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The use of written symbols is a major achievement of human 
cultural evolution. However, how abstract letter representa-
tions might be learned from vision is still an unsolved prob-
lem1,2. Here, we present a large-scale computational model 
of letter recognition based on deep neural networks3,4, 
which develops a hierarchy of increasingly more complex 
internal representations in a completely unsupervised way 
by fitting a probabilistic, generative model to the visual 
input5,6. In line with the hypothesis that learning written 
symbols partially recycles pre-existing neuronal circuits for 
object recognition7, earlier processing levels in the model 
exploit domain-general visual features learned from natural 
images, while domain-specific features emerge in upstream 
neurons following exposure to printed letters. We show 
that these high-level representations can be easily mapped  
to letter identities even for noise-degraded images, produc-
ing accurate simulations of a broad range of empirical find-
ings on letter perception in human observers. Our model 
shows that by reusing natural visual primitives, learning 
written symbols only requires limited, domain-specific  
tuning, supporting the hypothesis that their shape has  
been culturally selected to match the statistical structure of 
natural environments8.

Visual perception of symbols like letters and digits constitutes the 
front end of much more complex cognitive functions, such as read-
ing and mathematics. Written symbols are culture specific, which 
implies that the mapping between visual form and symbol identity 
is often arbitrary: even within the same script, our visual system 
must tune to fine-grained visual details (for example, to discrimi-
nate between I and J) but also neglect significant variability in the 
visual appearance of the same symbol (for example,  versus F ).  
This ability appears even more remarkable considering that read-
ing is a recent cultural invention, with a history of fewer than 6,000 
years9. This implies that evolutionary mechanisms could not have 
shaped the human visual system specifically to support reading, 
which must be acquired through education. Nevertheless, despite 
the large variability in writing systems, cross-cultural studies have 
shown that written symbols are always processed by the same corti-
cal circuits10. One explanation for the universal neurocognitive bases 
of a cultural invention like reading is that it partially ‘invades’ evo-
lutionarily older brain circuits, which are recycled during develop-
ment to support a novel function that is in some way related to their 
original one7. Indeed, although learning to read requires extensive 

training and interaction with many other sources of information 
(for example, phonological and semantic), orthographic processing 
can be performed to some extent even by non-human primates11, 
which must necessarily rely on purely visual information12. This 
suggests that cortical visual circuits that evolved for generic object 
and scene recognition might serve as a starting point for learning to 
recognize written symbols, and might be partially reorganized as a 
result of reading acquisition13. In turn, visual symbols are likely to 
have been culturally selected to match the type of geometric struc-
tures found in natural scenes8.

From a computational perspective, the processing of complex 
visual information requires hierarchical organization14,15, where 
neurons in the early levels extract simple features over local regions 
of the visual field that are successively combined into more complex 
features covering larger portions of the visual scene. Accordingly, 
visual processing can be conceived as a series of non-linear trans-
formations over the sensory input to build more abstract, internal 
representations that are invariant to irrelevant changes in visual 
appearance16. This hierarchical, multilayer architecture seems well 
suited to also supporting orthographic processing17. At the let-
ter level, basic visual features such as edges and curvatures might 
be combined into simple geometrical shapes and letter fragments, 
thereby allowing recognition through component features1,17,18. 
Explicit teaching and contextual information might then lead to 
even more abstract letter identities19, whose positional information 
can be used to encode graphemes and bigrams, up to high-level rep-
resentations of entire words12,20.

It should be noted that the acquisition of literacy seems to 
profoundly reshape early levels of visual processing13, and a full 
account of orthographic development should also consider the 
important role of top-down processing in visual word recogni-
tion21. Nevertheless, the encoding of individual letters seems to be a 
prerequisite to create word-level representations22, as also assumed 
in computational models of reading development23,24. Moreover, 
recent neuroimaging evidence suggests that a ‘letter form area’25 can 
be distinguished, both at the spatial and temporal dynamic levels, 
from the classic ‘visual word form area’10 in the ventral occipitotem-
poral cortex. However, despite enormous progress in dissecting the 
functional organization of orthographic processing using neuroim-
aging techniques, the leading computational model of letter percep-
tion is based on hand-coded features26,27 and does not explain how 
high-level representations can be acquired through learning. Other 
models either represent letters in a localistic fashion (that is, there 
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is no real visual input, as each letter is represented by activating 
one specific neuron19,28) or use only 26 different visual patterns at 
best (that is, one single image for each letter, with no variability in 
visual shape, size, font, and so on5,29). Moreover, theoretical propos-
als regarding the mechanisms underlying letter perception range 
from feature-based approaches to template matching and spatial-
frequency models1,2. Key questions remain unanswered: Where do 
letter features come from? How can the visual system exploit pre-
existing perceptual knowledge to learn written symbols, so as to 
assemble basic visual features into letter-specific features? Would 
letter detectors emerge from visual input following mere exposure 
to written symbols, or is explicit teaching necessary?

Here, we fill this gap by describing a large-scale neural network 
model of letter perception based on a hierarchy of increasingly 
more complex visual features, which emerges from an unsupervised 
learning process that builds on recycling natural image features and 
observation (that is, generative learning) of real images of printed 
letters. Our modelling approach is based on the framework of prob-
abilistic generative models, which allows us to describe perception 
as a problem of Bayesian inference and suggests that cortical circuits 
encode an internal model of the environment to actively interpret 
and anticipate sensory information30. Notably, generative models 
can be implemented as stochastic, recurrent neural networks that 
learn to reconstruct their sensory input, where feedback connec-
tions carrying top-down expectations are gradually adjusted to bet-
ter reflect the observed data6.

A powerful class of stochastic generative networks is that of 
Boltzmann machines, which can efficiently discover latent struc-
ture using Hebbian-like learning mechanisms and can be combined 
into hierarchical generative models known as deep belief networks4, 
where latent features are organized at multiple levels of abstrac-
tion5,6. Importantly, learning in these deep networks is unsupervised 
because the goal is to discover meaningful internal representations 
of the sensory data. This entails a more psychologically plausible 
learning regimen, as well as more biologically plausible processing 
mechanisms5,31 (see ref. 32 for application to a different cognitive 
domain) compared with the more popular, supervised deep learning 
approach3. Indeed, the deep learning approach is typically based on 
feed-forward networks trained with discriminative learning (that is, 
error backpropagation), which requires an external teaching signal 
at each learning event (that is, all training data are labelled). Here, 
building on the ideas of neuronal recycling7 and neural reuse33, 
we push the unsupervised learning approach one step further by 
explicitly testing the possibility that domain-general visual knowl-
edge extracted from everyday life environments is later exploited to 
facilitate domain-specific learning of visual symbols, even when the 
network receives only limited exposure to printed characters.

The full architecture of our model is depicted in Fig.  1a. The 
bottom layer of the network receives the sensory signal encoded as 
grey-level activations of image pixels. Low-level visual processing 
occurring in the retina and thalamus was simulated using a biologi-
cally inspired whitening algorithm that captures local spatial cor-
relations in the image and serves as a contrast normalization step34 
(see Supplementary Methods). However, the ubiquitous, rigid spatial 
structures present in natural environments make each pixel highly 
correlated with many others: efficient coding strategies remove this 
redundancy by discovering visual features resembling the recep-
tive fields of neurons in the mammalian primary visual cortex35–37. 
In our model, this was achieved by training a restricted Boltzmann 
machine on a large dataset of natural image patches38 (Fig.  1b; 
see Supplementary Methods for details). We call ‘H1’ the set of latent 
features encoded in the neurons of this first internal (hidden) layer, 
which mimics the type of processing occurring in early cortical 
vision (that is, in the primary (V1) and secondary visual cortex (V2)).

We then asked whether this type of perceptual knowledge would 
constitute a good starting point to also learn other kinds of spatial 

structures, such as those underlying printed letters. Indeed learning 
visual symbols in humans is unlikely to start from scratch (as in 
typical machine learning problems, such as handwritten digit rec-
ognition4), but rather it builds on domain-general visual primitives 
learned from the environment. With this aim, the H1 front end of 
basic visual processing was used to produce an internal representa-
tion of images of printed letters (Fig. 1c). Images containing a vari-
ety of uppercase letters, printed using 14 different fonts, different 
styles (normal, italic or bold) and five different sizes were presented 
centred on the model’s retina, with small positional variability 
(see  Supplementary Methods). The neuron’s activity in H1 was 
computed in response to each image and propagated upstream to 
a higher-level hidden layer named ‘H2’. This processing level might 
correspond to cortical networks located around area V4 (ref. 17),  
although we note that the correspondence between our model and 
specific brain areas is tentative and becomes blurred as we move 
up in the hierarchy. Generative learning about letters occurred by 
adjusting the connections between the H1 and H2 neurons. This 
simulates a form of recycling of natural visual features, which served 
to build internal representations of printed letters.

Finally, a linear read-out layer was trained on top of the H2 layer 
(Fig. 1a), with the goal of mapping the domain-specific representa-
tion of letter images into abstract letter identities. This final pro-
cessing level might correspond to more anterior, extrastriate visual 
areas of the occipitotemporal sulcus involved in abstract letter pro-
cessing25. Learning letter classes implied explicit teaching (that is, 
supervised learning). In humans this can be linked to learning letter 
names, but we note that abstract letter identities might also emerge 
by means of contextual effects only19. The same type of linear read-
out was also performed at each processing level to provide a mea-
sure of how well the letter information was encoded at a given depth 
of the deep network5; that is, to what extent the different levels of 
representation in the model could reliably support letter identifi-
cation. In one simulation, the classifier was trained on a reduced 
dataset created by selecting only two prototypical fonts (Arial and 
Times) from the training set (see  Supplementary Methods). This 
reduced set more closely reflects the learning environment experi-
enced by children learning letter identities, which usually involves 
only few, prototypical examples.

Following learning on patches of natural images, neurons in the 
first hidden layer (H1) encoded simple visual features, which con-
stituted a basis dictionary describing the statistical distribution of 
pixel intensities observed in everyday life environments. As shown 
in Fig. 2a, many hidden neurons developed receptive fields tuned 
to localized spatial structures, such as Gabor filters with differ-
ent orientations, phases and spatial frequencies, resembling those 
recorded in the primary visual cortex of mammals39. Interestingly, 
many neurons also encoded more sharp and elongated filters, pos-
sibly spanning the whole receptive field, which can be described as 
‘ridgelets’ (differing from wavelets because they are constant along 
a hyperplane). Ridgelets are particularly suited to compactly rep-
resenting geometric structures40, and it has been recently shown 
that they can also emerge from sparse coding if the representational 
space is made highly overcomplete41. These types of receptive fields 
have been observed in V2 of mammals42,43. Other neurons learned 
visual features that were not location specific, such as sinusoidal 
gratings (the complete set of natural image features is reported in 
Supplementary Fig.  1). As shown in Fig.  2b, hidden neurons in 
H2 learned to combine the simple visual features of H1 to encode 
more complex geometric features such as letter fragments and, in 
some cases, whole letter shapes (the complete set of letter features is 
reported in Supplementary Fig. 2). These emergent ‘case-specific let-
ter units’ likely constitute a necessary intermediate step supporting 
the learning of case-independent letter identities2. However, learning 
of case-independent letter identities requires explicit teaching and/
or additional contextual (for example, phonological) information,  
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because visual similarity across cases is limited (for example,  
‘A’ versus ‘a’). Nevertheless, case information is an important cue for 
higher-level processing, such as sentence parsing mechanisms and 
recognition of proper names12.

Representational selectivity at different levels of the hierarchy 
was investigated by analysing how responses in H1 and H2 were 
modulated by the type of visual input. Indeed, a recent neuroimag-
ing study44 found that even early retinotopic areas show a stronger 
response to letters than to rotated versions of the same shapes (pseu-
doletters), suggesting early visual tuning to complex visual features 
following reading acquisition. As shown in Fig. 2c, in our model the 
response elicited in H1 by natural images was much stronger than 
that produced by letters and pseudoletters (for simulation details, 
see Supplementary Methods), while this pattern reversed in the H2 
layer (Fig. 2d). Interestingly, we observed a difference between let-
ters and pseudoletters not only at layer H2 (t34 =  6.571, P <  0.001, 
Cohen's  d (effect size)  =  1.111) but also at layer H1 (t34 =  2.697, 
P <  0.05, d =  0.456), thereby replicating the  previous functional 
magnetic resonance imaging finding44. In our model, generative 
learning on printed letters was confined to layer H2 and there-
fore could not affect the visual features encoded in H1. Thus, our 
simulations suggest that the different activation elicited by letters 
versus pseudoletters in the early visual cortex observed previously44 
does not necessarily reflect the adaptation of neural responses due 
to reading acquisition. Such a difference could instead reflect the 
better match between visual statistics of natural scenes and letters 
compared to pseudoletters8. Accordingly, no difference was found at 
layer H1 when letters presenting horizontal asymmetry were com-
pared with their mirror images (see Supplementary Results). This 
suggests that the effect found with pseudoletters is related to biases 
inherent in the statistics of natural images (for example, the pres-
ence of vertical structures).

Performance in letter identification was measured in terms 
of classification accuracy on letter stimuli degraded by noise 

(see  Supplementary Methods). The psychometric functions 
describing the decrease in read-out performance at each layer of 
the network as a function of noise level are reported in Fig. 2e: the 
best read-out accuracy across all noise levels was achieved when 
the activity of the H2 layer was used as an input to the classifier. 
Notably, also H1 representations can be read-out with high accu-
racy, even if they are less resilient to noise. Read-out from the H1 
layer likely benefits from the presence of sharp and elongated fea-
tures (Fig.  2a), similar to those observed in V2 neurons43. It has 
been suggested that V2 might indeed process letter fragments17. 
Decoding directly from the whitened images yielded much lower 
accuracy and severe susceptibility to visual noise. Control simula-
tions (see  Supplementary Results) based on random networks, as 
well as on a two-layer deep belief network trained directly on the 
whitened letter images  (dashed lines in Fig.  2e; read-out is from 
the deepest layer), yielded worse performance for all noise levels 
compared with the network with recycling. The remarkable finding 
that the recycling model outperformed the corresponding network 
without recycling can be accounted for by the limited variability 
present in the printed letter dataset, which does not allow the net-
work to learn a good set of low-level visual features. Conversely, the 
richer repertoire of spatial structures in natural images promoted 
the emergence of a more robust and heterogeneous set of low-level 
features. Crucially, the performance gap between networks with 
versus without recycling became wider when we strongly limited 
the amount of experience given during the unsupervised learning 
phase (that is, only 15% of the original training set, representing 
only the two prototypical fonts). The gap was particularly marked 
at the early stages of learning (see Supplementary Fig. 3), thereby 
showing that the knowledge extracted from natural images was 
readily transferred to letters and provided a ‘head start’ for learn-
ing (a similar phenomenon has been documented in the context 
of learning the spelling-sound mappings45). In the successive sim-
ulations, the read-out layer was trained on the full letter dataset, 
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Fig. 1 | Deep learning architecture and examples of natural image and printed letter data. a, Deep learning architecture. Each box represents a layer of 
neurons in the network. The directed arrow corresponding to the whitening step entails feed-forward processing, while undirected connections denote 
bidirectional processing exploited by unsupervised generative learning. The directed arrows corresponding to the linear read-out layer entail supervised 
learning.The corresponding brain network involved in letter processing is shown on the right (LGN, lateral geniculate nucleus; V1, primary visual cortex; 
V2, secondary visual cortex; V4, extra-striate visual cortex; OTS, occipito-temporal sulcus). b, An example of a natural image containing a variety of small 
patches (40 ×  40 pixels), shown in greyscale to the right. c, A sample of printed letters in our dataset, created using a variety of fonts, styles, sizes and 
position offsets.
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thereby reflecting the extensive experience of skilled adult readers. 
When using this extended training set, the qualitative trend of the 
psychometric functions did not change, but the overall classifica-
tion accuracy improved. The high resilience to noise for the read-
out from H2 neurons is shown in Fig. 2f, which displays a sample 
of noisy letters yielding a classification accuracy of about 50%  
(note that chance performance is 3.8%).

Classification performance obtained from the read-out layer was 
then used as a behavioural measure to assess letter perception in 
the model against human psychophysical data. The errors produced 
by the model under a noise level (standard deviation =  0.7) yield-
ing overall identification performance of 50% across all fonts were 
used to compute a confusion matrix, which was compared with 
six published empirical matrices derived from human errors (see 
Methods). Pearson’s correlations between each empirical confusion 
matrix and the model’s confusion matrix are reported in Fig.  3a. 
The mean correlation between model and human confusion matri-
ces was 0.51 (P <  0.001), approaching the mean cross-correlation 
across the confusion matrices of the empirical studies (0.56). This 
implies that the model captured most of the variance that is repro-
ducible across empirical studies. The correlations with the confu-
sion matrix derived from read-out errors at layer H1 were smaller 
(see Supplementary Table 1). We also analysed the model’s internal 
representations at layer H2 to compute their similarity across all let-
ter pairs (see Methods) and compared them with human similarity 
judgments. Note that similarity judgments are a more direct mea-
sure of letter similarity and do not depend on the unusual condition 
of high visual noise that is used to compute letter confusability46. The 
corresponding dendrogram obtained through hierarchical cluster-
ing (Fig. 3b) shows that letters sharing visual features are mapped 
into more similar internal representations; for example, there are 
separate clusters for letters E–F–P–B, C–G–O–Q, T–I and Y–V. This 
means that, even though unsupervised deep learning successfully  

untangles the sensory representations by making them more 
orthogonal (that is, linearly discriminable), the original similarity 
space is still preserved. The similarity matrix obtained from the 
model’s internal representations (see Supplementary Fig. 4) showed 
an average correlation of 0.52 (range: 0.47–0.57) with those mea-
sured in empirical studies. The average correlation with the similar-
ity matrix measured at the H1 layer was smaller (0.46). To further 
quantify the agreement between the similarity matrices resulting 
from the model and those from empirical studies, we examined all 
possible (non-identical) letter triples and computed which pair of 
letters was considered most similar. The mean agreement was 54% 
for layer H2 and 47% for layer H1; the mean agreement between 
empirical studies was 78%.

We also investigated whether recognition performance in the 
model was modulated by the complexity of the visual stimuli, as 
observed in  previous psychophysical studies47. In particular, we 
computed the perimetric complexity of each stimulus, which is 
defined as the perimeter squared divided by the total area occupied 
by the letter47, and we performed a linear regression using the mean 
perimetric complexity of each of the 14 fonts in the dataset as a pre-
dictor. The dependent variable was the mean recognition accuracy 
for each font obtained with the noise level producing an average 
identification performance of 50% across all fonts (Fig. 3c). In line 
with the findings of Pelli et al., we found a strong, negative correla-
tion (r2 =  0.71), suggesting that recognition accuracy in the model 
was indeed proportional to the visual complexity of the stimuli.  
A ranking of all fonts according to mean identification accuracy is 
reported in Fig. 3d. Note that all fonts belonging to the Serif typeface 
are placed at the bottom of the list, which implies that they are more 
difficult to discriminate in noisy conditions. Indeed, serifs produce 
more complex forms that entail a larger number of component fea-
tures, which are more prone to be disrupted by visual noise. This 
hypothesis is further supported by the fact that the same negative 
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correlation was also found at the H1 layer (r2 =  0.58), where letters 
are not encoded using their global shape, but rather by a combina-
tion of simple, basic features. This result corroborates the empirical 
finding that serifs might not provide an advantage, but rather a cost, 
in the recognition of printed words48.

We finally investigated the spatial-frequency characteristics of 
the visual information transmitted through the model and mediat-
ing letter identification. Despite the fairly broad spatial-frequency 
spectrum of letters, their identification by human observers is medi-
ated by a relatively narrow, octave-wide, band-pass channel ranging 
from two to four cycles per letter18,49,50. The effect of filtering can be 
measured by a psychometric contrast–sensitivity function defined 
as the lowest contrast that affords identification accuracy above an 
arbitrary defined threshold. We simulated contrast–sensitivity func-
tions for low- and high-pass filters with cut-off frequencies ranging 
from 0.8 to 6.6 cycles per letter by measuring identification accu-
racy on letters printed at contrast levels ranging from 0.14 to 3.0  
(see Methods). Low-pass filtering with low cut-off frequency main-
tains only blob-like features, which alone do not permit letter iden-
tification at lower contrasts (Fig. 4a), while high-pass filtering with 
high cut-off frequency only transmits contours, which do not allow 
identification either (Fig. 4b). As shown in Fig. 4c, the curves repre-
senting the threshold as a function of the cut-off frequency revealed 
a critical role of spatial-frequency content limited to a narrow band 
centred at about three cycles per letter: when this critical spectrum 

was filtered out, the identification accuracy dramatically dropped, 
preventing identification above the threshold for any contrast level 
(missing points in the graph). This closely matches the spatial-
frequency band transmitted by the perceptual channel mediating 
letter identification in the human visual system, suggesting that 
this might indeed be the frequency band conveying the most reli-
able visual information for identification of visual symbols. One 
potential caveat is that spatial frequency tuning in human observers  
is modulated by letter size51, but the limited range of sizes of  
our letter images prevents us from investigating this phenomenon 
with model simulations.

Overall, our model shows that high-level letter features, up to 
whole-letter shapes, can be learned in a deep neural network from 
simply ‘observing’ realistic (pixel-level) images of printed let-
ters, without providing information about what was presented as 
input. That is, in contrast to popular deep learning systems based 
on discriminative learning (which are very successful in real-world 
applications3), learning in our model did not require supervision or 
reward because its goal was only to fit a hierarchical generative model 
to the sensory data6. Importantly, in line with the ‘transfer learning’ 
approach used in machine learning52,53, we showed that learning 
visual symbols benefits from having part of the generative model 
representing domain-general visual knowledge derived from natu-
ral images, which is then recycled to support domain-specific learn-
ing. Linear read-out from the emergent high-level representations  
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allowed us to simulate human performance in letter identification 
tasks and revealed visuospatial properties of letter perception in the 
model consistent with psychophysical data. The results also sug-
gest that the model’s representational space is aligned with that of 
human observers. Our model offers a unified account of theoretical 
approaches to letter perception: indeed, low-level visual representa-
tions in the model rely both on localized geometric detectors, in 
line with feature-based theories1,18,47, as well as on more distributed 
filters, such as high-frequency gratings, as promoted by spatial fre-
quency models49. Such basic features are then combined into more 
structured shapes, which can serve as prototypical letter detectors 
supporting an efficient form of template matching54.

Although our model shows that the statistical properties of nat-
ural images constitute a useful starting point for learning culture-
specific written symbols, it does not implement the possibility that 
the acquisition of cultural artefacts reshapes pre-existing neuronal 
circuits, as proposed in the broader neuronal recycling hypothesis7. 
In our model, letter-specific representations were created by reus-
ing natural visual features, while neuroimaging studies suggest that 
learning written words refines the organization of extrastriate corti-
cal areas13. Nevertheless, it is still unclear whether letter learning 
shapes earlier visual processing stages, because in our simulations 
the apparent tuning to letters in the early visual stages44 simply 
reflects the fact that the visual structure of written symbols matches 
the statistics of natural environments8.

A practical implication of our simulation study is that it offers an 
objective index of letter discriminability across a variety of fonts and 
styles. There is growing interest in how the visual properties of print 
affect reading performance, both in skilled readers48 and in children 
with dyslexia55. Moreover, new fonts have been developed and mar-
keted as means to improve the legibility of text, typically without 
empirical support. Our results show that Sans Serif fonts yield the 
best recognition performance, suggesting better readability com-
pared with Serif fonts that are widely used in newspapers and books, 
even for children. Note, however, that there is no consensus about 
the readability of different typefaces, despite decades of empirical 
investigation56, possibly because print legibility is also affected by 
factors such as case, width and spacing between letters57. Our study 
further contributes to the suggestion that print legibility might also 
be affected by the correspondence between character primitives and 
those present in natural images.

Useful extensions to the present work should incorporate learn-
ing over lowercase letters, with the aim of creating case-invariant let-
ter identities. Another promising research direction would be to test 
whether the set of natural visual features discovered by our model 
could also be used to represent written symbols belonging to other 

alphabets and scripts58, which can look very different but might 
still be reduced to a common set of basic representational primi-
tives. Finally, our letter perception model can be used as a build-
ing block to develop realistic models of visual word recognition. 
Indeed, leading computational models of reading development23,24 
lack a realistic visual front end, despite the fact that letter knowledge 
has shown to be one of the best predictors of later reading ability59. 
This would enable the investigation of how orthographic processing 
might emerge from unsupervised generative learning (for prelimi-
nary ‘toy models’, see5,20,28), thereby paving the way for full-blown, 
large-scale simulations of reading acquisition in both normal and 
atypical development.

Methods
Image datasets. We used a freely available dataset containing a large number 
of grey-scale pictures of natural scenes38 from which we extracted 80,000 small 
patches of 40 ×  40 pixels with values ranging between 0 (black) and 1 (white).  
Grey-scale 40 ×  40 pixel bitmaps of the 26 Latin uppercase letters were generated 
using MATLAB v.2012a (www.mathworks.com). Variability in visual appearance 
was obtained using seven Serif fonts (Bookman Old Style, Cambria, Century, 
Courier New, Georgia, Lucida Bright and Times New Roman) and seven  
Sans Serif fonts (Arial, Arial Narrow, Calibri, Dotum, Helvetica, Tahoma and 
Verdana). Each letter occurred in five different sizes (22, 24, 26, 28 and 30 pixels), 
two different weights (bold or not bold) and two different styles (italic or not italic).  
The position in the visual field was varied according to a combination of x and y 
axis offsets (horizontal and vertical shifts of ±  1 pixel). Combining all these factors 
of variation produced 2,520 versions of each letter, for a total of 65,520 letter 
images. See Supplementary Methods for additional details.

Unsupervised deep learning. The deep belief network was built as a stack of 
restricted Boltzmann machines (RBMs) trained using the contrastive divergence 
algorithm4, which implements an approximate form of maximum-likelihood 
learning. Each RBM consists of two layers of stochastic neurons, fully connected 
with symmetric weights and without self-connections, where each neuron fires 
with a probability depending on the weighted sum of its inputs (see Supplementary 
Methods for details). Data patterns are represented by the activation of visible 
neurons, while an additional layer of hidden neurons captures high-order 
statistics and represents the latent causes of the data60. The first-layer RBM had 
1,600 visible neurons (40 ×  40 pixel images) and 1,000 hidden neurons (varying 
the number of hidden neurons between 600 and 1,400 did not affect the type of 
features extracted). The second-layer RBM had 1,300 hidden neurons (varying 
the number of hidden neurons between 900 and 1,500 did not affect the type of 
features extracted, nor the performance of the read-out). The letter training set was 
created by randomly selecting 50% of the patterns present in the complete dataset, 
for a total of 32,760 patterns; the remaining 32,760 were used as a test set. Learning 
occurred in a layer-wise fashion4.

Supervised read-out. The read-out layer was modelled as a linear network 
mapping the activation of hidden neurons onto letter classes encoded in a localistic 
(that is, ‘one-hot’) fashion. Connection weights were derived using a simple form 
of supervised learning61. Read-out accuracy was measured on the separate test set 
containing the patterns that were not used to train the generative model. Input 
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degradation was implemented by adding zero-mean Gaussian noise to the test 
images. See Supplementary Methods for additional details.

Confusion errors and similarity matrix. The classification errors made at the 
performance level of about 50% were used to compute a 26 ×  26 confusion matrix, 
which was compared with six published empirical matrices derived from human 
errors on uppercase letters62–66. Confusion errors were collected on the separate test 
dataset. In accordance with established methodological practice, only off-diagonal 
elements were considered65,67, and confusion matrices were made symmetrical 
by averaging the upper and lower triangular matrices68. The letter similarity 
matrices at layers H1 and H2 were obtained by computing Euclidean distances 
(L2 norm) among average hidden activation patterns corresponding to each letter 
in the dataset. Agglomerative hierarchical clustering was then performed on the 
similarity matrix to group together similar letters using as a clustering metric the 
sample correlation between points. Similarity matrices were compared with three 
published empirical matrices69–71.

Contrast–sensitivity profiles. Contrast–sensitivity profiles72 were simulated by 
setting a cut-off frequency that was either 0.8, 1.0, 1.3, 1.5, 1.9, 2.3, 2.9, 3.5, 4.4,  
5.4 or 6.6 cycles per letter. Input to the model consisted of frequency-filtered letters 
(Bookman Old, 28 pt) presented at contrast levels (letter luminance increment 
divided by background luminance) that were either 0.14, 0.23, 0.39, 0.65, 1.08, 
1.80 or 3.00 and superimposed on Gaussian noise with a noise root mean squared 
contrast of 0.2. The threshold contrast at each frequency was defined as the 
minimum contrast level at which the average readout accuracy was at least 66%. 
Spatial filtering of letters was performed in the frequency domain using forward 
and backward discrete fast Fourier transform. A disk-shaped filter with a slightly 
smoothed border centred on the cut-off frequency was used to remove either the 
high- or low-frequency spectrum in the low- and high-pass filtering, respectively. 
A similar approach has independently shown that convolutional deep networks 
trained with supervised learning can also account for the effects of spatial-
frequency channels and perimetric complexity73.

Code availability. The complete source code of our deep learning model, our 
printed letter dataset and the confusion and similarity matrices resulting from 
our simulations are available for download at https://osf.io/s6ytk. We provide two 
efficient implementations on CUDA graphic processing units, running both on 
MATLAB and Python v.2.7 (www.python.org). Detailed information on how to use 
the source code is provided in a previously published open-access article74.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon request.
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Supplementary Figures 

 

 

 

Supplementary Figure 1: The complete set of receptive fields developed in the first hidden layer. 

 



 

Supplementary Figure 2: The complete set of receptive fields developed in the second hidden layer. 

 



 
Supplementary Figure 3: Progressive refinement of read-out accuracy following unsupervised 

learning on the reduced dataset. Accuracy was computed both on the Arial and Times test patterns 

(left panel) and on the full set of test patterns (right panel), which included all fonts.  

 

 

Supplementary Figure 4: Letter similarity matrix obtained on the model internal representations 

(left panel) and by averaging the human similarity judgments of three published studies (right panel). 

Ordering of the letters is optimized by hierarchical clustering. Lighter colors indicate higher 

similarity: clusters of similar letters are highlighted by the yellow-colored groups along the main 

diagonal. 



 

 

Supplementary Figure 5. (a) The set of Arial letters, followed by noisy versions created with 

increasing levels of Gaussian noise (std.dev. = 0.1, 0.4, 0.7, 1.1). (b) The set of Arial letters after 

whitening. (c) Pseudoletters produced by rotating uppercase letters using the same procedure 

adopted in the study of Chang and colleagues1. Their original set of stimuli is reported in panel (d). 

  



Supplementary Tables 

 

Supplementary Table 1: Pearson correlation coefficients between empirical confusion matrices and 

the confusion matrix derived from model’s errors when read-out is applied to layer H1. 

 

Empirical study Model correlation 

Townsend-1 (1971) .62 

Townsend-2 (1971) .46 

Gilmore et al. (1979) .26 

Loomis (1982) .29 

Phillips at al. (1983) .40 

Van Der et al. (1984) .58 

Average correlation .45 

 

  



Supplementary Methods 

 

Natural images and printed letters datasets. We used a published, freely available natural image 

dataset containing a large number of gray-scale pictures of three subjects: the Yosemite park, the 

Liberty state and the Notre Dame cathedral2. Though it might seem counterintuitive to also consider 

human-made artifacts as natural scenes, it has been shown that the types of spatial structures 

present in “wild” environments give rise to statistical visual features similar to those learned from 

more anthropomorphized environments3. Datasets that include human artifacts might better reflect 

the everyday visual experience of people living in developed countries. Gray-scale, 40x40 pixel 

bitmaps of the 26 Latin uppercase letters were created using the getframe MATLAB function. Pixel 

values ranged between 0.2 (plain background) and 0.8 (maximum signal strength). This allowed to 

manipulate the original stimuli by adding Gaussian noise during the simulations, as explained below. 

The small variability in size and location of each letter was added to make learning more robust: our 

model is primarily concerned about shape invariance and geometric similarity among input patterns, 

while scale and position invariance could be obtained by including other processing mechanisms 

such as convolution and max-pooling operations4. 

Whitening algorithm. Following previous research5, pre-processing occurring in the retina and LGN 

was implemented as a 1/f  whitening algorithm that used a filter in the frequency domain designed 

to flatten the spectrum of natural images. Since the power spectrum of natural images tends to fall 

as 1/f2, the amplitude spectrum falls as 1/f. Thus, the amplitude spectrum of the whitening filter rose 

linearly with frequency, to compensate for the 1/f amplitude spectrum of natural images. Moreover, 

to avoid highlighting high-frequency noise, the filter was multiplied by a two-dimensional Gaussian, 

thereby obtaining a center-surround type of filter. This filter was applied on the images in the 

frequency domain. Then, local contrast normalization was obtained by dividing the value of each 

pixel by the standard deviation of the total activity of its neighborhood, using a Gaussian 

neighborhood with a diameter of 20 pixels. Whitened letter images are shown in Supplementary Fig. 

5b. 



Unsupervised deep learning details. Our unsupervised deep learning model was implemented as a 

deep belief network6,7 composed by a stack of Restricted Boltzmann Machines (RBMs). The dynamics 

of each RBM is driven by an energy function E that describes which configurations of the neurons 

are more likely to occur by assigning them a probability value: 

Z

e
hvp

hvE ),(
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

  

where v and h are, respectively, the visible and hidden neurons and Z is a normalizing factor known 

as partition function, which ensures that the values of p constitute a legal probability distribution 

(i.e., summing up to one). The restricted connectivity of RBMs does not allow intra-layer 

connections, resulting in a particularly simple form for the energy function: 

WvhhcvbhvE TTT ),(  

where W is the matrix of connections weights and b and c are the biases of visible and hidden 

neurons, respectively. 

RBMs were trained in a greedy, layer-wise fashion using 1-step contrastive divergence8. This learning 

procedure minimizes the Kullback-Leibler divergence between the data distribution and the model 

distribution. Accordingly, for each pattern the network performs a data-driven, positive phase (+) 

and a model-driven, negative phase (-). In the positive phase all the visible neurons are clamped to 

the current pattern, and the activation of hidden neurons is computed as a conditional probability: 
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where n is the total number of hidden neurons, and the activation probabilities for each individual 

neuron are given by the logistic function: 
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where m is the total number of visible neurons, bj is the bias of the hidden neuron hj and wij 

represents the connection weight with each visible neuron vi. During the negative phase, the 

activation of the hidden neurons corresponding to the clamped data pattern is used in an analogous 

way to perform top-down inference over the visible neurons (model’s reconstruction), which are in 

turn used to update the state of the hidden neurons. Connection weights are then updated by 

contrasting visible-hidden correlations computed on the data vector (v+
h

+) with visible-hidden 

correlations computed on the model’s reconstruction (v 
– 

h 
– ): 

)(   hvhvW   

where η is the learning rate. 

For the layer trained with patches of natural images, learning was performed for 200 epochs with 

learning rate of 0.03, momentum coefficient of 0.8 and weight decay factor of 0.0001. Patterns were 

learned in a mini-batch scheme with 100 examples per batch. For the layer trained on printed 

letters, learning was performed for 120 epochs with learning rate of 0.01, momentum coefficient of 

0.9 and decay factor of 0.000004. Patterns were learned in a mini-batch scheme of size 91. Learning 

in this layer was also weakly constrained by a sparsity factor that forced the network’s internal 

representations to rely on a limited number of active hidden neurons. Sparsity was implemented by 

driving the probability of a unit to be active to a given low probability, which was set to 0.19–11. The 

two layers required different learning hyperparameters because the training distributions were 

different in nature and complexity. Although there exist some automatic procedures that try to 

optimally set the values of some hyperparamters12 we preferred to not employ them in order to 

keep the learning algorithm as simple as possible. We also note that some authors have recently 

used real-valued RBMs to model natural image patches13,14, resulting in low-level features 

comparable to those learned by our model. 

Supervised read-out details. A read-out, linear classifier was used to associate data patterns P = 

{P1, P2, …, Pn} with desired categories L = {L1, L2, …, Ln} by means of the following linear mapping: 

WPL   



where P and L are matrices containing n column vectors that correspondingly encode patterns Pi  

and binary class labels Li, and W is the weight matrix of the linear classifier. If an exact solution to 

this linear system does not exist, a least-mean-square approximation can be found by computing the 

weight matrix as: 

 LPW  

where P+ is the Moore-Penrose pseudo-inverse15,16. In our implementation, we used an efficient 

implementation of the pseudo-inverse method provided by the “backslash” operator in MATLAB. 

Drop in performance following input degradation was measured by adding to the test patterns an 

increasing amount of zero-mean Gaussian noise with standard deviation ranging from 0.1 up to 1.5, 

with a step of 0.1 (samples of letters at different noise levels are reported in Supplementary Fig. 5a). 

Noise was always truncated at two standard deviations. Generalization was improved by extending 

the classifier training dataset with a noisy copy of each pattern, which was created by independently 

adding to each image pixel a noise value sampled from a zero-mean Gaussian distribution with 

standard deviation of 0.3. 

Overall activity for natural images, letters and pseudoletters. Representational selectivity at 

different levels of the hierarchy was tested by analyzing how responses in H1 and H2 were 

modulated by the type of visual input. We probed the network with three different types of visual 

input: randomly selected stimuli from the natural images dataset; a set of uppercase letters; and a 

set of corresponding “pseudoletters”. To this aim, from the test set we selected the patterns 

containing the letters used in the study of Chang and colleagues1:  A K Y H F T L . The letter X 

was excluded for simplicity, because its rotated version was not produced using a canonical angle 

(multiple of 90 degrees). To more closely match the type of stimuli used by Chang and colleagues, 

we only selected letters printed in the Arial font, with no variations in weight, size, style and 

position. In order to increase variability, we then created 5 copies of each letter by adding a small 

amount of Gaussian noise (std.dev. = 0.01), resulting in a total of 35 patterns. For each pattern, we 

created the corresponding pseudoletter by performing the same transformations (flipping and 

rotations) applied by Chang and colleagues (one sample for each pseudoletter is shown in 

Supplementary Fig. 5c; the original set of pseudoletters used by Chang and colleagues is shown in 



Supplementary Fig. 5d). For each type of stimuli, we computed the corresponding mean activation 

norm (L2) of hidden neurons in layers H1 and H2, and performed paired t-tests to assess activation 

difference at each layer. Activation norm was used to acknowledge the fact that cerebral activation, 

via neurovascular coupling, is driven by both inhibitory and excitatory neurons. Theoretically, this 

proxy for neuronal activity appeals to the fact that any deviation from (non-equilibrium) steady-state 

will increase cerebral metabolism, through the equivalence between thermodynamic and 

informational free energy17,18. For the comparison with natural images, the mean activation norm 

was computed on a random sample of 35 patches. 

 

  



Supplementary Results 

 

Representational selectivity for letters vs. mirror letters. We tested whether the effect reported in 

Fig. 2c was present also for mirror images of letters. We selected 7 letters presenting horizontal 

asymmetries (F J K L N R Z; three were the same used to create pseudoletters) and flipped them 

along the vertical axis. We did not find a significant difference in the H1 activation norm for mirror 

vs. canonical letters (t(34) = 1.861, p > .05, d = 0.315). The difference was still present at layer H2 

(t(34) = 3.040, p < .01, d = 0.514), which was expected given that it learned to represent canonical 

letters.  

Read-out performance with random networks. Networks with randomly generated weight matrices 

were used as a baseline. Indeed, it has been shown that random networks can support surprisingly 

good performance in classification tasks19,20. In one set of control simulations we used as input to the 

read-out the internal representations of a single-layer random network. The network had 1000 

hidden units and its weight matrix was initialized using a Gaussian distribution with zero mean and 

several different values of standard deviation (std.dev. = 10; 1; 0.5; 0.1; 0.01), thereby yielding 5 

different versions of random network. The results reported in Fig. 2e represent the random network 

that achieved the best recognition performance (random weights with std.dev. = 0.1). In a second 

control simulation we used a two-layer architecture obtained by stacking a Restricted Boltzmann 

Machine (RBM) on top of the single-layer random network described above. This additional RBM 

was trained on the letter dataset as in the main simulation. We found that read-out performance 

from the RBM’s internal representations (i.e., top layer of the network) never improved in 

comparison to the single-layer random network. These results show that the features obtained by 

projecting the image through a random matrix are inadequate, both for decoding and as 

intermediate level for learning letter representations.  

Read-out performance without recycling natural image features. To better assess the importance 

of H1 features as an intermediate representation level, we also tested the read-out accuracy on a 

deep belief network trained directly on the whitened letter images. The deep network was 

composed by a stack of two RBMs using the same learning scheme described above. The only 



difference was that the connection weights of the first-level RBM were not learned on natural 

images, but rather all weights were adjusted by generative learning on the printed letter dataset. To 

make the comparison easier, we adopted the same processing architecture, with 1000 neurons in 

the first hidden layer and 1300 neurons in the second hidden layer. Though read-out from the 

deepest layer was better than from the first hidden layer, performance was always worse in 

comparison to the model that recycled natural image features (see Fig. 2e). 

Reduced training set for the unsupervised learning phase. Results reported in Fig. 2e show the 

read-out performance when the classifier was trained on the reduced dataset (i.e., Arial and Times 

fonts). However, unsupervised learning in the deep belief network still relied on prolonged exposure 

(120 epochs) to the full training dataset (32760 patterns). Indeed, the high dimensionality of the 

parameter space in deep neural networks normally implies that thousands of training examples must 

be used to avoid overfitting issues21,22, which is in sharp contrast with the limited amount of 

experience often required by human learners23. In a final set of control simulations, we therefore 

tested the deep network performance when also unsupervised learning was strongly reduced. To 

this aim, only the two prototypical fonts (Arial and Times) were selected, and only 50% of the 

resulting patterns were included in the training dataset. This reduced set included 4680 patterns, 

less than 15% of the original training set. Moreover, the learning trajectory of the network was 

tracked by measuring read-out accuracy after every 40 epochs. The read-out classifier was trained 

on the same training set used for the unsupervised learning (see previous simulations for all other 

details). Classification accuracy was then measured on two different test sets: one including only the 

remaining 50% of Arial and Times patterns, and one with all test patterns used in the main 

simulations, thereby including all fonts. Test images were corrupted by a fixed level of Gaussian 

noise (std.dev. = 0.4). As shown in Supplementary Fig. 3, read-out performance for the deep network 

trained with recycling (blue curves) was remarkable even at early learning stages, especially when 

the read-out involved the same fonts seen during learning (left panel of Supplementary Fig. 3). The 

network trained without recycling (red curves) showed a gap in performance that was particularly 

marked at the early stages of learning. This shows that natural image features constitute a privileged 

starting point for learning visual symbols. Note that transfer of perceptual knowledge in deep 

networks has also been simulated across different writing scripts, such as Latin and Farsi24. 
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