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The most influential theory of learning to read is based on the idea that children

rely on phonological decoding skills to learn novel words. According to the

self-teaching hypothesis, each successful decoding encounter with an unfami-

liar word provides an opportunity to acquire word-specific orthographic

information that is the foundation of skilled word recognition. Therefore,

phonological decoding acts as a self-teaching mechanism or ‘built-in teacher’.

However, all previous connectionist models have learned the task of reading

aloud through exposure to a very large corpus of spelling–sound pairs,

where an ‘external’ teacher supplies the pronunciation of all words that

should be learnt. Such a supervised training regimen is highly implausible.

Here, we implement and test the developmentally plausible phonological

decoding self-teaching hypothesis in the context of the connectionist dual pro-

cess model. In a series of simulations, we provide a proof of concept that this

mechanism works. The model was able to acquire word-specific orthographic

representations for more than 25 000 words even though it started with only

a small number of grapheme–phoneme correspondences. We then show

how visual and phoneme deficits that are present at the outset of reading

development can cause dyslexia in the course of reading development.

1. Introduction
Reading development is fundamentally a process in which novel orthographic

codes have to be mapped onto pre-existing phonological codes (spoken words),

which are associated to meaning prior to reading [1]. The initial stages of this

process are characterized by learning how letters and groups of letters map

onto their corresponding sounds. This process is referred to as phonological
decoding and allows children to recode words that they have heard but never

seen before, thus giving them access to the thousands of words that are present

in their spoken lexicons [2]. In theory, every successfully decoded word pro-

vides the child with an opportunity to set up direct connections between a

given letter string (orthography) and the spoken word [2,3], which results

in the development of an orthographic lexicon. Phonological decoding thus

provides a powerful self-teaching device because the explicit learning of a

small set of spelling–sound correspondences allows the child to decode an

increasingly large number of words, which bootstraps orthographic and lexical

development [2,4,5]. We refer to this learning loop as the phonological decoding
self-teaching (PDST) hypothesis.

No existing computational model of reading has tried to capture this funda-

mental learning loop (see below). Thus, how decoding based on an initially

small number of spelling–sound correspondences, for example grapheme–

phoneme relationships, would allow the system to correctly retrieve whole

word phonology and set up connections between letter strings and entries in

an orthographic lexicon (orthographic development) has not been explored.
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Importantly, as pointed out by Share [2], this learning loop

operates in a self-teaching fashion. That is, no external teacher

provides correct teaching signals for thousands of words but

the child simply decodes based on a small set of spelling-to-

sound correspondences, and it is the decoded word itself

which provides the teaching signal to the model. In this

respect, it is particularly important to investigate what hap-

pens when words are decoded incorrectly. Is self-teaching

possible with a non-optimal initial decoding process? How

is reading development affected by deficits that are present

during these initial stages of reading development? Given

that dyslexia is a development disorder, simulations of the

precise learning mechanisms are crucial in furthering our

understanding of it. This article tries to tackle these issues.

A number of previous models have been proposed to

capture reading development and to simulate dyslexia [6–9],

but none of them have tried to implement the developmentally

plausible PDST hypothesis described above. The most influen-

tial learning model was based on the parallel distributed

processing approach [8,10]. Harm & Seidenberg [6] set up a

three layer network that learnt to map orthography onto a

pretrained phonological attractor network representing the

child’s initial knowledge about phonological structure. The

model was trained by providing the orthography of about

3000 words and then propagating the discrepancy (error)

between the predicted and the actual phonology back to the

weights between the orthographic, hidden and phonological

layers. Although the model was able to learn 99% of the train-

ing set after 10 million trials, it is obvious that this ‘massive’

learning process is very different from a developmentally

plausible theory of reading development. Most importantly,

in order to learn, the model requires an ‘external teacher’,

which provides correct teaching signals on millions of learning

trials. By contrast, the PDST hypothesis suggests that the expli-

cit teaching of a small number of spelling-to-sound mappings

is at the start of reading development. These initially rudi-

mentary decoding skills, in combination with phonological

representations of spoken words available prior to reading,

provide the system with an internally generated teaching

signal, which gradually improves decoding and bootstraps

orthographic and lexical development.

A somewhat different approach to modelling reading

aloud has been proposed by Perry, Zorzi and Ziegler in the

context of the connectionist dual processing (CDP) model

[7,11–13]. This model has two processes, a non-lexical one

that maps orthography to phonology in a two-layer associative

(TLA) network, and a lexical one that connects orthography

to phonology in a hard-wired interactive activation network.

The non-lexical TLA network learns linear relationships

between strings of graphemes and strings of phonemes very

quickly [14]. Therefore, it can read nonwords but may produce

the incorrect phonology for words with spelling–sound

relationships that are either ambiguous or difficult to decode.

By contrast, the direct and hard-wired interactive activation

network links the orthographic entries of words to their phono-

logical counterparts. Therefore, it can read any type of word,

but not nonwords. In normal conditions, output from the

two processes is integrated to jointly determine reading

aloud. With regard to the objectives outlined above, it is impor-

tant to note that Perry et al. [7,11] have not yet explored whether

basic phonological decoding via the TLA network can boot-

strap orthographic and lexical development, especially under

conditions in which the correct output is not provided through
an external teaching signal (i.e. self-teaching). In other words,

the question remains open as to whether phonological decod-

ing initially based on a small number of grapheme–phoneme

correspondences can activate correct word candidates in the

phonological lexicon and whether self-teaching in the absence

of externally provided teaching signals is sufficient to support

stable learning and orthographic development.

This study has two parts. In the first part, we implement

and test the PDST hypothesis in the context of the CDP

model. In the second part, we explore how deficits in this

learning loop would give rise to the reading impairments

seen in dyslexic children. Ultimately, this research will

allow us to make simulations of reading outcomes for indi-

vidual children or groups of children on the basis of their

underlying deficits with a developmentally plausible model.
2. Computational investigation of
reading development

The basic architecture of the model and the PDST learning

loop are presented in figure 1. Given that children know a

large number of spoken words prior to reading, we assume

that the phonological lexicon is in place before training

starts (initial network). Consistent with the idea that the

initial steps of reading are characterized by the explicit teach-

ing of basic spelling–sound correspondences, the TLA network

was pretrained on a small set of grapheme–phoneme corre-

spondences similar to those found in common phonics

programmes, for example Jolly Phonics (for details, see [15]).

Next, we presented the TLA network with written words

to be learnt. On the basis of the pretraining, the TLA network

computed the potential (but possibly incorrect) pronuncia-

tion of a novel word, which typically results in the activation

of word units in the phonological lexicon through feedback

from the phonemes to the phonological lexicon. If a word

entry is found in the phonological lexicon which is consistent

with the letter string, a direct connection is set up between

the written word and its phonological counterpart (ortho-

graphic development). That is, the word becomes lexicalized.

In turn, the internally activated phonology of the word is

then used as a training signal to adjust the weights of the

TLA network (i.e. self-teaching). The TLA network is trained

with the delta rule, which is formally equivalent to the

Rescorla–Wagner learning rule, which has been widely used

to account for human learning [16,17]. Importantly, the use

of the delta rule makes learning of the spelling–sound map-

pings in the TLA network extremely quick. This means that

there is already a lot of learning happening in a few hundred

learning trials [14], as opposed to the millions of trials

needed to train a multi-layer backpropagation model (i.e.

[6]). Thus, every successful decoding event has two conse-

quences: (i) it is used to set up direct connections between

the letter string and the whole word phonology, and (ii) it

improves the decoding mechanisms of the TLA network.

This learning loop is illustrated in figure 1 (see figure legend

for a detailed description).

(a) Simulation 1
In this simulation, we tested the basic PDST mechanism

described above with the exception that we assumed that a

child can choose the correct phonology among the cohort of
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activated units in the phonological lexicon through context,

semantics or syntactical constraints. This is, of course, an

oversimplification but not an unrealistic one because during

the initial stages of learning-to-decode children have a lot

of information which helps them to select the correct word,

such as images in story books, short sentences with constrain-

ing context, paired reading and feedback from the teacher.

After pretraining, the TLA network was presented with

32 735 words (all of the words used in [12]). We considered

a word had been learned correctly if the correct phonological

entry was found in the cohort of activated neighbours, in

which case its corresponding orthographic representation

was set up in the orthographic lexicon. Thus, each learning

trial can establish a representation in the orthographic lexi-

con. The dynamics of the lexical route are identical to those

implemented in previous CDPþ models (i.e. interactive acti-

vation), and to simplify things, each time a connection was

set up, the resting threshold of the word node, which is

designed to represent the frequency at which the word

occurs, was set to its log frequency in the same way as it is

in the CDPþ models. Note that the word node threshold

could be replaced by a self-feedback connection that is

strengthened at each word encounter [18], thereby providing

a dynamic and learning-based account of the frequency effect

without major changes to the model’s lexical route

In order to facilitate the activation of word units in the

phonological lexicon, we reduced the phoneme-phonology

inhibition parameter (to 20.02) so that items in the phonolo-

gical lexicon were easier to activate than in the skilled reading

model [7]. To investigate the performance of the model in a

parametric way, we chose five word recognition thresholds
at which a word in the phonological lexicon was considered

activated enough to be recognized (0.05, 0.15, 0.25, 0.35 and

0.45). All models were run for 500 000 word presentations.1

The results are shown in figure 2.

As can be seen from figure 2, with low word recognition

thresholds (i.e. where words in the phonological lexicon need

less activation to become activated), the model learnt most of

the words despite the fact that it started off with only a small

set of grapheme–phoneme relationships learnt during pre-

training. For instance, with a word recognition threshold of

0.05, the model successfully learnt more than 80% of the

words. This percentage is actually very high given the large

number of words with ambiguous spelling–sound corre-

spondences, which cannot be decoded correctly using the

linear TLA network [7,15]. Figure 2b shows the numbers of

co-activated neighbours in the cohort of each recognized

word. The results show that the number of neighbours acti-

vated above the criterion was relatively small—vastly less

than the cohort of all possible neighbours. Figure 2c shows

the proportion of items in each cohort where the correct item

was the most active. As can be seen, very rapidly in the

course of learning, the most active item tends to be the correct

word, which is the reason why self-teaching can work so well.

In summary, this simulation provides a proof of concept for the

claim that phonological decoding and self-teaching provide a

powerful bootstrapping mechanism [2] which allows the

beginning reader to ‘start small’ (i.e. with a small set of expli-

citly taught letter–sound correspondences) and to build

upon this knowledge to ‘self-learn’ the majority of words (up

to 80%) through a simple decoding mechanism that gets

more efficient with every successfully decoded word.
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(b) Simulation 2
When evaluating a learning model, the most important ques-

tion is always whether such a model can generalize its learned

knowledge to novel items. In the case of reading, generalization

is simply tested by presenting the model with nonwords that

the model has never seen before. Nonword reading per-

formance was assessed by presenting the model with the

nonwords of Olson et al. [19] and Rastle & Coltheart [20]. The

first set was chosen because it has been extensively used to

investigate performance of children with and without dyslexia

[21]. The second set was used because it represents an exception-

ally hard set of nonwords [7,11]. To study the developmental

trajectory of nonword generalization, the list of nonwords

was presented to the model after every 25 000 word presen-

tations during the course of learning to read. Nonword

pronunciations were considered correct if the output of the

TLA network (i.e. phoneme buffer) corresponded to any gra-

pheme–phoneme or body–rime relationship that exists in real

words. The results of these simulations are shown in figure 3.

As can be seen, the model quickly yields very good generaliz-

ation performance, which supports the conclusion that the

implemented PDST learning loop is sufficient to decode novel

words with high accuracy.
(c) Simulation 3
One important question is what would happen if an incorrect

word were lexicalized. In other words, if phonological decod-

ing results in the activation of an incorrect word, to what

extent would such imperfections perturb the rest of the learn-

ing process (i.e. does it cause catastrophic interference?). This

is the hardest and most realistic test of the PDST hypothesis

because it is reasonable to assume that a child will sometimes

fail to select the correct word among the activated word

candidates in a given cohort (figure 2b).

This was explored in two conditions: ‘No Learning’ and

‘Incorrect Learning’. In the no-learning condition, it was

assumed that children do not have enough semantic, syntactic

or contextual information available to choose the target word

from the cohort of activated words. To simulate this, instead

of adding a correctly decoded word to the orthographic lexicon

and then training the TLA network on it, nothing was done

with the word (i.e. no learning occurred). The probability of
this happening was manipulated parametrically with a

probability of 0.05, 0.15, 0.25, 0.35 and 0.45. In the incorrect-

learning condition, we went one step further and assumed

that an incorrect word was lexicalized and learned. That is,

when a word was found in the phonological but not in the

orthographic lexicon, rather than train the model on the correct

word and then lexicalize it, we randomly chose any word from

the activated cohort and trained the TLA network on it. Again,

this was manipulated parametrically with a probability of 0.05,

0.15, 0.25, 0.35 and 0.45. All simulations were run with a word

recognition threshold of 0.15. The results are shown in figure 4.

As can be seen in figure 4a, the manipulation where a cer-

tain percentage of items were not lexicalized (the no-learning

condition) did not appear to affect the results much. Even

when almost half the words were missed (0.45 probability), it

seems that learning was simply slowed down, with accuracy

reaching the same asymptote as the unimpaired model. In

the incorrect-learning condition (figure 4b), while there was

an overall drop in performance caused by training the model

on the incorrect pronunciations, even when this was done

almost half the time (0.45), the model was still able to correctly

learn more than half of words in the database.

The results from the no-learning condition are not so sur-

prising because if a word is not found once, it may be found on

the next attempt. This suggests that it is important for children

to read words in different contexts—if one context fails, another

may work. This supports the idea that contextual diversity plays

an important role in reading beyond word frequency [22]. The

reasonable performance of the model even when trained on

incorrect words (incorrect-learning condition) shows that the

model is very error tolerant, and thus can cope with the type of

decoding errors children might make (e.g. choosing beer for

bear). Together then, both simulations suggest that failing to

choose a word correctly and even choosing words incorrectly

are not serious problems for the PDST model. This strongly

supports the developmental plausibility of this kind of model.
3. Computational investigation of
developmental dyslexia

Having implemented a developmentally plausible and func-

tioning learning loop, we can now ask how different deficits
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might affect the learning-to-read process. The literature on

developmental dyslexia highlights at least two core deficits,

which can be identified prior to reading. The first is related

to phonological processing deficits that are most apparent

in phonological awareness tasks [23,24]. This deficit seems to

be universal as it is found across transparent and opaque writ-

ing systems [25,26]. The second deficit is related to visual and

orthographic processing difficulties that can be seen in tasks

where children have to process letter strings that are not pro-

nounceable, for example RWTXN [27–30]. Recent evidence

suggests that such letter-in-string processing deficits might

result from abnormally strong crowding [31] or poor visual-

attentional processing [32], which might be identified even

prior to reading [33].

In the following simulations, we take the unique opportu-

nity to investigate how deficits that are present prior to

learning to read affect the learning-to-read process itself. This

allows us to look at the causal link between a specific deficit

and the reading outcome across development akin to a longi-

tudinal study. Clearly, the advantage of a simulation study
compared to a longitudinal study with children is that

we can manipulate the nature and the severity of single under-

lying deficits. Below, the effects of visual and phonological

deficits are simulated both on word learning (Simulation 4)

and generalization performance (Simulation 5).
(a) Simulation 4
To simulate visual difficulties, each letter in a word was

switched with the letter next to it with a certain probability

(0.02, 0.04, 0.06, 0.08 and 0.10). Thus, for example, instead

of presenting CAT to the model, we would present ACT.

Such letter position errors are relatively frequent in children

with dyslexia [28,34].

To simulate deficits in phonological awareness, each time a

correct word was activated in the phonological lexicon, we

changed the phonemes in the output of the TLA network,

which resulted in an incorrect teaching signal. Again, this

was done parametrically by changing each correct phoneme

with a certain probability (0.05, 0.15, 0.25, 0.35 and 0.45).
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Changing phonemes was not done randomly, but rather, the

correct phoneme was turned off and another was turned on

as a function of how many distinctive features were shared

between the two (e.g. /b/ was more often switched to /p/

than to /s/, because /b/ and /p/ only differ on voicing)2,

although we never chose phonemes with more than three

different features. The results are presented in figure 5. As

can be seen, the effect of the two deficits on performance

varied in a non-additive way across the levels of impairments.

Basically, the greater the deficit, the more it deteriorated the

learning performance of the model. That was especially so

for the phonological deficits, where the model with the stron-

gest deficit had very low performance. The deteriorated

performance of the phoneme-deficit model contrasts in an

intriguing way with the relatively spared performance of

the incorrect-learning simulation3 (Simulation 3, figure 4b).

The most obvious reason for the difference is that when an

incorrect word is selected from a cohort, it typically has over-

lap with the correct phonology. Thus, even if many words are

swapped, most of the phonology the model is trained on is

still correct. Alternatively, with the phonological impairment,

the phonemes are changed to something entirely different,

which results in very poor performance. The visual deficits

also affect the learning process. When comparing the two

simulations, it would be tempting to conclude that visual def-

icits have a somewhat smaller impact than phoneme deficits.

However, in the absence of real data, which would allow us

to estimate the size of the underlying deficit for each child

[35], such a conclusion would be premature.
(b) Simulation 5
Impaired reading in developmental dyslexia is particularly

clear when children have to read nonwords [36]. Again,

nonword reading deficits are present both in opaque and

transparent writing systems [37]. Poor nonword reading

suggests an inefficient decoding mechanism, which prevents
stable orthographic learning as outlined above. To investigate

the effects of visual and phoneme deficits on nonwords read-

ing during the course of reading development, we examined

generalization performance on the same set of nonwords

and in the same way as in Simulation 2. The severity of the

two types of impairments was manipulated parametrically as

in Simulation 4.

The results are presented in figure 6. As can be seen, the

results showed that phoneme deficits had a strongly negative

effect on generalization performance on the easy [19] as well

as the hard set of nonwords [20]. With the present levels of

impairments, the visual deficits had a much weaker effect on

generalization performance. Again, this might be a function

of the level of impairment that was chosen.
4. Discussion
The most influential theory of learning to read is based on the

idea that children rely on basic phonological decoding skills

to learn words they have heard but never seen before [2].

According to Share’s [2] self-teaching hypothesis, ‘each success-

ful decoding encounter with an unfamiliar word provides an

opportunity to acquire the word-specific orthographic infor-

mation that is the foundation of skilled word recognition’

(p. 155). A relatively small number of successful exposures

appear to be sufficient for acquiring orthographic word rep-

resentations [5]. Therefore, phonological decoding acts as a

self-teaching mechanism or ‘built-in teacher’ [2]—this is thought

to be the principal means by which the learner attains word

recognition proficiency in all alphabetic writing systems [1,38].

The major contribution of the present article is a proof of

concept that the implementation of the PDST hypothesis

works in the context of a real computational model of learn-

ing to read. As we have shown in the simulations, such a

model is able to acquire word-specific orthographic represen-

tations for more than 25 000 words and read aloud novel
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words even when starting with a relatively small number of

grapheme–phoneme correspondences. Thus, this work pro-

vides the first developmentally plausible computational

model of reading development.

Indeed, all previous connectionist models of reading

[6–8,11,39] have learned the task of reading aloud through

the exposure to a very large corpus of spelling–sound

pairs. That is, the input (spelling) and the ‘desired’ output

(target pronunciation) for many thousands of words are typi-

cally presented until the error-correction procedure employed

as learning algorithm reaches a level of performance that is

considered adequate by some external criterion. However,

this training regimen is highly implausible: the kind of

supervised learning used in all models implies that a teacher

externally supplies the pronunciation of all words that should

be learnt. As argued above, in real life, although there is an

external teacher (sometimes), the external teacher does not

provide correct pronunciations for many thousands of

words. As a matter of fact, the power of self-teaching is the

idea that such an external teacher is not needed [2].

In this work, an external teacher is only needed for the

pretraining of a small number of grapheme–phoneme corre-

spondences [15] and for the selection of some word candidates
during the initial stages of learning. This process reflects real

classroom teaching, which necessarily starts with the explicit

(supervised) instruction of a small set of grapheme–phoneme

correspondences (i.e. phonics). From there on, the model ‘is

left alone’. That is, on the basis of these rudimentary decoding

skills, the model will produce pronunciations for unfamiliar

words. If a word is found in the phonological lexicon but is

not yet in the orthographic lexicon, a direct link between the

two is established. Thus, exactly as in Share’s [2] theory, each

successful decoding encounter with an unfamiliar word pro-

vides an opportunity to acquire word-specific orthographic

information. At the same time, the pronunciation of the decoded

word is used as a ‘built-in-teacher’—that is, an internally gener-

ated teaching signal—to improve the efficiency of the TLA

decoding network itself. As a result, high decoding accuracy is

obtained rather quickly (figure 3).

One important issue that we have not fully addressed yet

is what happens when initial decoding results in the acti-

vation of several word candidates. In our simulations, we

simply chose the correct word (figure 2c) if it was in the

cohort of word candidates. This oversimplification is based

on the assumption that in the real learning situation with

real texts, children will have additional information from
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the story context, images, semantics or syntax to help them

chose the correct target. Nevertheless, as shown in Simulation

3, even if the model failed to choose a word or chose an incor-

rect word, the learning process was not dramatically affected

(figure 4), because such errors might be rectified on sub-

sequent encounters of the same word. This suggests that it

is important for a child to read words in different contexts.

One important concern is how words that do not get

activated via a phonological loop will ever get into the lexicon.

This might be a somewhat ‘anglocentric’ problem [40]

because of the relatively large number of words with inconsist-

ent or ambiguous spelling-to-sound correspondences. Clearly,

it would be much less of a problem in transparent writing sys-

tems, for example Italian, where phonological decoding based

on a few grapheme–phoneme correspondences activates

unique word candidates with high accuracy [15]. Despite the

relatively high level of inconsistency, it is worth noting that

the phonological decoding network was still able to learn up

to 80% of the words. The remaining 20% have and typically

will be learnt through different strategies, for example rote

learning [4]. Fortunately enough, many irregular words are

very frequent (dead, have, done, come. . .) and, therefore, can be

easily taught in an explicit and supervised fashion during

primary school. A second issue is how words that are not

in the phonological lexicon will ever get there. This is not a fun-

damental problem because one can assume that, once the

decoding mechanism has become efficient, every phonologi-

cally decoded word will create an entry in the phonological

lexicon (if it is not already there), which will be strengthened

with every additional encounter of the same word (i.e. vocabu-

lary acquisition through reading).

The upshot of having a fully implemented developmental

model of learning to read is that such a model can be used to

investigate how deficits that are present prior to reading or

occur during reading development might cause the kind of

reading impairments seen in children with dyslexia (e.g.

slow reading, poor decoding, letter confusion errors, etc.).

In Simulations 4 and 5, we have shown that the model can

potentially explain how two of the most established defi-

cits—visual and phoneme deficits—affect orthographic

development and nonword reading. In future work, we

will attempt to use real data [21], which allows us to estimate

the size of the underlying deficit(s) for each individual child

and then investigate to what extent impairments that mimic

those of dyslexics would predict inter-individual differences

and dyslexia subtypes (see [35] for a similar approach using

a model of skilled reading that does not learn).

It will be of major interest to contrast the effects of various

kinds of deficits. For example, phonological deficits can be
implemented through poor vocabulary (a small phonological

lexicon), noise in the phonological lexicon, underspecified pho-

nological representations or phoneme deficits. Similarly, visual

deficits could be simulated through noisy letter detectors, poor

letter position coding or crowding effects that would affect

some letter positions more than others. Note that it is important

to also investigate the combination of deficits, which are unli-

kely to be additive [35]. Interestingly, some genetic analyses

suggest that a single factor, best described as a genetically

determined learning-rate factor, underlies decoding, spelling

and orthographic learning [41]. In our model, learning rate is

one of the key parameters, which can be modified individually

to explore how inter-individual differences in learning rate

might affect decoding and orthographic learning. Along the

same lines, noisy computation could be a common factor,

which might affect the quality of representations and the effi-

ciency of the learning process. This could be implemented by

adding a certain amount of noise non-specifically at all levels

of the model.

If this work is successful, the model could be used to pre-

dict developmental trajectories for at-risk children before

dyslexia is actually diagnosed [42]. It could also be used to

develop and assess (through simulations) optimal sequences

and materials for reading and intervention programmes. In

sum, the implementation of a developmentally plausible

learning model might not only help us to understand the het-

erogeneity of dyslexia (i.e. how various kinds of impairments

and their interactions give rise to different dyslexia pheno-

types) but might fundamentally change the way we go

about models of skilled reading [43].
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Endnotes
1Training the networks on 500 000 events is not implausible. Harry
Potter’s Order of the Phoenix contains about 257 000 words. Thus, a
child who reads all seven Harry Potter volumes exceeds by far the
number of training trials used in our simulations.
2We used 23 distinctive features to describe the phonemes. Fifteen of
these were for consonants: syllabic, consonantal, sonorant, conti-
nuant, delayed release, sibilant, voiced, nasal, high, back, anterior,
labial, coronal, distributed and lateral. Eight were for vowels: high,
low, front, back, round, tense, offglide and onglide.
3This is a fair comparison because the initial grapheme–phoneme
pretraining was identical (unimpaired) in both cases.
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