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Abstract

In humans, efficient recognition of written symbols is thought to rely on a
hierarchical processing system, where simple features are progressively
combined into more abstract, high-level representations. Here, we present a

computational model of Persian character recognition based on deep belief

networks, where increasingly more complex visual features emerge in a
completely unsupervised manner by fitting a hierarchical generative model to
the sensory data. Crucially, high-level internal representations emerging from
unsupervised deep learning can be easily read out by a linear classifier,
achieving state-of-the-art recognition accuracy. Furthermore, we tested the
hypothesis that handwritten digits and letters share many common visual
features: A generative model that captures the statistical structure of the letters
distribution should therefore also support the recognition of written digits. To
this aim, deep networks trained on Persian letters were used to build high-level
representations of Persian digits, which were indeed read out with high
accuracy. Our simulations show that complex visual features, such as those
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mediating the identification of Persian symbols, can emerge from
unsupervised learning in multilayered neural networks and can support
knowledge transfer across related domains.
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Introduction

Reading is a key human ability, and the use of written symbols such as letters
and digits is a hallmark of our cultural evolution. Efficient recognition of visual
symbols might be facilitated by the hierarchical organization of our primate
visual system (Felleman and Van Essen 1991 ), which processes complex visual
information by relying on multiple levels of representation (Kruger et al. 2013).
According to the local combination model (Dehaene et al. 2005 ; Vinckier et al.

2007), orthographic processing is supported by a multi-level architecture: Basic

visual features (such as edges and curvatures) are gradually combined into more
complex visual features (such as simple geometrical shapes and letter
fragments), which allow to identify written characters through their component
features (Grainger et al. 2008). However, despite the recent progress in
dissecting the functional organization of orthographic processing using
neuroimaging and psychophysical studies, its underlying neural mechanisms
remain poorly understood. In particular, learning to read requires extensive
practice and profoundly reshapes our visual system (Dehaene et al. 2010) but, at
present, all leading computational models of reading lack a realistic, visual front-
end (Finkbeiner and Coltheart 2009 ; Grainger et al. 2016).
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In this article, we simulate the early stages of visual character recognition using
an unsupervised deep learning approach (Zorzi et al. 2013 ; Testolin and Zorzi
2016). Our model is based on deep neural networks (Hinton and Salakhutdinov
2006; Bengio 2009), which have recently become very popular because of their
impressive performance in difficult machine learning tasks, such as object
recognition (Krizhevsky et al. 2012), speech processing (Mohamed et al. 2012)
and natural language understanding (Collobert and Weston 2008). To differ from
“shallow” models, deep learning systems rely on multiple layers of processing to
extract high-order statistical information from the data. At present, deep
networks are mostly trained in a supervised fashion (LeCun et al. 2015).
However, the assumptions that learning is largely discriminative and that an
external teaching signal is available at each learning event are implausible both
from a psychological and from a biological perspective (Zorzi et al. 2013 ; Cox
and Dean 2014 ). Here, we show that high-level hierarchical representations of
written symbols can emerge in a completely unsupervised way by fitting a
probabilistic generative model to the data distribution, where the objective of
learning is only to accurately reconstruct the input patterns from a set of latent
variables organized in multiple layers (Hinton 2007). In other words, the model
is not trained with labeled examples to perform a discriminative task, because
the goal is rather to infer the latent structure contained in a set of unlabeled
patterns. We show that high-level representations emerging from unsupervised
learning can be easily read out by a linear classifier and can be even used to
represent input patterns that are not from the same distribution as the training
distribution. This suggests that abstract features discovered through unsupervised
deep learning can be readily used to transfer perceptual knowledge across related
domains (Pan and Yang 2010).

Despite the worldwide diffusion of Arabic languages, most of the research on
handwritten character recognition is focused on Latin, Chinese and Kanji
symbols (e.g., Fukushima 1988 ; LeCun and Cortes 1998 ; Hinton and
Salakhutdinov 2006 ; Ciresan and Schmidhuber 2015). Here, as a case study we
applied unsupervised deep learning on two datasets of Persian handwritten
characters, which include both handwritten digits (Khosravi and Kabir 2007)
and letters from the Farsi alphabet.! Persian character recognition is particularly
challenging due to the high similarities between symbols and high variation in
appearance caused by different writing styles (note that Farsi is an exclusively
cursive script). Moreover, discrimination between similar symbols often relies on
fine-grained details, such as the placement of dots or zigzag bars: Many Persian
letters have one, two or three dots located above or below the main pattern.
While the dots appear isolated in printed documents, two or three dots are often
grouped together in handwritten letters and are shaped as a caret, dash or tilt
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based on handwriting style. An additional complexity is due to the fact that
letters are shaped differently based on the surrounding context, that is, the
writing pattern changes depending on the adjacent letters that will be linked to it.
The first letter of a word is joined from the left, the middle letters are joined
from both sides and the last letter is joined from the right. This high variability
in shapes and styles makes Persian symbols particularly suited to test the
effectiveness of our modeling framework.

In a first set of simulations, we used two separate deep networks for learning
digit and letter shapes. After unsupervised deep learning, we trained a simple
linear readout on the top-level representations extracted by the networks in order
to classify a separate set of test patterns. In line with previous results on Latin
digits (Testolin et al. 2013), the linear readout achieves very high classification
accuracy also with the challenging Persian script. This suggests that high-level,
abstract representations of sensory patterns can be discovered by only relying on
unsupervised learning. In order to investigate the internal representations learned
by the networks, we conducted qualitative analyses on the type of visual features
created at different layers of the hierarchy, and we analyzed the confusion errors
produced by the models.

In a second set of simulations, we tested the hypothesis that handwritten digits
and letters share many common features and that a generative model that
captures the statistical structure of the letter distribution might also support the
recognition of handwritten digits. We therefore used the deep network trained as
a generative model on the letter dataset to create a high-level representation of
the digit images, and then, we trained a linear readout to classify such
representations with the corresponding digit labels. Notably, the recognition
accuracy remains extremely high, suggesting that perceptual knowledge
extracted from one domain can be readily transferred to perform tasks on related
domains. Furthermore, we also tested the transfer ability among different family
of scripts by using the deep network trained on Persian letters to read out the
identity of Latin handwritten digits (MNIST dataset; LeCun and Cortes 1998).
We found that, also in this case, the recognition accuracy remains high,
suggesting that different writing systems share many commonalities that can be
captured by a hierarchical generative model.

The rest of the paper is organized as follows: In “Unsupervised learning of
hierarchical representations” section, we briefly review the theoretical
foundations of unsupervised deep learning, focusing on deep belief networks and
discussing how this framework can be exploited in transfer learning scenarios. In
“Materials and methods™ section, we give a detailed description of our
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unsupervised deep learning model, and we describe the simulation procedure. We
also give details about the Persian datasets that we used, along with an overview
of the state-of-the-art recognition systems tested on this dataset. In “Results”
section, we present the results, which are summarized and further discussed in
“General discussion” section. “Conclusions” section concludes the paper and
provides directions for future research.

Unsupervised learning of hierarchical
representations

Deep learning architectures efficiently structure the representation space by
promoting feature reuse, so that higher layers combine simpler features from
lower layers in order to build more abstract representations of the input (Bengio
2009). Visual processing can therefore be conceived as a series of nonlinear
transformations over the sensory manifold, in order to build more abstract,
internal representations that are invariant to irrelevant changes in visual
appearance (DiCarlo et al. 2012). In the context of unsupervised deep learning,
the learning objective is not tied to any specific classification task. Instead, the
aim of the system is to learn an internal model of the environment that can be
used to interpret and anticipate sensory information (Clark 2013 ; Sigaud and
Droniou 2015). Notably, unsupervised deep learning can discover extremely
high-level representations of the sensory data, such as the shape of prototypical
faces (Le et al. 2012) or the approximate numerosity of visual sets of objects
(Stoianov and Zorzi 2012).

Deep learning architectures are created by stacking together simpler modules,
such as restricted Boltzmann machines (RBMs; Hinton et al. 2006). RBMs are
stochastic, recurrent neural networks that learn to reconstruct the sensory input,
where feedback connections carrying top—down expectations are gradually
adjusted to better reflect the observed data (Ackley et al. 1985). RBMs rely on a
set of hidden neurons to model the latent causes of the data vectors, which are
presented to the network through a set of visible neurons. The network
connectivity is constrained in order to obtain a bipartite graph (i.e., there cannot
be connections within the same layer). The behavior of the network is driven by
an energy function £, which implicitly defines the joint distribution of the hidden
and visible neurons by assigning a probability value to each of their possible
configurations:

—E(v,h)

Z

p (v, h) =

where v and & are the column vectors containing the values of the visible and
hidden neurons, respectively, and Z is a normalization factor. The energy
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function is parameterized according to the weights of the connections between
visible and hidden neurons:

EW,h)==b"v—cTh— KWy

where W is the matrix of connection weights, b and ¢ are two additional
parameters known as unit biases, and T denotes the transpose operator. Since
there are no connections within the same layer, hidden neurons are conditionally
independent given the state of visible neurons (and vice versa). Learning in
RBMs can be efficiently performed using approximated maximum-likelihood
algorithms, such as contrastive divergence (Hinton 2002 ). Weight change is
computed according to a Hebbian-like learning rule:

AW =n (viH" —vTh7)

where 7 represents the learning rate, v i are the visible-hidden correlations
measured on the training data (positive phase) and v 4 are the visible—hidden
correlations measured on the actual model’s expectations (negative phase). The
reader could refer to (Hinton 2010; Zorzi et al. 2013 ) for more details about
RBMs and for the explanation of important additional hyper-parameters of the
learning algorithm.

A deep belief network is built by stacking together multiple RBMs, which are
learned in a layer-wise fashion, that is, the nth layer is trained after training is
completed for the nth — 1 layer. In this way, the hierarchical generative model is
built at separate stages, first starting with simpler features that are kept fixed in
order to subsequently learn the more complex ones. After the first RBM has been
learned (lower part of Fig. 1a), the activities of its hidden neurons are used as
input for a second RBM (higher part of Fig. 1a), with the aim of extracting
higher-order correlations from the original data. We can then discard the bottom—
up connections of the first RBM and only keep the top—down connections in
order to obtain the composite generative model shown in Fig. 1b.

Fig. 1

a In order to build a deep belief network with two hidden layers, two separate
restricted Boltzmann machines (RBMs) are learned in a greedy, layer-wise fashion,
where the higher-level RBM is trained by using the hidden layer activities of the
lower RBM as input data. b The resulting generative model is produced by
stacking together the two RBMs. Note that the connections in the lower layer of
the composite generative model are directed (adapted from Hinton 2007). c
Graphical representation of our deep learning model. Undirected connections
entail unsupervised, generative learning, while directed arrows on the top layer
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indicate supervised learning (linear readout). Numbers represent the size of each
layer for one of the deep architectures investigated in our study
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Knowledge transfer with unsupervised deep learning

Many cognitive tasks require reusing knowledge acquired in one domain to
perform one or more tasks in a someway-related domain, without needing to
learn the new task completely from scratch. In particular, given a source domain
and a source learning task and a target domain and a target learning task, transfer
learning aims to improve learning of the target predictive function using the
knowledge in the source domain and source task, with the assumption that source
and target domains are different but share a common feature space (Pan and
Yang 2010). This scenario is closely related to the problem of representation
learning (Bengio et al. 2013 ) and semi-supervised learning (Chapelle et al.
2006), where the learner uses unlabeled data in order to improve the quality of
the features used to solve discriminative tasks. A popular way to build transfer
learning systems is to use a feature-representation-transfer approach (Raina et al.
2007), where unsupervised learning is used to extract a good feature
representation for the target domain. Unsupervised deep learning fits particularly
well with this setting, because hierarchical generative models allow to encode
abstract features using multiple levels of representation (Bengio 2011 ; Zorzi et
al. 2013). In our model, complex features emerging from generative learning in
one domain (i.e., handwritten letters) were successively used to also represent
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and classify patterns coming from a different—but related—domain (i.e.,
handwritten digits).

Materials and methods

Learning architecture and simulations details

Our unsupervised deep learning architecture is composed of a stack of three
RBMs. An additional, feed-forward layer is used to read out the top-level
internal representations of the hierarchical generative model (Fig. 1¢).

Unsupervised deep learning

We considered five different deep architectures, with a varying number of hidden
neurons. The size of the first hidden layer was always fixed to 500 neurons,
while the second and third layers varied between {500, 1000, 1500} and {2000,
3000} neurons, respectively. Learning parameters were set according to practical
suggestions published in the literature (Hinton 2010; Zorzi et al. 2013). In
particular, we used 1-step contrastive divergence learning with a learning rate of
0.0001 and a momentum coefficient of 0.9, which was initialized to 0.5 for the
first few epochs. Learning was performed for 100 epochs using a mini-batch
scheme, with a batch size of 100 patterns for the digit dataset and 300 patterns
for the letter dataset. In this way, each mini-batch was expected to contain on
average one example for each class. All the simulations were performed using an
efficient implementation of deep belief networks that exploits graphic processors
(Testolin et al. 2013). The complete source code is freely available for
download.?

Supervised linear readout

In order to test the quality of the internal representations emerging from
unsupervised deep learning, we applied a linear classifier on the deepest, hidden
layer of the network. The goal of this “readout module” was to map the high-
level representations of the input patterns into the corresponding symbol identity
(see directed arrows in Fig. 1c¢). The linear classifier was implemented using the
delta-rule algorithm (Widrow and Hoff 1960 ), which minimizes the cost
function £ defined as the squared difference between the correct target class ¢
and the classifier’s output o:

1 « )

E=3 Z (t; — 0i)
i=1

where 7 is the size of the training set. The classifier’s output for each input

pattern x; (or its high-level representation, in our case) is obtained by simply
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multiplying x; by the classifier weights w:

0; — WT.X,'

In our simulations, learning rate was set to 0.0001, and the maximum number of
epochs was set to 10,000. Readout accuracy was measured as correct
classification rate (CCR). As a baseline, we also computed accuracy of the linear
readout applied directly to the raw sensory patterns and to the internal
representations obtained using a deep network with random weights initialized
using a uniform Gaussian distribution with mean 0 and standard deviation 0.1.

Supervised fine-tuning of the whole deep network

As a control simulation, we also compared the readout accuracy with that
obtained after an additional fine-tuning of the whole deep network, where
conjugate gradient back-propagation was used to jointly optimize all the weights
of the different layers. In such a way, the whole hierarchy is optimized according
to a specific supervised task. Learning parameters were set according to
published studies on Latin digit recognition with deep networks (Hinton et al.
2006). In particular, the learning rate was set to 0.01, and the number of training
epochs was 100.

Persian characters dataset

The Persian alphabet consists of 32 letters and basically only adds four more
characters to the Arabic alphabet. In our simulations, we used the HODA dataset,
which is freely available for download (Khosravi and Kabir 2007). It contains
both handwritten digits and letters, collected from diploma and bachelor students
registered in the Iran’s nationwide university entrance examination. The
character images were built using a semiautomatic procedure that extracted
single characters from 11,942 forms, scanned at a resolution of 200 dpi using a
24-bit color format. The final released digit dataset consisted of 60,000 training
images and 20,000 test images, while the letter dataset included 88,351 samples
(70,645 are used for training, while the remaining 17,706 are used for testing).
Two sample sets of handwritten digits (with 10 samples for each digit) and
handwriting letters (with 3 samples for each letter) from the HODA dataset are
provided in Fig. 2. The different classes and the corresponding number of test
and train samples for digits and letters are reported in Table S1 and Table S2
(Supplementary Material). The original images were first resized to

20 x 20 pixels (preserving aspect ratio) and then centered in boxes of

32 x 32 pixels.

Fig. 2
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Samples of Persian handwritten digits (a) and letters (b) from the HODA dataset

A B
SNSSISININ Cllrzaiencec
LECETEEGRELE
SESYSLISEY b2e350505707
FEESEYCEXE 255020799999
ADRBABAAQDG PUrhe o s
YN AT YUY & & EELLESESLDLOCO
VNVVVVYV VYV Y SISIEFIJIrC s
AAAAAAAANA JOU2 2306306
AR QA 2L (T ar04d<

State of the art for HODA handwritten Persian recognition

Despite the recent availability of large digital datasets like HODA, the literature
on automatic Persian character recognition is still limited (for a recent review,
see Parvez and Mahmoud 2013). One of the earliest automatic recognition
systems for the HODA digits relied on a hand-crafted, hierarchical model for
feature extraction based on H-MAX (Borji et al. 2008). On top of the system,
the authors trained different supervised architectures (support vector machines
and multilayer perceptrons) and reported a test recognition accuracy of 97%. In a
further extension of the model, the same authors proposed an enhanced set of
complex features that allowed to further improve digit recognition accuracy up to
99% (Hamidi and Borji 2009). Other authors proposed a system based on a
mixture of radial basis functions, combined with k-means clustering, achieving a
test accuracy of 95% (Ebrahimpour et al. 2010). A more recent approach
achieved a test accuracy of 97% by dividing each image into separate parts and
performing a classification using singular value decomposition applied on each
segment (Salimi and Giveki 2012). To remove the ambiguity between similar
digit classes, some authors also proposed a two-stage recognition system (Alaei
et al. 2009), where several models are trained on subsets of the patterns and are
then combined with support vector machines, obtaining a recognition accuracy of
99%. Although these models achieve good recognition accuracy on HODA
digits, much fewer studies have been devoted to test the classification
performance on the more challenging task of recognizing the HODA letters. To
the best of our knowledge, the best letter recognition performance was obtained
by explicitly defining a set of geometrical features that were successively
combined using decision trees (Ghods and Kabir 2010). The authors reported a
classification accuracy of 94% and also mentioned previous studies achieving
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accuracy rates around 90%. However, these values seem to refer to a coarse-class
recognition task, which only involved nine major letter groups.

Results

Emergent hierarchy of visual features

We analyzed the type of visual features learned by hidden neurons at different
levels of the hierarchy by plotting the corresponding weight matrices (receptive
fields) for the 500-500-2000 architecture. This procedure is straightforward for
the neurons of the first hidden layer, while for the neurons of higher layers it
requires to combine all the weights from the lower layers. In our analyses, we
used a linear combination of the weight matrices (for details, see Zorzi et al.
2013). Selected samples of features extracted by different neurons at different
levels of the hierarchy are shown in Fig. 3. Interestingly, while neurons of the
first hidden layer selectively responded to simple features (e.g., localized on- and
off-center detectors), neurons became more responsive to complex spatial
structure as we moved up in the hierarchy. Neurons of the second layer learned
to combine the simple Gaussian filters of the first layer into more complex
filters, resembling those found in the primary visual cortex (Simoncelli and
Olshausen 2001). For example, they developed edge detectors and Gabor filters
with different phases and orientations. These visual features are further
combined by neurons of the third layer of the network, which learned to encode
even more complex spatial structure such as curvatures, symbol fragments and,
in some cases, the prototypical shape of whole characters.

Fig. 3

Samples of receptive fields of the 500-500-2000 network trained on Persian digits
(first row) and letters (second row) datasets. a Layer 1, b layer 2, ¢ layer 3

http://eproofing.springer.com/journals/printpage.php?token=AktEDJKav7HLce3oc2reOMdpyDoVeV7FpNKgFRcxUZt1Ka30u2ayMA

11/25



2/23/2017

e.Proofing

A
L .
“EHE
N
X
BEH-

EER  SEER

e
&
B
B
i
e

AN
1

3
&

I"‘u

!

a..W
§l v'd

~
\

ﬁ
@ A2ER<
B5. ¢ JUSBN

S @ANER4d

0

i '.-
I *

N

AEE

U ETER I F

irE!"I
ATHE NEDER

N\
\ b

ke

I

.

ER
Iy |
ZEEEE D2 IEK

SRNEE A
ENCON GREe>

MUBE &

Character identification accuracy

Classification accuracy for all the considered architectures, measured by correct
classification rates, is reported in Table 1 (unsupervised deep learning) and
Table 2 (supervised fine-tuning). Values indicate means and standard deviations
for five independent runs for each architecture. The first row in the table reports
the baseline performance obtained by applying the classifier directly on the pixel
images (“raw patterns”). The second row reports the performance of the
classifier applied on the internal representations of random networks, while the
remaining rows report the performance of the trained architectures. In all cases,
higher performance is achieved on the digit dataset, which contains fewer and
simpler classes compared to the letter dataset. Indeed, as shown by the first row
in Table 1, even a linear classifier applied directly on the raw patterns already
obtains a good recognition accuracy (87%). In the letter dataset, instead, the
performance of the linear classifier on the raw patterns is significantly lower
(62%) compared to that obtained on the internal representations of the deep
networks. In the second row of Table 1, we report the readout accuracy obtained
on the internal representations of a randomly connected network, in order to
check whether the higher dimensionality of the hidden representations could be
responsible for the performance gain. As shown by the lower recognition
accuracy on the test set, it does not appear to be the case.

Table 1

Average correct classification obtained by applying a linear readout on the top-level,
internal representations emerging from deep unsupervised learning
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Linear readout

Digit recognition

Letter recognition

each layer)

Raw patterns

500-500-2000 random

500-500-2000

500-1000-2000

500-1000-3000

500-1500-2000

Architecture (# neurons in

Train data

(%)
90.91 (0)

94.27
(3.38)

99.94 (.01)

99.95
(.008)

99.96
(.004)

99.95
(.007)

Test data
(%)

86.91 (0)

87.53
(2.83)

98.47
(.03)

98.50
(.03)

98.49
(.06)

98.53
(.02)

Train data

(%)
66.12 (0)

62.16
(4.28)

94.49 (.63)

95.76 (.26)

97.15 (.38)

95.54 (.55)

Test data
(%)

62.36 (0)

55.59
(3.92)

89.19
(.64)

90.25
(.57)

90.96
(.29)

90.13
(.55)

The numbers in () indicate standard deviation. As a baseline, we also show train and
test accuracies obtained when the classifier was directly applied to the input images
(“Raw patterns”) or to the top-level representations of a randomly connected network

Table 2

Average correct classification rate after supervised fine-tuning of the whole deep network

Back-prop. fine-tuning

Digit recognition

Letter recognition

each layer)

500-500-2000

500-1000-2000

500-1000-3000

500-1500-2000

The numbers in () indicate standard deviation

Architecture (# neurons in

Train data

(%)

100 (0)

100 (0)

100 (0)

100 (0)

Test data
(%)

98.77
(.05)

97.77
(.05)

98.80
(.05)

98.82
(.03)

Train data

(“o)

99.74 (.04)

99.88 (.05)

99.82 (.06)

99.87 (.01)

Test data
(%)

93.57
(.16)

92.51
(.75)

93.87
(.16)

92.42
(.14)

Notably, the classification accuracy of the linear readout is extremely high,
approaching 99% for the digit test patterns and 91% for the letter test patterns.

This remarkable performance suggests that high-level representations emerging

from unsupervised deep learning can support supervised tasks by means of

straightforward, linear mappings. As listed in Table 2, the additional fine-tuning
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phase over the whole network hierarchy can be useful to further improve
recognition accuracy, matching state-of-the-art performance. Nevertheless, it
should be noted that the performance gain is not very marked (less than 1% for
digits and less than 3% for letters) compared to the accuracy obtained by only
using unsupervised, generative learning. Moreover, all the deep architectures
obtained similar recognition accuracy, suggesting that the proposed framework is
robust to variations in the size of the hidden layers.

Confusion errors and character similarity

Classification errors for the readout trained on the internal representations of the
deep belief networks were used to compute precision and recall values (the
complete confusion matrices are visually shown in Figure S1, Supplementary
Material). For each class, the precision value represents the fraction of correct
positive classifications (true positives) compared to the total amount of positive
classifications (frue positives + false positives). As shown in Fig. 4, the
precision value for each class was almost always fairly high, especially for the
digit recognition task. However, for some classes the rate of false positives was
much higher (e.g., class 6 in the letter dataset). On the other hand, the recall
value represents the fraction of correct positive classifications (¢true positives)
compared to the total amount of patterns belonging to that class (true

positives + false negatives). A low recall value therefore indicates that the
classifier frequently “misses” a certain class. As shown in Fig. 5, also in this
case the values are fairly high for most of the classes. However, in some cases
(e.g., classes 6, 7 and 8) the rate of false negatives was much higher. These
results highlight that the confusion errors are not equally distributed among all
the classes.

Fig. 4

Precision values on a digit dataset and b letter dataset obtained by linear
classification averaged over five independent runs
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Recall values on a digit dataset and b letter dataset obtained by linear classification
averaged over five independent runs
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In order to better understand whether specific classes are systematically
confounded, we carried out a more systematic analysis by grouping together the
most commonly confused letters. As expected, the misclassified letter classes
could be categorized in 10 main groups based on their appearance in the main
form, that is, without considering the dots (see also Alaei et al. 2012; for a
similar analysis): group 1 (consisting of classes 2, 3, 4 and 5); group 2 (classes 6,
7, 8 and 9); group 3 (classes 10 and 11); group 4 (classes 12, 13 and 14); group 5
(classes 15 and 16); group 6: (classes 17 and 18); group 7 (classes 19 and 20);
group 8 (classes 21 and 22); group 9 (classes 23 and 24); group 10 (classes 25
and 26). To provide a visual comparison, samples of these groups are shown in
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Fig. 6. These classes are all identical in the main shape: The distinguishing
factor is either related to the number of dots (all except for group 10) or number
of zigzag bars (group 10). To illustrate some of the challenges in recognition of
these groups, we focus on letters of class 6 (“Jim”), which belongs to group 2
and which obtained the lowest percentage of correctly classified items (see

Fig. 5). While the similar letter of class 8 (“He”) is devoid of any dots, letters of
classes 7 (“Che”) and 6 include one and three dots, respectively. However, as
explained earlier, three dots are often grouped into a semicircle shape depending
on the handwriting style, so they can appear as single bolded dots (framed by a
continuous line in Fig. 7). In addition, while it is not orthographically correct, it
has been observed that sometimes the dots are written under the letter (framed by
a dotted line in Fig. 7) and sometimes the grouped dots are attached to the main
letter (framed by a dashed line in Fig. 7), which makes them more prone to be
mistakenly recognized as belonging to class 8.

Fig. 6

Twenty-five samples from each of the most confused classes of the letter dataset,
grouped according to confusion errors
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Fig. 7
Examples of challenging samples form class 6 in the letter dataset. Three difficult
confusing situations are framed by a continuous line (dots compressed into a semi-

circle), a dotted line (dots located below the main body) and a dashed line (dots
attached to the main body) rectangles
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This visual inspection highlights the extremely challenging conditions that can
occur when trying to classify Persian characters. Not surprisingly, some state-of-
the-art recognition models are indeed based on a two-stage processing
architecture, which first discriminates the patterns according to high-level,
coarse groups (similar to those shown in Fig. 6) and then performs another fine-
grained discrimination between classes belonging to the same group (Alaei et al.

2010).

Transfer learning across domains and scripts

The high readout accuracy obtained by the linear classifier at the deepest layer of
the networks suggests that the generative model discovered useful abstract
structure from the data distribution. This high-level representation can be readily
exploited by a simple classifier to discriminate between the underlying classes.
One might further ask whether the type of structure learned by generating
handwritten letters can be used to also describe the structure of handwritten
digits, or even to represent visual symbols belonging to a different writing
system. To test this hypothesis, we first used the unsupervised deep networks
trained on the Persian letters to compute high-level representations of Persian
digits. Then, we trained a linear readout to classify them into the correct digit
classes. As given in Table 3, the readout accuracy remains surprisingly high.
This suggests that the distribution of letters and digits can be described using a
common set of features, which can be effectively extracted from the data in a
completely unsupervised way. As a control simulation, we also tested the transfer
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performance of the deep networks that were fine-tuned in a supervised way to
correctly classify Persian letters. When these networks were used to build high-
level representations of Persian digits, the readout performance was always
lower compared to that obtained by fully unsupervised deep learning (see Table
S3, Supplementary Material). This shows that the internal representations
emerging from fine-tuning are optimized only for a specific task and do not
support knowledge transfer with the same flexibility provided by unsupervised
deep learning. Furthermore, we tested the transfer learning capability also
between different scripts. To this aim, we used the deep network trained as a
generative model on Persian letters to compute a high-level representation of
Latin digits taken from the MNIST dataset. As given in Table 4, also in this case
the classification accuracy remains high, although it does not approach the state
of the art.

Table 3

Average of correct classification rate obtained after transfer learning from Persian letters to
Persian digits

Transfer learning Persian digits

Architecture (# neurons in each layer) Train data (%) Test data (%)
500-500-2000 98.10 (.22) 95.86 (.3)
500-1000-2000 98.55 (.25) 96.50 (.44)
500-1000-3000 98.64 (.33) 96.73 (.45)
500-1500-2000 98.62 (.18) 96.65 (.21)

The numbers in () indicate standard deviation

Table 4

Average of correct classification rate obtained after transfer learning from Persian letters to
Latin digits

Transfer learning Latin digits

Architecture (# neurons in each layer) Train data (%) Test data (%)
500-500-2000 95.90 (0.12) 94.84 (0.24)
500-1000-2000 95.98 (1.67) 94.88 (1.71)
500-1000-3000 92.60 (6.23) 91.88 (5.77)
500-1500-2000 95.88 (1.93) 94.93 (1.54)

The numbers in () indicate standard deviation
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General discussion

Our simulations showed that deep networks can learn a hierarchy of increasingly
more complex visual representations by fitting a probabilistic generative model
to the statistical distribution of image pixels. Notably, state-of-the-art
classification accuracy can be approached even by applying simple linear
mappings at the high-level, internal representations of the network. Within this
respect, supervised fine-tuning over the whole processing might be unwarranted,
because unsupervised deep learning already projects the input patterns into a
more meaningful feature space, where classification can be easily performed by
simple linear functions (Vapnik 1999). Furthermore, subsequent analyses
showed that the most common types of model errors were caused by the highly
similar shapes of many Persian letters, which are extremely difficult to
discriminate in the presence of noise or inaccurate writing.

The results also showed that this learning framework can be readily applied to
transfer learning scenarios, where knowledge acquired from one domain should
be used to solve problems on related domains. To this aim, the visual features
emerging from unsupervised learning on Persian letters were used to build
abstract representations of Persian digits, which were then easily read out with
high accuracy. Subsequent simulations showed that knowledge transfer can even
occur between different scripts, for example by using the features extracted from
Persian letters to build useful representations of Latin digits. A similar result has
been obtained between Latin and Chinese characters using a different transfer
learning approach, which required to re-train all the network weights on the new
dataset using a supervised criterion (Ciresan et al. 2012).

Conclusions

Overall, our modeling work confirms that unsupervised deep learning is a
valuable tool for investigating perception of written symbols across different
alphabets and scripts. Future work is needed in order to better study which visual
features are shared by different characters and how the network’s representations
are shaped during development (see Sadeghi 2016 ; for simulations related to
unsupervised learning of visual concepts). Another important research direction
would be to explore whether our model could reproduce empirical data related to
human confusion errors (Wiley et al. 2016), or whether it could explain the
apparent advantage of bilingual individuals on language learning (Kaushanskaya
and Marian 2009). Moreover, unsupervised deep learning has been recently
applied to simulate how generic visual features emerging from ecological
learning (e.g., exposure to natural images) might be reused to also support
learning of letter shapes (Testolin et al. under review). This allows to test the
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neuronal recycling hypothesis, which proposes that the acquisition of cultural
inventions (such as reading and arithmetic) might partially “invade”
phylogenetically older cortical circuits that were originally evolved for generic
visual object recognition (Dehaene and Cohen 2007).

In conclusion, we argue that generative neural networks represent a unique
research tool, which can be successfully applied to design powerful artificial
learning systems but also to model complex cognitive processes, such as those
underlying the recognition of written symbols and orthographic structures
(Testolin et al. 2016).
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