance, competitive learning algorithms (Grossberg, 1980; Ko-
honen, 1984). In Houghton and Zorzi’s (2003) model of spelling,
each (localist) word node in the orthographic lexicon had an
excitatory feedback loop onto itself, giving it the ability to support
its own activation. This is typical of competitive networks, and the
strength of this feedback depends on a parameter (the feedback
weight) that is the same for all nodes in the network. However,
Houghton and Zorzi allowed this feedback weight to vary as a
function of word frequency—the more frequent a word was, the
stronger the feedback weight. In this way, word frequency was
modeled as a dynamic effect rather than as a specific threshold for
each word node (as in standard interactive activation models,
including the present one). The modulation of a unit’s feedback
weight could easily be achieved as part of a competitive learning
algorithm: If each time a node is activated, its feedback loop is
strengthened (thus enabling it to fare better in the competition for
activation, which is essential to such algorithms), then more fre-
quent words would be more easily activated (Houghton & Zorzi,
2003). Thus, it should in principle be possible to add learning to
the lexical route.

It should also be possible to capture the interaction between
lexical and nonlexical parts of the model during learning, as was
done by Zorzi et al. (1998b). In one of the simulations, a three-
layer feedforward network was trained on a monosyllabic word set
with learning taking place in both direct (input–output) and me-
diated (hidden unit) pathways at the same time. This version of the
model was capable of learning the whole training set, including the
exception words. The results showed that the direct phonological
route, when studied in isolation, still behaved like a spelling-to-
sound conversion mechanism and did not acquire lexical proper-
ties. In contrast, the hidden unit pathway behaved more like a
(distributed) lexical route. When the model was trained with rel-
atively few hidden units (restricting its capacity to represent the
training set), the hidden units appeared to dedicate themselves to
the exception words by correcting the output of the direct spelling–
sound mapping, which, left to itself, would give regularized pro-
nunciations to them. These results provide evidence that a network
with lexical and sublexical routes that interact when learning tends
to self-modularize so that the regular productive spelling–sound
correspondences are learned by the direct phonological route (the
TLA network of the current model).

One potential problem with using a distributed lexical route is
that it might be difficult to fully account for lexical decision
performance (see Borowsky & Besner, 2006, and Plaut & Booth,
2006, for opposing views), and effects such as those reported by
Visser and Besner (2001) may also be difficult to capture. How-
ever, a distributed model would work almost like a localist one if
it had an associative memory with strong attractor dynamics (e.g.,
Ackley et al., 1985). If a nonword were presented and the input
units remained clamped to the nonword, such a network would not
settle because the input would not match any stable states (i.e., the
learned words). In contrast, if the input units were allowed to
change their state shortly after the presentation of the stimulus, the
network would settle to the closest attractor (i.e., the closest word
neighbor); however, the change of the input units’ states could be
easily detected. This suggests that there are at least two different

ways to distinguish between words and nonwords. It might be
argued that Plaut et al. (1996) used an attractor network for
modeling the orthography-to-phonology route and that their net-
work was still able to generalize to nonwords. Plaut et al. pointed
out that the good generalization performance was dependent on
componential attractors developed by the network during learning,
that is, attractors for sublexical components rather than for the
whole word. However, O’Reilly (2001) has shown that fixed-point
recurrent back-propagation develops very weak feedback connec-
tions in comparison with other algorithms based on contrastive
Hebbian learning. This, in addition to the fact that Plaut et al.’s
networks were constrained to settle very rapidly, minimizes the
extent to which those networks can be considered interactive; their
good generalization performance can thus be attributed to the lack
of interactivity rather than to the existence of componential attrac-
tors (see O’Reilly, 2001, for further discussion). Further work
should investigate how learning in fully interactive networks could
be exploited to model lexical access.

One additional issue related to learning concerns the model’s
orthographic representation in the graphemic buffer. The model is
supplied at the outset with a syllabically aligned graphemic rep-
resentation, which is of great benefit to its learning of the spelling–
sound mapping. Although it is known that children have developed
syllabic phonology by the time they start to learn to read and write
(for a review, see Ziegler & Goswami, 2005), their orthographic
representations must develop as a part of this learning (Goswami
& Ziegler, 2006). Hence, a plausible developmental model of
reading cannot start out with complex grapheme nodes and ortho-
graphic syllable structure. Thus, more work is clearly needed to
make this a developmentally more plausible model. Ideally, such
extensions should be carried out in the spirit of nested modeling
and strong inference.

One potential criticism of the model is that it has a large number
of free parameters and a complex grapheme buffer. However, it is
worth noting that the grapheme buffer is actually less complex
than the rule system of the DRC (Coltheart et al., 2001), even
though it has a very similar function. Moreover, most of the
parameters in the model are related to the lexical route (i.e., the
interactive-activation model). One way to greatly reduce the num-
ber of parameters in the model would be to use a lexical system,
such as that in Zorzi et al. (1998b), in which lexical activation is
simply simulated as a frequency function controlled by a single
parameter (see also the semantic simulations of Plaut et al., 1996).
This would get rid of many parameters but would leave many of
the results essentially the same, as clearly shown by the simulation
with the feedforward version of the model (feedforward CDP�).

Finally, CDP� is limited to monosyllabic words, as are the
other computational models we have discussed. This reflects the
fact that most of the empirical evidence on written word naming
comes from research conducted with monosyllabic words. Al-
though most of the words people read are monosyllabic according
to a token count, the majority of the words in the lexicon are
polysyllabic according to a type count. Some studies have started
to explore whether the results on monosyllabic words generalize to
polysyllabic words (e.g., Chateau & Jared, 2003; Jared & Seiden-
berg, 1990). Extending the current models to polysyllabic words
requires the consideration of several issues that are not relevant for
monosyllables, such as the assignment of stress (e.g., Rastle &
Coltheart, 2000), the role of the syllable and the possible ambigu-
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ities in segmenting letter strings into larger spelling units. Thus,
one important issue for future research is to design appropriate
coding schemes for representing the orthography and phonology of
polysyllabic words and to assess which orthographic segments
become relevant when a simple statistical learning mechanism
(such as our phonological assembly network) tries to learn the
mapping between spelling and sound.

Conclusion

The goal of the present research was to design a new model by
building on the strengths of the previous models and eliminating
their weaknesses. This strategy—nested modeling—is commonly
used in other areas of science but has rarely been used as a guiding
principle in the modeling of cognitive functions (for a notable
exception, see the work by Shiffrin and colleagues; Shiffrin, 2003,
provided an overview of his 30-year research program on model-
ing memory).

In the current work, nested modeling was combined with strong
inference testing. That is, we tested the main alternative models
(whether precursors of the new one or not) on critical data sets and
on large-scale databases to compare their descriptive adequacy,
both at the qualitative and quantitative level. Given the fast-
spreading use of computational modeling, the approach of testing
and comparing competing models is bound to become the standard
in cognitive psychology. Empirical studies that aim at adjudicating
between competing models need to actually test the competitors
(i.e., run the stimuli through the models), because inferring the
behavior of a complex (and often nonlinear) model solely from its
architectural description and processing assumption is a difficult
and potentially misleading enterprise (see Zorzi, 2000). Examples
of strong inference testing have been making their way into the
area of reading aloud, and these studies have provided very useful
insights (e.g., Besner & Roberts, 2003; Jared, 2002; Reynolds &
Besner, 2005; Treiman et al., 2003).

Even more important, however, is the use of strong inference
testing in the context of model development. Contemporary mod-
els of cognition are computationally explicit with regard to their
assumptions about architecture, representations, learning, and so
forth. These assumptions might be of high theoretical relevance
(e.g., the issue of discreteness vs. interactivity in spoken word
production; Rapp & Goldrick, 2000), and they might determine the
success or failure of a model (e.g., the issue of the format of
number semantics in numerical cognition; Zorzi, Stoianov, &
Umiltà, 2005). Strong inference testing requires that such alterna-
tives are tested against one another. We believe that nested mod-
eling and strong inference testing are fundamental tools for im-
proving the understanding of the computations underlying human
cognition.
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Appendix A

Complex Graphemes Used in the CDP� Sublexical Network

The complex graphemes are identical to those implemented in
the connectionist model of spelling of Houghton and Zorzi (2003).

The onset consonants were as follows: ch, gh, gn, kn, ph, qu, sh,
th, wh, and wr.

The vowels were as follows: air, ai, ar, au, aw, ay, ear, eau, eir,
eer, ea, ee, ei, er, eu, ew, ey, ier, ieu, iew, ie, ir, oar, oor, our, oa,
oe, oi, oo, ou, or, ow, oy, uar, ua, ue, ui, ur, uy, ye, and yr.

The coda consonants were as follows: ght, tch, que, ch, ck, dd,
dg, ff, gh, gn, ll, mb, ng, ph, sh, ss, th, tt, and zz.

Appendix B

Parameters Used in the Model

Parameter type Parameter value

Lexical route

Features
Feature-to-letter excitation 0.005
Feature-to-letter inhibition �0.150

Letters
Letter-to-letter inhibition 0
Letter-to-orthography excitation 0.075
Letter-to-orthography inhibition �0.550

Orthographic lexicon
Orthography-to-orthography inhibition �0.06
Orthography-to-phonology excitation 1.40
Orthography-to-letter excitation 0.30

Phonological lexicon
Phonology-to-phonology inhibition �0.160
Phonology-to-phoneme excitation 0.128
Phonology-to-phoneme inhibition �0.010
Phonology-to-orthography excitation 1.100

Phonological output buffer
Phoneme-to-phoneme inhibition �0.040
Phoneme-to-phonology excitation 0.098
Phoneme-to-phonology inhibition �0.060

Overall parameters

Overall activation rate 0.2
Lexicon frequency scaling � 0.4 � log

(word frequency)
Phoneme naming activation criterion 0.67
Cycle-to-cycle stopping criterion 0.0023
Maximum number of cycles a word is run for

before being timed out and considered an
outlier

250

Parameters used in the sublexical network

Network to phonological output buffer
activation

0.085

Number of cycles taken for each letter to be
processed

15

Level of activation that a letter must be over
before grapheme identification begins

.21

Temperature (�) in the assembly network 3
Learning rate (ε) in the assembly network 0.05

Appendix C

Activation and Learning Equations Used With the
Sublexical Network

The sublexical spelling-to-sound network is identical to the
two-layer assembly network of Zorzi et al. (1998b), except that
instead of letter units, we have grapheme units. These include the
complex (i.e., multiletter) graphemes listed in Appendix A in
addition to all single letters.

Activation Function

For any given input pattern, the input units are clamped to a
value of 1.0 or 0.0, according to the presence or absence of the
grapheme they encode; the net input to each output unit is simply

neti � �
j

wijaj,

where aj is the activation value of the input unit j, and wij is the
weight of the connections linking the unit j to the output unit i. The
activation of the output unit i is determined by an S shaped
squashing function (sigmoid) of the net input, bounding phoneme
activations in the range [0,1] and with f(0) � 0 (i.e., no input and
no output):

Oi �
1

1 � e�(neti�1)� ,

where � is a temperature parameter determining the slope of the
function (� � 3 for all simulations). Note that the �1 in the
exponent shifts the sigmoid to the right, such that f(0) is very close
to 0, rather than the standard f(0) � 0.5. As in Zorzi et al. (1998b),
in the simulations reported here, values less than 0.05 are set to 0,
so no input really does mean no output.

Learning Rule

The model was trained with the simple gradient descent tech-
nique known as the delta rule (Widrow & Hoff, 1960). For any
input pattern, the error correction is made by changing the weights
according to the difference between the activation of the output
units and desired activation pattern. The desired output is just the
correct pronunciation of the orthographic input (nodes that should
be on have a target activation of 1, nodes that should be off have
a target activation of 0). Formally,

�wij � ε	ti�oi)aj,

where ε is a learning rate (0.05 in the simulations), aj is the
activation of the jth input unit and ti and oi are the teaching input
and the actual output of the ith output unit, respectively (for further
details, see Zorzi et al., 1998b, pp. 1136–1137).
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Appendix D

Grapheme–Phoneme Correspondences Used in Pretraining

Orthography Phonology Orthography Phonology Orthography Phonology

---u-e-- ---u---- ---ew---- ---u---- ----f--- ----f---
---o-e-- ---5---- ---ue---- ---u---- -----f-- -----f--
---i-e-- ---2---- gn------- n------- ----g--- ----g---
---a-e-- ---1---- ph------- f------- -----g-- -----g--
---y---- ---2---- ---eu---- ---u---- ----k--- ----k---
---eigh--- ---1---- b-------- b------- -----k-- -----k--
---augh-- ---9---- d-------- d------- ------k- ------k-
----tsch-- ----J--- f------- f------- ----I--- ----I---
----tch--- ----J--- g------- g------- -----I-- -----I--
----ck--- ----k--- h------- h------- ----m--- ----m---
---ee---- ---i---- j-------- j------- -----m-- -----m--
---ea---- ---i---- k------ k------- ----n--- ----n---
-----sh-- -----s-- I------- I------- -----n-- -----n--
----sh--- ----S--- -I------ -I------ ----p--- ----p---
sh------- S------- --I----- --I----- -----p-- -----p--
---ai---- ---1---- m------- m------- ----r--- ----r---
---oa---- ---5---- n------- n------- -----r-- -----r--
----ng--- ----N--- -n------- -n------ ----s--- ----s---
---oo---- ---u---- --n----- --n----- -----s-- -----s--
---ou---- ---6---- p------- p------- ------s- ------s-
---ow---- ---6---- -p------ -p------ ----t--- ----t---
---ay---- ---1---- r------- r------- -----t-- -----t--
-----th-- -----T-- -r------ -r------ ------t- ------t-
----th--- ----T--- --r----- --r----- -------t -------t
th------- T------- s------- s------- ----z--- ----z---
---oi---- ---4---- t------- t------- -----z-- -----z--
---au---- ---9---- -t------ -t------ ----tt-- ----t---
ch------- J------- v------- v------- ----nn--- ----n---
-----ch-- -----J-- w------- w------- ----ss--- ----s---
----ch--- ----J--- -w------ -w------ ----II--- ----I---
---ie---- ---2---- z------- z------- ----rr--- ----r---
wh------- w------- ---a---- ---{---- ----ff--- ----f---
wr------ r------- ---e---- ---E---- ----ph--- ----f---
---oe---- ---5---- ---i---- ---I---- -----ph-- -----f--
---oy---- ---4---- ---o---- ---Q---- ----pp--- ----p---
---ui---- ---u---- ---u---- --- ----
kn------- n------ ----b--- ----b---
---ei---- ---1---- -----b-- -----b--
---ey---- ---1---- ----d--- ----d---
---uy---- ---2---- -----d-- -----d--

Note. Notation is taken from the CELEX database (Baayen et al., 1993). The hyphens represent empty slots in the orthographic or phonological
representation.

(Appendixes continue)
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Appendix E

Mean Human Latencies (in Milliseconds) and Model Reaction Times for the Experiments Reported in Jared (2002)

Data set

Human results
from Jared (2002)

Model

DRC CDP Triangle CDP�

Ex/I Cont Ex/I Cont Ex/I Cont Ex/I Cont Ex/I Cont

Experiment 1

Ex (F � E) 584 548 83.7 77.9 4.06 3.05 0.210 0.017 112.8 102.4
Ex (F � E) 543 536 84.1 78.1 4.06 3.11 0.062 0.013 105.1 100.5
RI (F � E) 572 544 78.8 78.1 3.85 3.11 0.110 0.011 108.6 101.3
RI (F � E) 562 555 76.8 77.4 3.17 3.20 0.054 0.019 101.4 100.6

Fit (r2) 1.21 15.11 7.26 23.58
Fit dif Za 3.65 1.02 2.19
Model errors 2 6 1 2
Outliers 1 3 6 1

Experiment 2

HF (F � E) 540 517 80.6 73.6 3.50 2.50 0.230 0.016 92.6 84.5
HF (F � E) 533 521 79.6 73.6 3.30 2.42 0.220 0.022 89.4 87.4
LF (F � E) 610 566 83.7 77.9 4.06 3.05 0.210 0.017 112.8 102.4
LF (F � E) 562 553 84.1 78.1 4.06 3.11 0.062 0.013 105.1 100.5

Fit (r2) 8.72 14.74 0.51 40.02
Fit dif Z 3.82 2.93 5.82
Model errors 2 6 1 1
Outliers 0 1 5 0

Experiment 3

HF Ex 537 518 80.6 73.6 3.50 2.50 0.23 0.016 92.60 84.5
HF RI 537 525 74.1 73.6 2.90 2.39 0.10 0.021 87.25 85.8
LF Ex 596 573 83.7 77.9 4.06 3.05 0.21 0.017 112.8 102.4
LF RI 593 564 78.8 78.1 3.85 3.11 0.11 0.011 108.6 101.3

Fit (r2) 17.80 31.25 6.72 52.38
Fit dif Z 3.84 2.46 5.62
Model errors 0 3 0 1
Outliers 1 2 4 1

Experiment 4

HF Ex 530 509 80.6 73.6 3.50 2.50 0.23 0.016 92.60 84.5
HF RI 528 517 74.1 73.6 2.90 2.39 0.10 0.021 87.25 85.8
LF Ex 573 542 83.7 77.9 4.06 3.05 0.21 0.017 112.80 102.4
LF RI 566 540 78.8 78.1 3.85 3.11 0.11 0.011 108.60 101.3

Fit (r2) 18.50 30.38 5.40 46.28
Fit dif Z 3.22 1.82 5.12
Model errors 0 3 0 1
Outliers 1 2 4 1

Note. DRC � dual-route cascaded model; CDP � connectionist dual process model; CDP� � new connectionist dual process model; Ex � exception;
I � inconsistent; Cont � control; RI � regular inconsistent; F � friends; E � enemies; HF � high frequency; LF � low frequency.
a Fit dif Z � Z score differences. Z score differences were calculated to examine the difference in correlation strengths between CDP� and the other models
on each data set. This was done with the following formula (e.g., Clark-Carter, 2004, p. 310),

z �
r1

 � r2




� 1

n1 � 3
�

1

n2 � 3

,

where r
1 is the Fischer’s transformation—that is, r
v � 0.5 � loge�1 � r

1 � r�—of one correlation coefficient; r
2 is the Fischer’s transformation of the other;

and n is the number of items in the group. All r2 values reported are multiplied by 100 (as they are in all of the other appendixes), therefore reflecting the
percentage of variance explained by the models.
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Appendix F

Mean Human and Model Results (Percentage of Regular
Responses) on Items Reported in Experiment 1 and

Experiment 2 of Andrews and Scarratt (1998)

Human
results

Model results

DRC CDP Triangle CDP�

Experiment 1
CV con/VC con 92.2 92.2 100.0 100.0 100.0
CV con/VC inc 86.8 100.0 86.8 84.2 88.1
CV inc/VC con 94.0 98.1 95.8 96.1 100.0
CV inc/VC inc 86.9 97.8 86.3 85.1 93.2
No regular analogy 32.3 67.8 21.4 66.7 25.0

Fit (RMSE)a 17.72 6.05 15.87 6.19
Model errors 3 23 11 9
Outliers 5 4 5 5

Experiment 2
Consistent 92.5 100.0 97.2 100.0 97.3
Inconsistent 87.4 97.4 83.8 86.8 82.1
No regular analogy

(many bodies) 19.2 62.5 4.5 47.8 10.5
No regular analogy

(few bodies) 41.2 63.6 55.6 47.8 50.0

Fit (r2) 33.68 61.61 22.24 44.72
Fit dif Z 1.13 �1.87 2.23
Model errors 2 12 8 6
Outliers 2 3 3 3

Note. DRC � dual-route cascaded model; CDP � connectionist dual
process model; CDP� � new connectionist dual process model; CV �
consonant–vowel; VC � vowel–consonant; con � consistent; inc �
inconsistent; RMSE � root-mean-square error; Fit dif Z � Z score based on
the difference in correlation strengths between the CDP� and other models
(see Appendix E for details).
a No item data were available for Experiment 1. Therefore, fits were
calculated using RMSE values computed from the means. RMSE scores
were calculated with the following formula:

RMSE � �1

N �
1. . .N

i

ei
2,

where e is the error (i.e., observed score minus the actual score), and N is
the number of groups. Note that the smaller the RMSE value the better the
fit. Fits for Experiment 2 were created by coding whether a word was
produced as regular by the model or not as 0 or 1 and by correlating those
numbers with the probability that participants gave a regular response.

Appendix G

Mean Human and Model Results (Percentage of Correct
Answers)

Variable
Human
results

Model results

DRC CDP Triangle CDP�

Degree of consistency
Low (F � E) 38.0 58.5 37.5 29.0 41.7
Medium (F � E) 57.0 70.0 56.7 63.0 56.7

Variable
Human
results

Model results

DRC CDP Triangle CDP�

High (wa words) 75.0 50.0 83.3 83.0 66.7

Fit (RMSE) 20.1 4.8 7.8 5.2

Control 1–Word 100.0 95.8 91.7 96.0 91.7
Control 2–Word 83.0 96.7 80.0 83.0 86.7
Control 3–Word 83.0 100.0 83.3 100.0 100

Fit (RMSE) 12.8 5.1 10.1 11.1

Note. Human results are for patient MP (Patterson & Behrmann, 1997).
Means for the CDP and triangle model are taken from Zorzi (1999) and
Patterson and Behrmann (1997), respectively. Fits were calculated with an
RMSE measure using the mean scores (see Appendix F for details). DRC �
dual-route cascaded model; CDP � connectionist dual process model;
CDP� � new connectionist dual process model; F � friends; E �
enemies; RMSE � root-mean-square error.

Appendix H

Human Data (in Milliseconds) and Simulation Results on
the Items Reported in Weekes’s (1997) Study, Which
Manipulated Word Length, Lexicality, and Frequency

Length
Human
results

Model data

DRC CDP Triangle CDP�

Words

LF 3 535 72.2 3.08 0.023 94.2
LF 4 549 77.4 3.28 0.029 100.9
LF 5 552 78.1 3.42 0.018 106.1
LF 6 566 77.8 3.72 0.041 110.6
HF 3 535 69.4 2.21 0.012 77.8
HF 4 532 74.3 2.64 0.024 87.0
HF 5 546 75.0 2.71 0.031 91.1
HF 6 542 73.9 2.70 0.020 98.3

Fit (r2) 4.0 0.48 0.15a 8.54
Fit dif Z 0.7 1.91 1.20
Model errors 0 0 0 0
Outside 3 SD 4 4 6 2

Nonwords

3 576 121.2 4.25 0.34 120.0
4 577 138.4 4.29 0.16 131.1
5 606 152.4 4.81 0.21 150.5
6 666 186.7 4.76 0.21 160.9

Fit (r2) 40.3 1.11 2.90 30.80
Fit dif Z �0.8 4.56 4.46
Model errors 1 9 1 8
Outside 3 SD 0 2 3 3

Note. DRC � dual-route cascaded model; CDP � connectionist dual
process model; CDP� � new connectionist dual process model; LF � low
frequency; HF � high frequency; Fit dif Z � Z score based on the
difference in correlation strengths between the CDP� and other models
(see Appendix E).
a The correlation was negative for this fit value.

(Appendixes continue)
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Appendix I

Human Data (in Milliseconds) and Model Results on the Items Reported in Ziegler et al.’s (2001) Experiment as a
Function of Word Length, Lexicality, and Body Neighborhood

Length

Human results

Model data

DRC CDP Triangle CDP�

LBN HBN LBN HBN LBN HBN LBN HBN LBN HBN

Words

3 526 506 70.3 70.4 2.4 2.8 0.039 0.020 82.9 83.8
4 527 506 74.4 74.1 3.0 2.7 0.017 0.023 91.6 86.7
5 530 512 74.5 74.0 3.0 2.4 0.054 0.019 93.4 90.7
6 534 525 75.0 74.0 2.9 2.4 0.046 0.057 96.6 96.1

Fit (r2) 9.78 0.74 11.03 6.44
Fit dif Z �0.40 1.07 �0.52
Errors 0 0 0 0
Outliers 2 0 3 0

Nonwords

3 577 568 122.0 121.5 4.44 4.1 0.35 0.160 125.2 118.2
4 617 589 136.8 133.9 4.50 4.0 0.34 0.028 132.1 127.1
5 625 623 154.8 148.9 4.56 4.5 0.15 0.190 156.8 150.1
6 662 627 173.5 188.4 5.44 4.4 0.33 0.042 170.3 164.4

Fit (r2) 22.41 15.41 (0.03) 23.04
Fit dif Z 0.06 0.64 3.30
Errors 0 6 0 3
Outliers 0 1 2 1

Note. Parentheses indicate that the correlation between the model and the data is negative. DRC � dual-route cascaded model; CDP � connectionist dual
process model; CDP� � new connectionist dual process model; LBN � low body neighborhood; HBN � high body neighborhood; Fit dif Z � Z score
based on the difference in correlation strengths between the CDP� and other models (see Appendix E).

Appendix J

Human Data (in Milliseconds) and Simulation Results (in Cycles) for Items Used in the Position-of-Irregularity
Experiment by Rastle and Coltheart (1999)

Position of
irregularity

Human results

Model results

DRC CDP Triangle CDP�

Irreg Reg Irreg Reg Irreg Reg Irreg Reg Irreg Reg

Position 1 556 494 97.5 78.4 4.24 3.25 0.23 0.015 114.8 105.6
Position 2 510 497 87.7 78.2 3.97 3.27 0.17 0.031 109.6 103.1
Position 3 512 512 79.7 78.2 4.07 3.64 0.13 0.024 109.9 107.1

Fit (r2) 12.81 11.76 5.94 21.30
Fit dif Z 1.15 1.30 2.31
Model errors 3 9 2 0
Outliers 1 2 3 0

Note. DRC � dual-route cascaded model; CDP � connectionist dual process model; CDP� � new connectionist dual process model; Irreg � irregular;
Reg � regular; Fit dif Z � Z score based on the difference in correlation strengths between the CDP� and other models (see Appendix E for details).
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Appendix K

Human Data (in ms) and Simulation Results (in Cycles) for Items Used in the Position-of-Irregularity Experiment by
Roberts et al. (2003)

Position of
irregularity

Human results

Model results

DRC CDP Triangle CDP�

Irreg Reg Irreg Reg Irreg Reg Irreg Reg Irreg Reg

Position 2 553 526 90.22 78.66 4.39 3.26 0.088 0.030 118.0 105.8
Position 3 555 521 79.72 77.56 4.25 3.50 0.082 0.033 113.9 106.8

Fit (r2) 0.43a 1.57 2.95 6.29
Fit dif Z 2.24 0.88 0.56
Model errors 2 13 1 3
Outliers 2 0 0 1

Note. DRC � dual-route cascaded model; CDP � connectionist dual process model; CDP� � new connectionist dual process model; Irreg � irregular;
Reg � regular; Fit dif Z � Z score based on the difference in correlation strengths between the CDP� and other models (see Appendix E for details).
a DRC r2 is from a negative correlation.
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Appendix L

Frequency � Regularity Interaction (Paap & Noel, 1991)

Paap and Noel (1991) performed a classic study examining the Frequency � Regularity inter-
action. The results showed a significant effect of regularity, but only with low-frequency words.
CDP� correctly predicted Paap and Noel’s data (unlike the DRC, where there was a significant
effect with high-frequency words), with a main effect of frequency, F(1, 72) � 129.24, MSE �
10,436, p � .001; a main effect of regularity, F(1, 72) � 19.87, MSE � 1,604, p � .001; and an
interaction between them, F(1, 72) � 11.02, MSE � 890, p � .005. The model produced one error
and one outlier. Two t tests examining the high- and low-frequency groups showed that only the
low-frequency words produced a significant regularity effect: for low frequency, 113.65 versus
97.58 cycles, t(34) � 5.25, SE � 1.99, p � .001; for high frequency, 83.30 versus 80.95 cycles, t � 1.
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