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Deep unsupervised learning in stochastic recurrent neural networks with many layers of
hidden units is a recent breakthrough in neural computation research. These networks
build a hierarchy of progressively more complex distributed representations of the sensory
data by fitting a hierarchical generative model. In this article we discuss the theoretical
foundations of this approach and we review key issues related to training, testing and
analysis of deep networks for modeling language and cognitive processing. The classic
letter and word perception problem of McClelland and Rumelhart (1981) is used as a
tutorial example to illustrate how structured and abstract representations may emerge
from deep generative learning. We argue that the focus on deep architectures and
generative (rather than discriminative) learning represents a crucial step forward for the
connectionist modeling enterprise, because it offers a more plausible model of cortical
learning as well as a way to bridge the gap between emergentist connectionist models
and structured Bayesian models of cognition.
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INTRODUCTION
A fundamental issue in the study of human cognition is what
computations are carried out by the brain to implement cognitive
processes. The connectionist framework assumes that cognitive
processes are implemented in terms of complex, non-linear inter-
actions among a large number of simple, neuron-like processing
units that form a neural network (Rumelhart and McClelland,
1986). This approach has been used in cognitive psychology—
often with success—to develop functional models that clearly
represent a great advance over previous verbal-diagrammatic
models because they can produce simulations of learning, skilled
performance, and breakdowns of processing after brain dam-
age. One paradigmatic example is the connectionist modeling of
visual word recognition and reading aloud, which has often pro-
vided key theoretical and methodological advances with broad
influences well-beyond the language domain (e.g., McClelland
and Rumelhart, 1981; Seidenberg and McClelland, 1989; Plaut
and Shallice, 1993; Plaut et al., 1996). Connectionist models of
the reading processes can produce highly detailed simulations of
human performance, accounting for a wide range of empirical
data that include reaction times and accuracy of skilled readers
at the level of individual words, the development of reading skills
in children, and the impaired performance of dyslexic individuals
(Plaut et al., 1996; Zorzi et al., 1998; Harm and Seidenberg, 1999,
2004; Perry et al., 2007, 2010, 2013). Despite significant progress
in the attempt to improve the architectural and learning princi-
ples incorporated in neural network models (see O’Reilly, 1998;
O’Reilly and Munakata, 2000), much modeling work in psychol-
ogy is still based on the classic neural network with one layer of

hidden units (i.e., a “shallow” architecture) and error backprop-
agation (Rumelhart et al., 1986) as learning algorithm—a choice
that is typically seen as a compromise to achieve efficient learn-
ing of complex cognitive tasks. We argue below that a key step
forward for connectionist modeling is the use of networks with a
“deep” architecture (Hinton, 2007, 2013) and where most of the
learning is generative rather than discriminative (Box 1).

The shallow architecture of the prototypical multi-layer neural
network (Rumelhart et al., 1986) does not capture the hierarchi-
cal organization of the cerebral cortex. Hierarchical processing is
thought to be a fundamental characteristic of cortical computa-
tion (Hinton, 2007; Clark, 2013) and it is a key feature of bio-
logically inspired computational models of vision (Riesenhuber
and Poggio, 1999). The idea of a deep network with a hierar-
chy of increasingly complex feature detectors can be traced back
to the Interactive Activation Model (IAM) of letter and word
perception (McClelland and Rumelhart, 1981), but this semi-
nal proposal did not transfer to connectionist learning models
because the error backpropagation algorithm had little success in
training networks with many hidden layers (Hinton, 2007, 2013).
Another key assumption of the IAM that did not readily trans-
fer to connectionist learning models is the mixing of bottom–up
and top–down processing through recurrent feedback. Finally, the
widespread use of the error backpropagation algorithm in con-
nectionist modeling, leaving aside its lack of biological plausibility
(O’Reilly, 1998), implies subscription to the dubious assumption
that learning is largely discriminative (e.g., classification or func-
tion learning) and that an external teaching signal is available
at each learning event (that is, all training data is labeled). This
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Box 1 | Glossary.

BOLTZMANN MACHINE
Stochastic neural network of symmetrically connected, neuron-like
units whose dynamics is governed by an energy function. The
input to the network is given through a layer of visible units, while
another layer of hidden units is used to model the latent causes
of the data. A variant known as Restricted Boltzmann Machine
(RBM) is obtained by removing within-layer lateral connections to
form a bipartite graph, allowing to perform efficient inference and
learning.

CONTRASTIVE DIVERGENCE
Objective function that allows to efficiently train RBMs by approx-
imating the log-likelihood gradient, without requiring to run a
Markov chain to convergence.

DEEP BELIEF NETWORK
Hierarchical generative model composed of a stack of RBMs,
which can be greedily trained layer-wise in an unsupervised
fashion. The whole network can be eventually fine-tuned with
supervised learning to perform discriminative tasks.

DEEP LEARNING
Machine learning framework that exploits multiple layers of hidden
units to build hierarchical internal representations of the input data.

DISCRIMINATIVE LEARNING
Learning approach whose objective is to map the observed vari-
ables X into corresponding output variables Y, usually by mod-
eling the conditional distribution P(Y |X ), optimizing classification
boundaries, or by approximating a function Y = f (X ). This approach
requires labeled examples (i.e, a teaching signal for supervised
learning).

GENERATIVE LEARNING
Learning approach whose objective is to model the joint distri-
bution P (X, Y ) of observed and latent variables, typically using a
likelihood-based criterion. This approach does not require labeled
data (i.e., learning is unsupervised).

GRAPHICAL MODELS
Probabilistic models in which the topology of a graph defines con-
ditional independecies between random variables, allowing to effi-
ciently represent complex joint distributions through factorization.

learning regimen is exceptional in the real world. Reinforcement
learning (Sutton and Barto, 1998) is a plausible alternative, but
there is a broad range of situations where learning is fully unsu-
pervised and its only objective is that of building rich internal
representations of the sensory world (Hinton and Sejnowski,
1999). Notably, the learned internal model can then be used to
infer causes and make predictions (Dayan et al., 1995; Hinton
and Ghahramani, 1997; Friston, 2005; Hinton, 2010b; Huang and
Rao, 2011; Clark, 2013).

Unsupervised learning has a long history, but the classic
learning algorithms have important limitations. Some develop
a representation that is distributed but also linear (Oja, 1982),
which implies that higher-order information remains invisible.
Others develop a representation that is non-linear but also local-
ist, that is one in which each observation is associated to a
single hidden unit (Rumelhart and Zipser, 1985; Kohonen, 1990).
For these reasons, their application to modeling complex cog-
nitive functions has been limited. An important breakthrough
in unsupervised learning is the use of statistical principles such
as maximum likelihood and Bayesian estimation to develop
generative models that discover representations that are both
distributed and non-linearly related to the input data (Hinton
and Ghahramani, 1997). A generative model is a probabilis-
tic model that captures the hidden (latent) causes of the data,
thereby providing a sensible objective function for unsuper-
vised learning. In other words, the “learner” estimates a model,
without any supervision or reward, that represents the proba-
bility distribution of the data. Generative models are appealing
because they make strong suggestions about the role of feedback
connections in the cortex and are consistent with neurobio-
logical theories that emphasize the mixing of bottom–up and
top–down interactions in the brain: bottom–up inputs convey
sensory information, whereas internal representations form a
generative model that predicts the sensory input via top–down

activation (Hinton and Ghahramani, 1997). Learning can be
viewed as maximizing the likelihood of the observed data under
the generative model, which is equivalent to discovering effi-
cient ways of coding the sensory data (Ghahramani et al., 1999).
Notably, the application of these algorithms to natural images
has been shown to generate receptive field properties simi-
lar to those observed in the visual cortex (Rao and Ballard,
1999).

Generative learning can be implemented in the framework of
recurrent stochastic neural networks with hidden units (Hinton,
2002). However, one hidden layer can be insufficient for mod-
eling structured and high-dimensional sensory data. In contrast,
a network with many hidden layers, that is a deep network, can
learn a more powerful hierarchical generative model (Hinton and
Salakhutdinov, 2006; Hinton et al., 2006). Note that a good gen-
erative model of the data can be a very useful starting point for
later discriminative learning (Hinton, 2007; Stoianov and Zorzi,
2012). The internal representations obtained from generative
learning can be the input to a variety of classification or func-
tion learning tasks, thereby exploiting re-use of learned features
(Bengio et al., 2012). Moreover, the internal model might be
refined through supervised learning to strengthen the features
that are most informative for solving a specific classification task
(Hinton and Salakhutdinov, 2006; also see Love et al., 2004, for
a related modeling approach to category learning). Indeed, it has
been shown that human category learning implies flexibility in
the use and creation of perceptual features (Schyns et al., 1998)
and that different types of features might be extracted accord-
ing to the nature of the learning task (e.g., unsupervised vs.
supervised; Love, 2002).

The goal of the present article is to provide a tutorial
overview of generative learning in deep neural networks to high-
light its appeal for modeling language and cognition. We start
with a brief review of the theoretical foundations of generative
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learning and deep networks. We then discuss various practi-
cal aspects related to training, testing and analyzing deep net-
works, using the classic letter and word perception problem
of McClelland and Rumelhart (1981) as a tutorial example.
The emergence of a hierarchy of orthographic representations
through deep unsupervised learning is particularly interesting
(also see Di Bono and Zorzi, under review) because it can
revisit the hard-wired architecture of the IAM. The idea that
perception of written words involves the sensitivity to increas-
ingly larger orthographic units is also supported by recent
neuroimaging findings (Dehaene et al., 2005; Vinckier et al.,
2007).

LEARNING A GENERATIVE MODEL: RESTRICTED
BOLTZMANN MACHINES
Here we consider a class of neural networks known as Boltzmann
Machines (hereafter BM; Ackley et al., 1985). These are stochas-
tic associative networks that observe and model data by using
local signals only. BMs can be interpreted as undirected graphical
models (Jordan and Sejnowski, 2001; see Box 2) where learning
corresponds to fitting a generative model to the data. Despite the
appeal of BMs as plausible models of cortical learning, their use
was strongly discouraged by the very high computational demand
of the original learning algorithm, until the recent development

of contrastive divergence (CD) learning (Hinton, 2002). CD makes
learning of BMs practical, even for large networks (see below).

BMs consist of a set of stochastic units, fully connected with
symmetric weights and without self-connections, where each unit
fires with a probability depending on the weighted sum of its
inputs. Data patterns are represented by the activation of “visible”
units. An additional layer of “hidden” units captures high-order
statistics and represent the latent causes of the data. Inspired by
statistical mechanics, the model behavior is driven by an energy
function E that describes which configurations of the units are
more likely to occur by assigning them a certain probability value:

p (v, h) = e−E(v, h)

Z

where v and h are, respectively, the visible and hidden units and Z
is a normalizing factor known as partition function, which ensures
that the values of p constitute a legal probability distribution
(i.e., summing up to 1). The network state changes in a way that
allows the gradual decrease of the associated energy, modulated
by a “temperature” parameter T so that at higher temperatures
an occasional increase of energy is also permitted to avoid local
minima. To achieve local energy minimum (equilibrium), T is

Box 2 | Probabilistic Graphical Models.

The framework of probabilistic graphical models (Koller and
Friedman, 2009) provides a general approach to model arbitrarily
complex statistical distributions, which can involve a large num-
ber of stochastic variables that interact together. Graphical models
allow us to describe complex relations between variables by
exploiting the structure of their joint distribution, since in general
their interactions are not globally defined but instead each variable
is only influenced by a limited subset of “neighbors.” The topology
of a graphical model explicitly defines the scope of interaction of
each variable (represented by a node in the graph) by highlighting
the set of independecies that hold in the distribution. This allows
to factorize a joint probability distribution using local conditional
probabilities.

Graphical models can have directed connections between vari-
ables, such as in Bayesian networks (Figure 1A), or undirected
connections, such as in Markov networks (Figure 1B). Both types
of connections might be present in the same graph, thus forming a
hybrid model. Although they share the same underlying theoretical
framework, Bayesian and Markov networks have rather differ-
ent representational and computational characteristics. In directed
models, the semantic of connections defines a “parent of” rela-
tionships between linked variables, while in undirected models
the connections are symmetric and therefore only encode a sort
of “degree of affinity” between linked variables. This leads to a
different representation of independencies between nodes of the
graph: in Bayesian networks, each node is conditionally indepen-
dent from all the others given its parents, its children and the
parents of its children, while in undirected models each node
is conditionally independent from all the others given the nodes
directly connected to it [i.e., its “Markov blanket” (Pearl, 1988),
highlighted in Figure 1]. In both cases, these conditional indepen-
dencies can be exploited to derive efficient inference and learning
procedures even in the presence of a large number of variables,

because only the Markov blanket of a certain node is required in
order to sample from its conditional distribution.

In the case of undirected graphical models, each edge is asso-
ciated with a certain function, known as factor, which takes as
input the values of the nodes connected by the edge and gives as
output a scalar value that represents the affinity between them: a
high value indicates that the two variables are likely to be strongly
related, while a low value indicates a weak relation. The joint dis-
tribution of all the variables in the graph can be efficiently defined
as a product of such local factors:

P(X1, X2, . . . , Xn) = 1
Z

∏

i

φi (Di )

where Di represents the scope of each factor φi (i.e., which vari-
ables it involves) and Z is a global normalization constant called
partition function, which ensures dealing with legal probabilities
summing up to 1.

FIGURE 1 | (A) A directed graphical model, also known as Bayesian network.
(B) An undirected graphical model, also known as Markov network. In both
graphs, the dashed line highlights the Markov blanket of the blue node.
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gradually decreased (simulated annealing). The learning proce-
dure minimizes the Kullback-Liebler divergence between the data
distribution and the model distribution. Accordingly, for each
pattern the network performs a data-driven, positive phase (+)
and a model-driven, negative phase (–). In the positive phase
the visible units are clamped to the current pattern and the
hidden layer settles to a stable activation state. In the negative
phase all units are unclamped and the network is run [using
a Markov Chain Monte Carlo (MCMC) algorithm; see Box 3]
until it settles on a stable activation state over visible and hid-
den units, which reflects the model beliefs. After each phase,
correlations between the activations of each pair of connected
units are collected and used to update the network weights. Note
that learning is unsupervised (i.e., the network does not learn an
input–output mapping like typical multilayer networks trained
with error backpropagation) and it uses only local signals and
Hebbian rules. A similar form of contrastive Hebbian learning
is also used in the generalized recirculation algorithm and in
Leabra (O’Reilly, 1998, 2001). Learning the connection weights
in the original BM is based on a maximum likelihood learning
rule that is very simple and locally optimal, but unfortunately
the learning algorithm is also very slow because it implies run-
ning a Markov chain until convergence (which may require an
exponential time).

The breakthrough that led to CD learning (Hinton, 2002; also
see Welling and Hinton, 2002; for a mean field version) is the
finding that the negative phase does not need to be run until equi-
librium (i.e., full convergence). If sampling starts from the hidden
unit state computed in the positive phase (i.e., driven by the data),
correlations computed after a fixed number of steps in the Markov
chain are sufficient to drive the weights toward a state in which the

input data will be accurately reconstructed. Hence, CD learning
approximates the gradient of the log-likelihood of the learning
data by performing only few iterations, which in practice gives
good results even with a single step (CD-1). After computing
the model’s reconstruction, weights are updated by contrasting
visible-hidden correlations computed on the data vector (v+h+)
with visible-hidden correlations computed on the reconstruction
(v−h−):

�W = η(v+h+ − v−h−)

where η is the learning rate. Importantly, a restriction to the archi-
tecture of the BM by not allowing intra-layer connections (RBM;
Hinton, 2002) makes learning extremely fast. The energy function
for RBMs is defined as:

E(v, h) = −bTv − cT h − hTWv

where W is the matrix of connections weights and b and c are
the biases of visible and hidden units, respectively. In RBMs, the
update of units in one layer no longer requires any iterative set-
tling because they are conditionally independent given the state of
the other layer. That is, the sampling process is speeded up by per-
forming block Gibbs sampling (see Box 3) over visible and hidden
units (i.e., all units in a layer are sampled in a single step).

Examples of application of CD learning in connectionist mod-
eling studies include numerical cognition (Stoianov et al., 2002,
2004; Zorzi et al., 2005) and space coding for sensorimotor
transformations (De Filippo De Grazia et al., 2012).

Box 3 | Block Gibbs sampling in RBMs.

In a probabilistic graphical model, we are often interested in gen-
erating samples from the model distribution. A general-purpose,
powerful method is the Gibbs sampling algorithm, which gener-
ates a sequence of observations that progressively approximate a
specified multivariate probability distribution (Geman and Geman,
1984). Gibbs sampling belongs to the family of MCMC methods,
which draw samples from a probability distribution by constructing
a Markov chain that has the desired distribution as its equilibrium
distribution (Andrieu et al., 2003). Under certain conditions, after
an initial burn-in phase the Markov chain will converge to the sta-
ble distribution. The basic idea of Gibbs sampling is to construct
the Markov chain so that one particular variable is sampled at each
step given the current values of all the other variables. After repeat-
ing this process iteratively for enough time, the chain will generate
samples from the target joint distribution. Notably, Gibbs sampling
can exploit the structure of the graph (i.e., the conditional inde-
pendecies between variables) to speed up this process: since the
value of each node is only influenced by its Markov blanket (see
Box 2), if two variables are conditionally independent given the cur-
rent evidence (i.e., their Markov blanket is observed) they can be
sampled at the same time. This variant of the algorithm is known
as block Gibbs sampling.

In the case of Boltzmann Machines, learning requires sampling
from the joint distribution of visible and hidden variables in order

to compute visible-hidden correlations on the model expectations.
If the connectivity of the network is restricted, as in the RBM, the
sampling process can be significantly speeded up by using block
Gibbs sampling. Indeed, the units of the same layer become con-
ditionally independent if there are no intra-layer connections; that
is, in RBMs the Markov blanket of a hidden unit corresponds to
the visible layer, and vice versa (Figure 2). This allows to sample
all units of the same layer in parallel.

FIGURE 2 | Graphical representation of a Restricted Boltzmann

Machine. The dashed line highlights the Markov blanket of the blue
hidden unit, which corresponds to the whole layer of visible units.
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LEARNING A HIERARCHICAL GENERATIVE MODEL: DEEP
BELIEF NETWORKS
RBMs can be used as building blocks of more complex archi-
tectures, where the hidden variables of the generative model can
be organized into layers of a hierarchy (Figure 3A). The result-
ing architecture is referred to as a “deep network.” In particular,
the Deep Belief Network (DBN; Hinton and Salakhutdinov, 2006;
Hinton et al., 2006) is a stack of RBMs that can be trained layer
by layer in a greedy, unsupervised way. The main intuition behind
deep learning is that, by training a generative model at level l using
as input the hidden causes discovered at level l–1, the network will
progressively build more structured and abstract representations
of the input data. Importantly, architectures with multiple pro-
cessing levels permit an efficient encoding of information by
exploiting re-use of features among different layers: simple fea-
tures extracted at lower levels can be successively combined to
create more complex features, which will eventually unravel the
main causal factors underlying the data distribution. Indeed, it
has been shown that functions that can be compactly represented
by a depth k architecture might require an exponential num-
ber of computational elements to be represented by a depth k–1
architecture (Bengio, 2009). Moreover, adding a new layer to the
architecture increases a lower bound on the log-likelihood of the
generative model (Hinton et al., 2006), thus improving the over-
all capacity of the network. After learning of all layers, the deep
architecture can be used as a generative model by reproducing
the data when sampling from the model, that is by feeding the
activations of the deepest layer all the way back to the input layer.
Note that the hierarchical structure of the internal representations
is an emergent property of the learning algorithm. In contrast,
hierarchy in classic connectionist models is typically built in by
stipulating the representations to be used at more than one layer
(e.g., Rumelhart and Todd, 1993; Perry et al., 2013); indeed, train-
ing of deep multi-layer perceptrons using error backpropagation
is very difficult because the error gradient tends to vanish when

propagated backwards through more than one hidden layer (see
Hinton, 2013, for further discussion).

An important advantage of deep unsupervised learning is that
the internal representations discovered by the network are not
tied to a particular discriminative task, because the objective of
learning is only to model the hidden causes of the data. However,
once the system has developed expressive abstract representa-
tions, possible supervised tasks can be carried out by introducing
additional modules, which directly operate on such high-level
representations of the data and can therefore yield excellent per-
formance in classification or function learning (Figure 3B). For
example, on a popular handwritten digit recognition problem
(MNIST dataset; LeCun et al., 1998), high discriminative accu-
racy can be obtained even by a linear classifier applied on the
top-level internal representations of a DBN that was only trained
to reconstruct the digit images (Testolin et al., 2013; examples of
digits reconstructed by the network are reported in Figure 3C).
Within this perspective, the use of an additional fine-tuning phase
of the whole deep network using error backpropagation (as done
in Hinton and Salakhutdinov, 2006) might be unwarranted, not
only because of the biological implausibility of the learning algo-
rithm, but also because the network would become specifically
tuned to a particular task. Indeed, the idea that high-level repre-
sentations obtained from (unsupervised) model learning should
be usable across several tasks (Figure 3B) is referred to as “trans-
fer learning” and it is a hot topic for the machine learning
community (Bengio, 2009; Bengio et al., 2012). It is worth men-
tioning that machine learning researchers have recently inves-
tigated deep networks built through greedy layer-wise training
of stacked autoencoders, where each autoencoder is a multi-
layer perceptron trained to auto-associate the input (Bengio and
Lamblin, 2007; Baldi, 2012). This approach has been successful
in terms of machine learning benchmarks, but it is less appeal-
ing than DBNs for cognitive modeling purposes because learning
is based on error backpropagation and it is not grounded in a

FIGURE 3 | (A) Architecture of the DBN with three hidden layers
used in the MNIST handwritten digit recognition problem (Hinton
and Salakhutdinov, 2006). (B) A typical transfer learning scenario,
on which high-level, abstract representations are first extracted

by deep unsupervised learning and then used to perform a
variety of supervised tasks [adapted from Bengio et al. (2012)].
(C) Reconstructions of MNIST digit images made by the deep
network.
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sound probabilistic framework. Moreover, deep autoencoders are
not used as generative models to produce predictions based on
top–down signals.

A final consideration concerns the computational complexity
of deep learning: thanks to its efficiency, the algorithm proposed
by Hinton et al. (2006) solves the problem of learning in densely
connected networks that have many hidden layers. If imple-
mented on multicore hardware, deep learning is practical even
with billions of connections, thereby allowing the development of
very-large-scale simulations (Raina et al., 2009; Dean et al., 2012;
Le et al., 2012). Medium-to-large-scale simulations can even be
performed on a desktop PC equipped with a low-cost graphic
card (Testolin et al., 2013; see below).

CONNECTIONIST MODELING WITH DEEP NETWORKS: A
TUTORIAL
In this section we provide a practical overview on how to con-
struct a complete DBN simulation. We illustrate how to train,
test and analyze a deep network model using the classic letter and
word perception problem of McClelland and Rumelhart (1981).
Written word perception is particularly representative because it
can be linked to one of the most influential models of language
processing, McClelland and Rumehart’s IAM, and more specifi-
cally to its two key assumptions: (1) a hierarchical organization
of the network, with increasingly more complex levels of rep-
resentation, and (2) the mixing of bottom–up and top–down
processing (i.e., interactivity) to resolve ambiguity of the sensory
input. Interestingly, a recent re-formulation of the IAM as a prob-
abilistic generative model (Khaitan and McClelland, 2010) was
shown to perform optimal Bayesian inference, thereby supporting
the appeal of the hierarchical interactive architecture (Mirman
et al., in press). A deep learning model would therefore represent
an important step forward, because the hard-wired architecture of
the IAM might be replaced by the hierarchical generative model
learned in a DBN. In this regard, learning word perception can
be seen as a stochastic inference problem where the goal is to
estimate the posterior distribution over latent variables given the
image of a word as input.

Though written word perception is an excellent candidate for
deep learning, the complexity of the problem makes realistic sim-
ulations difficult to handle. For example, high-resolution images
of whole words would require a very large network, with tens
of thousands of visible units (e.g., 20,000 units for a 400 by
50 pixels image), many hidden layers and billions of connec-
tions (see Krizhevsky et al., 2012, for deep learning on a realistic
object recognition problem). One possible simplification would
be to split words into letter constituents and first model the
perception of single letters. This might lead to sensible internal
letter representations that are invariant to position, size, rota-
tion, and noise (i.e., abstract letter identities; McClelland and
Rumelhart, 1981). Alternatively, written words can be represented
using small resolution images, with letters encoded as combina-
tions of simple geometric features (the “Siple” font; McClelland
and Rumelhart, 1981). We employed the latter solution for the
simulations presented here.

In this tutorial we also consider deep learning of handwrit-
ten digits (MNIST database; LeCun et al., 1998) and visual

numerosity estimation (Stoianov and Zorzi, 2012) in relation to
the analysis of DBNs, because they represent more realistic per-
ception problems that involve training on thousands of images.
Training on a large dataset can be important for the emergence of
a richer hierarchical structure of features.

TRAINING A DBN
As in other connectionist models, input to the network is pro-
vided as pattern of activations over visible units. Note that 2D
images are vectorized; this implies that the spatial structure
remains only implicit in the co-activation of neighboring visible
units, but it can emerge during learning in the form of statistical
regularities (see examples below). Learning a generative model
does not require labeled data, that is, unlike supervised learn-
ing, each pattern does not need to possess a class label or any
other form of associated target state. Nevertheless, this kind of
information might still be useful for testing and analyzing the
network. Note that realistic, large-scale simulations often imply
abundance of unlabeled data and only a limited sample of pre-
classified learning examples (see Le et al., 2012, for deep learning
on millions of images randomly extracted from videos on the
Internet).

A ready-to-use parallel implementation of deep unsupervised
learning on graphic cards is described in Testolin et al. (2013), and
it is publicly available for download1.

Network architecture
The learning algorithm tunes the parameters (i.e., weights) of
a DBN with a given structure that should be specified after
establishing the input domain. Here we only consider network
architectures with fully connected pairs of layers (Figure 3A), but
alternatives based on weights sharing like convolutional networks
(LeCun et al., 1998) can simplify the learning problem by assum-
ing identical processing applied to different portions of the image,
thereby reducing the number of parameters of the model. In gen-
eral, the size of a given hidden layer might be proportional to
the expected number of features describing the data at a cer-
tain processing level. Intuitively, many hidden units will allow for
the encoding of more specific characteristics of the data, whereas
fewer units imply a greater compression of the representation and
hence increase the generality of the features. A more neutral strat-
egy with regard to the architectural choices is to keep the size of
few consecutive layers constant. Finally, a large top hidden layer
can be useful to unfold categories and classes, thereby facilitating
linear associations to categories or other processing domains (as
we will discuss in the following sections). At any rate, we advise
to try several architectures, gradually increasing the number of
layers and units per layer, until satisfactory results are obtained.

Learning tasks
We illustrate the tutorial with examples of increasing complex-
ity. The first toy example is the visual perception of single letters
with input consisting of black and white (b/w) images of size

1A variety of multicore implementations (MATLAB and Python on graphic
cards; Octave/MPI on a multi-core cluster) is described in Testolin et al.
(2013) and the source codes can be found at: http://ccnl.psy.unipd.it/research/
deeplearning
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7 × 7 pixels (i.e., patterns over 49 visible units). The dataset con-
tains the images of 26 capital letters created with the schematic
“Siple” font, composed of 14 basic visual features (Rumelhart
and Siple, 1974). We found that a small two-layer DBN net-
work with as few as 10 units in the first layer and 30 units in
the second layer was sufficient to discover the underlying visual
features. The second example extends the problem above to the
visual perception of four-letter words, using the classic dataset of
1180 words employed by McClelland and Rumelhart (1981) in
the IAM. Input are b/w images of size 28 × 7 pixels (i.e., patterns
over 196 visible units) of words printed with the Siple font. This
problem required a DBN with more hidden units: 120 in the first
hidden layer and 200 in the second one (see Figure 4).

Two additional examples approach realistic problems: the per-
ception of handwritten digits and visual numerosity perception.
The training datasets for these problems contain thousands of
samples per category (i.e., digits or numerosity levels) and pro-
vide a rich variety of different instances. In the handwritten digit
recognition problem, input data consists of 50,000 vectorized
gray-level images of size 28 × 28 pixels (i.e., patterns over 784
visible units) that contain handwritten digits from zero to nine
(MNIST dataset; LeCun et al., 1998). A robust model of this data
would benefit from a hierarchical process that extracts increas-
ingly more complex features (e.g., Gabor filters at the first level,
edge detectors in the following layers, etc.). We used the DBN
architecture proposed by Hinton and Salakhutdinov (2006) for
this task, with three hidden layers of size 500, 500, and 2000 units,
respectively. The data of the numerosity perception problem con-
sists of 51,200 vectorized b/w images of size 30 × 30 pixels (i.e.,
patterns over 900 visible units) that contain up to 32 rectangular
objects of variable size. We used the DBN architecture proposed
by Stoianov and Zorzi (2012), consisting of two hidden layers
of size 80 and 400 units, which was shown to extract abstract
numerosity information.

Learning parameters
The DBN learning algorithm is governed by few meta parame-
ters. First, the learning rate should be small, typically in the range
0.01–0.1. Second, the use of a momentum coefficient (i.e., a frac-
tion of the previous weight update) is also critical to avoid local
minima, and it is usually set to 0.5 at the beginning of training

FIGURE 4 | Architecture of the DBN with two hidden layers used in the

written word perception problem.

and then increased up to 0.9. Third, network weights should be
regularized, that is kept relatively small, by applying a constant
weight decrease in the form of a small weight-decay factor of
about 0.0001. Finally, weights should be initialized with small
random values drawn from a zero-mean Gaussian distribution
with standard deviation of 0.01. The initial values of the bias can
be set to zero. These and other issues related to training RBMs are
discussed in a comprehensive practical guide by Hinton (2010a).

DBNs are trained with the CD learning algorithm, one RBM
layer at a time, using as input either the sensory data (first RBM)
or the activations of the previous hidden layer (deeper RBMs).
This greedy, layer-wise learning procedure can be performed in
a completely iterative way, by updating the network weights after
each pattern (on-line learning). A complete sweep over all training
patterns constitutes a learning epoch. In batch (off-line) learning,
instead, weights updates are computed over the whole training
set. A good compromise between these two approaches is to
use a mini-batch learning scheme, in which the dataset is par-
titioned into small subsets (i.e., mini-batches) and the weights
are updated with the average gradient computed on each subset
(Neal and Hinton, 1998). This latter strategy is highly recom-
mended, because it improves the quality of learning by avoiding
local minima and it also allows to significantly speed-up the learn-
ing phase on multicore parallel implementations (see Testolin
et al., 2013, for a mini-batch GPU implementation of deep net-
works). The mini-batch size should be set between 10 and few
hundred patterns.

Monitoring learning
The learning progress can be monitored by analyzing the recon-
struction error on the training patterns. The mean reconstruction
error on the entire training set should fall rapidly at the beginning
of learning and then gradually stabilize. However, this measure
can be misleading because it is not the objective function opti-
mized by the CD-n algorithm, especially for large n (Hinton,
2010a). A more precise measure of the performance of the net-
work is to compare the free energy of the training data with
that of a sample of held-out patterns (Hinton, 2010a). A final
approach to monitor the quality of learning is to regularly per-
form an additional discriminative task over the learned internal
representations, as we will discuss at length below.

Sparsity constraints on internal representations
An interesting variant of standard RBMs (and, consequently,
DBNs) consists in forcing the network’s internal representations
to rely on a limited number of active hidden units. In this case
the network develops sparse distributed representations, which
have many useful properties and appear to be a coding strategy
adopted by the brain (Olshausen and Field, 1996; see Olshausen
and Field, 2004, for review). Forcing sparseness within a network’s
hidden layer can be interpreted in terms of inhibitory competition
between units (O’Reilly, 2001). A sparse-coding version of the
RBM encourages the development of more orthogonal features,
which can allow a better pattern discriminability and a more intu-
itive interpretation of what each unit is representing. In RBMs,
sparsity can be obtained by driving the probability q of a unit to
be active to a certain desired (low) probability p (Lee et al., 2008;
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Nair and Hinton, 2009). For logistic units, this can be practically
implemented by first calculating the quantity q-p, which is then
multiplied by a scaling factor and added to the biases (and, possi-
bly, to each incoming weight) of the hidden units at every weight
update. Depending on the number of hidden units, the desired
sparsity level (p) can be set in the range of 0.01–0.1. Monitoring
the distribution of the hidden units activity can be useful to ver-
ify that the desired sparsity level is obtained and that the scaling
factor is correctly set so that the probability that a unit is active is
close to p while learning is not hindered (Hinton, 2010a).

TESTING A DBN: READ-OUT OF INTERNAL REPRESENTATIONS
When performing a discriminative task, one of the simplest meth-
ods is to exploit a linear classifier (e.g., Rosenblatt, 1958), to assign
a certain class to each input pattern. The classifier makes a deci-
sion by using a linear combination of the input features and this
represents its main limitation (Minsky and Papert, 1969). In the
case of real sensory signals, this shortcoming is exacerbated by
the fact that the feature vectors are high-dimensional and usually
lie on highly curved and tangled manifolds (DiCarlo et al., 2012).
However, deep belief networks perform a non-linear projection of
the feature vector at each hidden layer, gradually building increas-
ingly more complex and abstract representations of the data that
eventually make explicit the latent causes of the sensory signal.
This hierarchical organization suggests that a linear “read-out”
of hidden unit representations should become increasingly more
accurate as a function of layer depth. In this perspective, accu-
racy of linear read-out can be considered as a coarse measure of
how well the relevant features are explicitly encoded at a given
depth of the hierarchical generative model (see, e.g., Stoianov and
Zorzi, 2012; Di Bono and Zorzi, under review). As noted above,
linear read-out can also be used to monitor the quality of the rep-
resentations developed by the deep network during unsupervised
generative learning.

The linear read-out on internal representations can be eas-
ily implemented using another connectionist module, such as a
linear network trained with the delta rule, thereby preserving
the biological plausibility of the model. The linear network can
also be considered as a response module that supports a particu-
lar behavioral task, so that its responses can be assessed against
the human data (e.g., numerosity perception in Stoianov and
Zorzi, 2012, or location-invariant visual word recognition in Di
Bono and Zorzi, under review). For example, Stoianov and Zorzi
applied this approach to simulate human behavior in a numeros-
ity comparison task after training a DBN on thousands of images
of sets of objects. The internal representations at the deepest layer
provided the input to a linear network trained to decide whether
the numerosity of the input image was larger or smaller than a
reference number. Notably, the responses of this decision mod-
ule were described by a psychometric function that was virtually
identical to that of human adults, with the classic modulation by
numerical ratio that is the signature of Weber’s law for numbers.

From a practical point of view, delta rule learning can be
conveniently replaced by an equivalent method that is compu-
tationally more efficient, which relies on the calculation of a
pseudo-inverse matrix (Hertz et al., 1991). Formally, data patterns
P = {P1, P2, . . . , Pn} can be associated with desired categories

L = {L1, L2, . . . , Ln} by means of the following linear association:

L = WP

where P and L are matrices containing n column vectors that
correspondingly code patterns Pi (sensory data or internal repre-
sentations) and binary class labels Li, and W is the weight matrix
of the linear classifier. If an exact solution to this linear system
does not exist, a least-mean-square approximation can be found
by computing the weight matrix as:

W = LP+

where P+ is the Moore-Penrose pseudo-inverse (Albert, 1972)2

As an example, we applied the read-out DBN testing method
on the internal representations learned for the images of the
four-letter words used in McClelland and Rumelhart (1981). We
tested two different discriminative problems. The first required
the identification of each of the four letters composing a word,
using as label a binary vector with one-hot (i.e., localistic) cod-
ing of the target letter. The second problem consisted in the
identification of the word itself, using as label a binary vec-
tor with one-hot coding of the target word. To investigate the
quality of the features extracted by deep learning, we com-
pared the classification accuracy on the representations learned
at each of the levels of a two-layer DBN (H1 = 120 units, H2 =
200 units) with that of the representations learned by a single
RBM with as many hidden units as the top layer of the DBN
(H = 200 units). As a baseline, we also measured the classi-
fication accuracy obtained by trying to directly categorize the
raw input vectors. Note that the read-out of the original data
is trivial, due to lack of variability (and noise) in the cod-
ing of letters and words (i.e., there is a unique pattern for
each letter and word). Indeed, the raw data vectors are lin-
early separable as shown by the perfect accuracy of the read-out.
However, if the input patterns are degraded by adding a cer-
tain amount of noise, one should expect a progressive decrease
of the classification accuracy when the input representation does
not include high-level, invariant features. Indeed, Figure 5 shows
that when each word image was corrupted by randomly set-
ting to zero a certain percentage of its pixels, read-out accuracy
on the raw pixel data dropped even with a small amount of
noise and it approached zero in the word recognition task. As
expected, the DBN extracted robust internal representations that
were less sensitive to noise. Indeed, both hidden layers sup-
ported good discrimination accuracy for letters, whereas only
the deepest hidden layer adequately supported word discrimina-
tion. Notably, the shallow generative model (RBM) with as many
hidden units as the top DBN layer did not unfold word-level
information, thereby failing to support robust word recognition
(especially for larger noise levels). These results are consistent
with the seminal proposal of hierarchical feature processing to

2In some high-level programming languages, this operation is readily avail-
able. For example, in MATLAB/Octave we can use the pinv() function,
W = L∗pinv(P), or the left matrix divide (a.k.a. “backslash”) operator, W =
(P′\L’)’.
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FIGURE 5 | Mean accuracy of the linear classifier on the task of recognizing

each letter of a word (left) and the whole word (right) as a function of noise

level applied to the raw images. Accuracy is averaged over 20 random noise

injections and it is computed over the entire dataset of words. Error bars
represent SEM. The results are shown for read-out from the two hidden
layers of a deep network (DBN), a shallow network (RBM), and raw images.

yield abstract representations of written words (McClelland and
Rumelhart, 1981).

ANALYZING A DBN
Discovering learned representations
In the previous section we illustrated how it is possible to assess
the quality of the internal representations learned at each layer
of the hierarchy of a deep belief network by performing a dis-
criminative task. However, this information is tied to a given
classification task and is therefore limited in scope. Moreover, the
supervised classifier operates on the pattern of activity over an
entire hidden layer, that is a distributed representation encod-
ing a variety of micro-features (Hinton et al., 1986) representing
task-independent statistical regularities of the data. A very simple
but informative approach to investigate the role of a particular
unit in the network consists of visualizing its connection weights
using the original structure of the data (e.g., the 2D image in our
visual perception examples). This is particularly intuitive for the
first hidden layer, where the weight matrix defines how the vis-
ible units contribute to the activation of each hidden unit. We
can therefore visualize the “receptive field” of each hidden unit
by plotting the strength of its visible-to-hidden connections. The
same principle can be applied to the deeper layers of the DBN,
by combining their weight matrix with those of the lower lay-
ers. A straightforward way is to use a linear combination of the
weight matrices, possibly imposing a threshold on the absolute
values of the weights in order to select only strong connections.
This allows to visualize the receptive field learned at a layer k as
a weighted linear combination of the receptive fields learned at
level k-1 (Lee et al., 2008, 2009). The main drawbacks of this tech-
nique are that one has to manually choose threshold values and
that non-linearities between layers are not considered, with the
risk of losing relevant information. Nevertheless, this method can
provide good visualization of the learned features even without
imposing a threshold on the weights (see Figure 6).

Using the above method, we analyzed the receptive fields of
the hidden units of DBNs trained on images of letters as well
on the handwritten digits of the MNIST dataset. In the letter

perception task, we found that most of the units of the first hid-
den layer were tuned to basic geometric features, whereas most of
the units of the second hidden layer were tuned to a composition
of these features (see examples in Figure 6A). The greater image
resolution and variability of the handwritten digits pose a much
more complex visual problem, which induced the emergence of
a more structured hierarchy of features in the DBN. As shown
in Figure 6B, the first hidden layer learned simple and localized
visual features (mostly Gaussian and Gabor filters), resembling
those found in the primary visual cortex. The second hidden layer
combined these features into edges, lines, and strokes detectors.
Finally, the third hidden layer extracted even more complex visual
features that resemble parts of digits. Note that the finding of low-
level visual features (basis functions) in the first hidden layer is
common to many problems that involve a large variability in the
training images (see, e.g., Lee et al., 2008; Stoianov and Zorzi,
2012).

Applying sparsity constraints on the internal representations
further improves the quality of the emerging features. For exam-
ple, a sparse DBN trained on patches of natural images developed
complex receptive fields (e.g., T-junctions) in the second hidden
layer that were very similar to those found in area V2 of the visual
cortex (Lee et al., 2008). Our sparse DBN simulations also resulted
in an increase of the complexity of the emergent features. For
example, the letter perception network encoded more letter-like
features in the second hidden layer (Figure 6C) and the hand-
written digit perception network learned shape-specific detectors
in the third hidden layer (Figure 6D).

A more sophisticated approach to investigate the features
encoded by a hidden unit is to find its preferred input stimuli, as
done by neurophysiologists in single-cell recording studies. The
basic idea is to probe the network on a variety of input patterns,
each time recording the neural response and then looking for pos-
sible regularities. This approach can be very effective if we have an
idea about which type of patterns are more likely to elicit specific
responses (for example, responses to bigrams after training on
words; Di Bono and Zorzi, under review). However, if we cannot
make assumptions about the nature of the preferred stimuli, this
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FIGURE 6 | Visualization of features learned at different hidden layers

(Hi ). Each square within a layer represents the receptive field of one hidden
unit. Excitatory connections are shown in white, whereas inhibitory
connections are in black. (A) H1 and H2 on single letters (pixelated “Siple

font”). (B) H1, H2 and H3 on MNIST. (C) Sparse H1 and H2 on single letters.
(D) Sparse H3 on MNIST. From left to right: H1 on single letters (pixelated
“Siple font”); H2 on single letters; H1 on MNIST; H2 on MNIST; H3 on MNIST;
sparse H1 on single letters; sparse H2 on single letters; sparse H3 on MNIST.

method becomes computationally intractable because it would
require testing the network on an exponential number of possi-
ble input patterns. Nevertheless, this problem can be solved by
formulating it as an optimization problem, where the goal is to
find the input pattern that maximizes the activation of a certain
hidden unit given the processing constraints imposed by the net-
work (Erhan et al., 2009). Formally, if θ denotes the deep network
parameters (weights and biases) and hij(θ, x) is the activation of a
given unit i from a given layer j in the network, then hij is a func-
tion of both θ and the input sample x. Assuming that the vector x
has a bounded norm and after learning the parameters are fixed,
then the problem of maximizing the unit activation is:

x∗ = arg max
x

hij(θ, x)

Although this is a non-convex optimization problem, it has been
empirically shown that good local minima can be found (Erhan
et al., 2009). This method has been recently used to investigate
whether high-level, class-specific feature detectors can emerge in
very-large-scale deep unsupervised learning (i.e., using millions
of images for training; Le et al., 2012). The impressive result was
that it is indeed possible to learn highly complex and abstract fea-
tures at the deepest layers, such as prototypical faces (Le et al.,
2012).

A different approach can be used if we expect monotonic
response of some hidden units to a given property of the data. The
individuation of these detectors is based on regressing the prop-
erty of interest (or even multiple properties) onto the response
of each hidden unit. A high absolute value of the normalized
regression coefficient indicates sensitivity of the hidden unit to
the property of interest; this might also indicate selectivity when
combined with small (near-zero) regression coefficients for other

properties. Using this method, Stoianov and Zorzi (2012) discov-
ered detectors in the second hidden layer of their DBN tuned to
visual numerosity but insensitive to other important visual prop-
erties like cumulative area. Di Bono and Zorzi (under review)
also used this method to investigate word selectivity in their DBN
model of visual word recognition. After finding the preferred
word for a given hidden unit, its word selectivity was assessed by
recording the response to all other training words and perform-
ing a regression analysis using the orthographic (i.e., Levenshtein)
distance from the preferred word as predictor.

Sampling from the generative model
Up to this point, we only discussed methods that investigate the
bottom–up processing of sensory data. However, a deep belief net-
work is a generative model, and it can be very useful to assess
the top–down generation of sensory data, as well as the mixing
of bottom–up and top–down signals during inference in a noisy
situation. In one scenario, we can provide to the model a noisy
input pattern (e.g., randomly corrupted or partially occluded)
and let the network find the most likely interpretation of the data
under the generative model. This process requires the iteratively
sampling of the states of the network until an equilibrium activa-
tion state is reached, which in DBNs can be efficiently done using
block Gibbs sampling (see Box 3). As an example, in Figure 7 we
show the result of inference in the word perception DBN when
four different noisy versions of the same image are given as input
to the model. Note that the visible units settle onto an activation
state corresponding to the correct word image.

We can also study the generative capability of a DBN when
the visible units are not clamped to an initial state, and the net-
work is therefore let free to autonomously produce a sensory
pattern through a completely top–down process. This genera-
tive process can be constrained to produce “class prototypes” by

Frontiers in Psychology | Language Sciences August 2013 | Volume 4 | Article 515 | 10

http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences/archive


Zorzi et al. Deep learning models of language and cognition

FIGURE 7 | Inference in the word perception DBN when the word

image “WORK” is presented as input under different types of noise.

From top to bottom: Gaussian noise, binary noise (30%), binary noise,
(50%), occlusion noise. The final state of the visible units, identical across
the four noise conditions, is shown on the right.

adding a multimodal RBM on the top of the network hierarchy
(Hinton et al., 2006), which is jointly trained using two input
sources, one containing the internal representation learned by
the DBN and the other encoding the corresponding label. For
example, in the handwritten digit recognition model, input to
the multimodal RBM is provided by the second hidden layer
(500 units) and by 10 units representing the image label (one
unit for each possible digit class) (see Figure 8A). After learning,
the label units can be clamped to a certain state (e.g., with only
the unit corresponding to the class “7” active) and the top RBM
settles to equilibrium, thereby recovering the internal represen-
tation of the given digit class. The generative connections of the
DBN can then be used to obtain an image on the visible layer
in a single top–down pass. The image generated can be thought
of as the model’s prototype for the corresponding abstract
representation.

Here we propose an interesting, more simple variant of the
top–down generation of the learned prototypes. Instead of jointly
training the top-level RBM using the internal representation of
images and the corresponding class label, and then performing
Gibbs sampling until equilibrium with the label units clamped
to a certain class, we can try to directly map the class label
and the internal representation through a linear projection (see
Figure 8B). This mapping is analogous to the read-out mod-
ule previously discussed but it works in the opposite direction.
Prototype generation can thus be performed by associating the
class vectors L with the internal representations P learned by the
DBN through a weight matrix W2:

P = W2L

W2 = PL+

As in Hinton et al. (2006), after computing the internal state
P at the deepest layer, a single top–down pass through the
generative connections of the DBN produces the prototype

for the specific class. Figure 8C shows the prototypes gener-
ated for each digit class of the MNIST dataset using this lin-
ear projection method. Note that this method can be readily
extended to more complex scenarios that involve a mapping
between internal representations learned by different networks
(which may reflect knowledge about different domains or sensory
modalities).

Finally, it is worth noting that the quality of inference when
sampling from the generative model can be improved if the single
top–down pass is replaced by an interactive process, as pro-
posed in a recent variant of the DBN known as Deep Boltzmann
Machine (Salakhutdinov and Hinton, 2009).

DISCUSSION
Understanding how cognition and language might emerge from
neural computation is certainly one of the most exciting frontiers
in cognitive neuroscience. In this tutorial overview we discussed a
recent step forward in connectionist modeling, which allows the
emergence of hierarchical representations in a deep neural net-
work learning a generative model of the sensory data. We started
by reviewing the theoretical foundations of deep learning, which
rely on the framework of probabilistic graphical models to derive
efficient inference and learning algorithms over hierarchically
organized energy-based models. We then provided a step-by-step
tutorial on how to practically perform a complete deep learn-
ing simulation, covering the main aspects related to the training,
testing and analysis of deep belief networks. In our presentation
we focused on examples that require the progressive extraction of
abstract representations from sensory data and that are therefore
representative of a wide range of cognitive processes. In particular,
we showed how deep learning can be applied to the classic let-
ter and word perception problem of McClelland and Rumelhart
(1981). In addition to providing a useful toy example of mod-
eling based on deep learning, the emergent properties of the
model revisit key aspects of the seminal IAM and suggest a very
promising research direction for developing a full-blown deep
learning model of visual word recognition. Indeed, up-scaling the
present toy model is likely to be successful because deep learn-
ing is particularly suited to capture features hierarchies over large
training datasets with great pattern variability. This aspect was
present in two additional problems that complemented our tuto-
rial with more realistic simulations, that is, handwritten digit
recognition (LeCun et al., 1998) and visual numerosity percep-
tion (Stoianov and Zorzi, 2012). Together, the various simulations
illustrate the strength of the deep learning approach to cognitive
modeling.

Deep unsupervised learning extracts increasingly more
abstract representations of the world, with the important conse-
quence that explanatory factors behind the sensory data can be
shared across tasks. The hierarchical architecture captures higher
order structure of input data that might be invisible at the lower
levels and it efficiently exploits features re-use. The idea that
learned internal representations at the deepest layers can be easily
“read-out” is consistent with the notion of “explicitness of infor-
mation” articulated by Kirsh (1990), who argued that explicitness
is tightly related to the processing system which uses it. Within
this perspective, the degree of explicitness is better linked to the
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FIGURE 8 | Illustration of the prototype generation methods in the

handwritten digit recognition model. (A) The RBM involving the third
hidden layer is jointly trained on the internal representation of the second
hidden layer and an additional set of units representing the digit classes

(Hinton et al., 2006). (B) Our linear projection method: class label units are
only added after the complete DBN training and are associated to the third
hidden layer representations by means of a linear mapping. (C) Digit
prototypes generated using the linear projection method.

usability of information rather than to its form (i.e., how quickly
it can be accessed, retrieved or in some other manner put to
use). This idea has been further extended by Clark (1992), who
proposed to take into account also the multi-track usability of
stored information: “Truly explicit items of information should
be usable in a wide variety of ways, that is, not restricted to use
in a single task” (p. 198). Note that this conception of abstract
representations that can be shared across tasks or even across
domains is particularly useful in the context of modeling language
processing.

Efficient generative learning in neural networks is a recent
breakthrough in machine learning and its potential has yet to
be fully unfolded. In particular, the extension of RBMs to the
temporal domain (Sutskever et al., 2008; Taylor and Hinton,
2007) is a very promising avenue for research. Indeed, genera-
tive networks that learn the temporal dynamics of the data could
anticipate relevant events in the environment, using the history
of the system as context to make accurate predictions about
the incoming information, as proposed by the predictive cod-
ing framework (Huang and Rao, 2011; Clark, 2013). Learning
and processing of sequential information is also a key aspect of
cognition and it is particularly ubiquitous in language processing
(Elman, 1990). An initial exploration of this direction is the use of
the Recurrent Temporal RBM (Sutskever et al., 2008) for learning
orthographic structure from letter sequences (Testolin et al., 2012,
submitted).

It is worth noting that deep generative network models of cog-
nition can offer a unified theoretical framework that encompasses
classic connectionism and the structured Bayesian approach to
cognition. Structured Bayesian models of cognition (for reviews
see Chater et al., 2006; Griffiths et al., 2010) assume that human
learning and inference approximately follow the principles of
Bayesian probabilistic inference and they have been used in
the last few years to address a number of issues in cognitive

science, including language processing (Chater and Manning,
2006, for review). However, Bayesian models are typically for-
mulated at the level of “computational theory” (Marr, 1982)
rather than at the process level that characterizes other cogni-
tive modeling paradigms like connectionism (for further discus-
sion see McClelland et al., 2010; Jones and Love, 2011). This
implies limits on the phenomena that can be studied with the
Bayesian approach, because only problems of inductive inference
or that contain an inductive component are naturally expressed
in Bayesian terms (Griffiths et al., 2008). In contrast, computa-
tional models of cognition based on deep neural networks and
generative learning implement the probabilistic approach in a
neural-like architecture and can provide an emergentist expla-
nation of structured representations that is in line with the
connectionist tradition (McClelland et al., 2010). Their proba-
bilistic formulation not only allows to deal with ambiguity of
sensory input and with the intrinsic uncertainty of environ-
mental dynamics, but it also provides a coherent theory about
how learning can integrate new evidence to refine beliefs of the
model. Importantly, there is no need to have an external signal
that guides learning, because the aim is to reproduce incoming
information as accurately as possible by discovering its hidden
causes (that is, learning can be seen as a stochastic inference
problem).

In conclusion, we believe that the focus on deep architec-
tures and generative learning represents a crucial step forward for
the connectionist modeling enterprise, because it offers a more
plausible model of cortical learning as well as way to bridge the
gap between emergentist connectionist models and structured
Bayesian models of cognition.
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