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Abstract

Learning the structure of event sequences is a ubiquitous problem in cognition and particularly

in language. One possible solution is to learn a probabilistic generative model of sequences that

allows making predictions about upcoming events. Though appealing from a neurobiological

standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated

a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural net-

work that extracts high-order structure from sensory data through unsupervised generative learning

and can encode contextual information in the form of internal, distributed representations. We

assessed whether this type of network can extract the orthographic structure of English monosylla-

bles by learning a generative model of the letter sequences forming a word training corpus. We

show that the network learned an accurate probabilistic model of English graphotactics, which can

be used to make predictions about the letter following a given context as well as to autonomously

generate high-quality pseudowords. The model was compared to an extended version of simple

recurrent networks, augmented with a stochastic process that allows autonomous generation of

sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models).

We conclude that sequential RBMs and stochastic simple recurrent networks are promising candi-

dates for modeling cognition in the temporal domain.
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1. Introduction

A growing body of research suggests that the ability to extract statistical regularities

from the environment is a powerful and general learning mechanism of the brain, which

operates across domains, modalities, and development (see Krogh, Vlach, & Johnson,

2013; for review). For example, a seminal developmental study (Saffran, Aslin, & New-

port, 1996) showed that infants can efficiently exploit statistical relationships between

neighboring speech sounds to segment words from fluent speech. These results highlight

the prominent role of statistical learning in language acquisition, thereby suggesting the

importance of experience-dependent mechanisms for extracting useful structure from the

auditory stream (see Romberg & Saffran, 2010; for review). In the same vein, statistical

regularities can be learned from visual stimuli in an unsupervised way (Fiser & Aslin,

2001). Statistical learning over speech streams has also been reported in rodents (Toro &

Trobal�on, 2005) and non-human primates (Hauser, Newport, & Aslin, 2001), and it has

been recently shown that baboons can successfully exploit statistical regularities even for

discriminating well-formed from ill-formed visual words (Grainger, Dufau, Montant, Zie-

gler, & Fagot, 2012).

However, whether statistical properties are sufficient to fully develop high-level cogni-

tive abilities, like those involved in human language that encompass learning of abstract,

“rule-based” constructs, is still debated (e.g., Marcus, 1999; McClelland & Plaut, 1999;

Pe~na, Bonatti, Nespor, & Mehler, 2002; Perruchet, Tyler, Galland, & Peereman, 2004;

Seidenberg, MacDonald, & Saffran, 2002). This debate is also reflected in modeling

approaches that place different emphasis on explicit representations in processing of

structured information (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; McClel-

land et al., 2010). On the one hand, structured Bayesian models exploit explicit (though

flexible) forms of knowledge representation, which can be shaped and refined by learning

processes that operate according to some inductive biases. In contrast, the emergentist

approach focuses on the underlying mechanisms that could produce the observed phe-

nomena: There is no need to postulate a specific hypothesis space, because the knowledge

of the system is essentially implicit and it emerges in the model behavior as a result of

the learning process. As a prominent example of the latter approach, connectionist models

provide a biologically inspired way to study implicit learning and knowledge representa-

tion, by proposing how cognition might emerge from the neural substrate through distrib-

uted processes that operate over large networks of simple, neuron-like interconnected

units (Rumelhart & McClelland, 1986).

Neural networks allow researchers to simulate both skilled performance and break-

downs caused by brain damage, thereby providing a unique way to study how dysfunc-

tions of the underlying neural processes affect cognition and behavior (e.g., Glasspool,

Shallice, & Cipolotti, 2006; Hinton & Shallice, 1991; Perry, Ziegler, & Zorzi, 2007;

Plaut, McClelland, Seidenberg, & Patterson, 1996). Connectionist systems gradually learn

from examples, thereby also allowing for exploration of developmental trajectories

(Elman et al., 1996). Learning in artificial neural networks can be cast within the mathe-

matical framework of statistical learning theory (Jain, Duin, & Mao, 2000; Jordan &
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Sejnowski, 2001; Neal, 1995), thus suggesting the adequacy of these models to investigate

the role of statistical information for the development of complex abilities. Although sev-

eral attempts have been made to merge structured and connectionist models (e.g., Marcus,

2003; Smolensky, 2006), we still lack a comprehensive theory of how high-level cognition

could be implemented in neural circuits. Another crucial modeling issue is how to deal

with the temporal dimension, which is ubiquitous in cognition (and, particularly, in linguis-

tic processes), because the temporal structure must be found in time by extracting correla-

tions between elements arranged into a sequential input stream (Elman, 1990). Learning of

time dependencies has proven to be a difficult problem for neural network models (Bengio,

Simard, & Frasconi, 1994; Servan-Schreiber, Cleeremans, & McClelland, 1991), and it is

still an intensively researched topic (Martens & Sutskever, 2011; Sutskever, 2013).

In this study, we tackle the issue of learning sequences of elements within the frame-

work of probabilistic generative models (Hinton & Ghahramani, 1997; Rao, Olshausen, &

Lewicki, 2002), which have recently attracted much interest in both the machine learning

and cognitive science communities. The fundamental hypothesis behind this approach is

that the brain (and cortical circuits in particular) progressively learns an internal model of

the world from sensory information and actively uses such acquired knowledge to infer

causes and make predictions about relevant events (Clark, 2013; Dayan, Hinton, Neal, &

Zemel, 1995; Friston, 2005; Hinton & Ghahramani, 1997). Perception can thus be formu-

lated as probabilistic inference on input data, given a set of hidden causes that have been

learned from the statistical regularities inherent in the natural world. This Bayesian for-

mulation deals with ambiguity of sensory input and with the intrinsic uncertainty of envi-

ronmental dynamics, and also provides a coherent theory about how learning can

integrate new evidence to refine beliefs of the model. This perspective posits a critical

role of unsupervised learning to build such internal representations: There is no need to

have an additional external signal that guides learning, as the aim is to reproduce incom-

ing information as accurately as possible by discovering its hidden causes. This approach

is also appealing from a neurobiological perspective, because it could offer a unified

account of perception and action, explain the functional role of attention, and capture the

special contribution of cortical processing to adaptive success (Clark, 2013). The predic-

tion is that patterns of neural activity in a high-level area must not only represent the

data; they must also be capable of generating patterns of activity at earlier sensory stages

that resemble the activity evoked by the external world (Abbott, 2008), in line with the

idea of predictive coding (Huang & Rao, 2011). Notably, neural signatures of model-dri-

ven visual perception have been found in the V1 cortical activity of awake ferrets (Ber-

kes, Orb�an, Lengyel, & Fiser, 2011). Also human neuroimaging data suggest that

expectations facilitate perceptual inference in a noisy and ambiguous visual task by sharp-

ening early sensory representations (Kok, Jehee, & de Lange, 2012).

Generative models can be implemented in stochastic recurrent neural networks that

learn to reconstruct the sensory input (i.e., maximum-likelihood learning) through

feedback connections and Hebbian-like learning mechanisms, such as in the Restricted

Boltzmann Machine (RBM; Hinton, 2002; Smolensky, 1986). RBMs can also be used as

building blocks to learn hierarchical generative models, also known as “deep networks”
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(Hinton & Salakhutdinov, 2006), in which increasingly complex and structured represen-

tations emerge as a function of network depth. Although deep learning has proven to be

very successful and it is a hot research topic among the machine learning community

(Bengio, 2009; Bengio, Courville, & Vincent, 2012), its potential has not yet been exten-

sively explored by cognitive scientists (see Zorzi, Testolin, & Stoianov, 2013; for review

and discussion). Finally, RBMs (and, consequently, deep networks) can be easily imple-

mented on parallel computing architectures (Testolin, Stoianov, De Filippo De Grazia, &

Zorzi, 2013), thereby allowing to efficiently train large-scale models (Dean et al., 2012;

Raina, Madhavan, & Ng, 2009).

Here, we addressed a problem that occurs in the temporal domain, which consists of

learning statistical constraints on the structure of event sequences. We focus on written

language processing, but rather than investigating learning of syntactic structure from

sequences of words (e.g., Bengio, Ducharme, Vincent, & Jauvin, 2003; Mnih & Hinton,

2007; Sutskever, Martens, & Hinton, 2011) we investigated the simpler problem of learn-

ing orthographic structure from sequences of letters that form the words of a language.

The orthographic structure (i.e., the transition probabilities between letters) that guides

the construction of legal words, typically described as “graphotactic rules,” had to be

inferred from a corpus of English monosyllables. Traditional connectionist modeling

approaches for learning temporal structure exploit the well-known simple recurrent net-

works (SRNs; Cleeremans & McClelland, 1991; Elman, 1990; Nerbonne & Stoianov,

2004; Stoianov, 2001), possibly extending them to allow an internal encoding of

sequences (Pollack, 1990; Sibley, Kello, Plaut, & Elman, 2008; Stoianov, 1999, 2001).

However, state-of-the-art performance in sequence learning is often achieved using proba-

bilistic models, such as Hidden Markov Models (HMMs; Rabiner, 1989), that are not for-

mulated according to the principles of neural computation (O’Reilly, 1998) and therefore

do not explain how sequence learning could be carried out in a neuronal architecture. We

investigate whether the statistical structure that is implicitly contained in letter sequences

can be learned by a recently proposed extension of the RBM that can deal with temporal

data, known as the Recurrent Temporal Restricted Boltzmann Machine (RTRBM; Sutsk-

ever, Hinton, & Taylor, 2008). To our knowledge, this is the first attempt to model char-

acter-level sequential processing exploiting a generative neural network. Hinton and

colleagues tested the RTRBM on simple video sequences consisting of three balls bounc-

ing in a box, demonstrating that the network can be successfully applied in a temporal

domain, which implies smooth dynamics. Here, we further explore the capability of

temporal RBMs by modeling sequences that imply transitions between discrete (i.e., sym-

bolic) elements, as typically found in the printed language domain.

We note that, although RTRBMs and SRNs have some common characteristics, they

differ in several fundamental aspects. In SRNs, supervised learning is used to establish a

mapping between the input (i.e., the current element of the sequence plus contextual

information) and a separate output representation (i.e., the prediction of the following ele-

ment), as illustrated in Fig. 1C. In contrast, RTRBMs use a common layer for encoding

both the input and the model’s prediction (see Fig. 1A), and learn to process sequential

information in a completely unsupervised way by trying to accurately reproduce (i.e.,
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generate) the training sequences. Processing in SRNs is thereby inherently deterministic

and essentially input-driven (i.e., bottom–up), whereas RTRBMs can autonomously

produce top–down activations on the sensory units from internal representations through

(B)(A)

(C) (D)

Fig. 1. (Panel A) Graphical representation of a Restricted Boltzmann Machine. Units in the visible layer V
are fully connected with units in the hidden layer H, but there are no within-layer connections. The additional

set of hidden-to-hidden delayed connections (curved arrow) allows extending the basic architecture to obtain

the Recurrent Temporal Restricted Boltzmann Machine (RTRBM). (Panel B) Schematic diagram of the

RTRBM processing a three-element sequence (from left to right). Note that there is one hidden layer with

real-valued activations (H) that is used for inference and one with binary activations (H’) that is used during

the generative phase. The weights parameterization is reported for the last element, where visible-to-hidden

connections are indicated with VH and hidden-to-hidden connections are indicated with HH (adapted from

Sutskever et al., 2008). (Panel C) Graphical representation of the Stochastic Simple Recurrent Network

(SSRN). The output activations are first normalized, and an external stochastic process then samples the next

element of the sequence, which is given as input to the network at the following time step. (Panel D) Sche-

matic diagram of the SSRN generating a three-element sequence. Note that this architecture requires an addi-

tional set of hidden-to-output (HO) weights.
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their intrinsically stochastic dynamics, as explained below. As the standard formulation of

SRNs cannot be used to generate sequences, we propose an extension of the basic SRN

in which an external stochastic process is used to sample the next element following a

given sequence, according to learned conditional probabilities.

Our findings show that both the RTRBM and the extended, stochastic SRN (hence-

forth, SSRN) can successfully learn the orthographic structure of English words, by build-

ing a probabilistic model of letter sequences that can be used to predict the next letter

given a certain context, as well as to autonomously generate high-quality (i.e., graphotac-

tically correct) pseudowords. We compared the prediction performance of the connection-

ist models with that of other probabilistic models, that is n-grams and HMMs. We also

evaluated the generative ability of the considered models, in terms of quality of the letter

strings produced in comparison to existing pseudoword generators. Finally, we discuss

the potential of sequential generative neural networks for modeling more complex struc-

ture in the temporal domain, and we highlight some open questions that should be

addressed to further explore this promising area of research.

2. Learning temporal structure with sequential restricted Boltzmann machines

Boltzmann machines are stochastic networks of symmetrically connected, neuron-like

units (Ackley, Hinton, & Sejnowski, 1985). Input patterns are given through a layer of

visible units, and a separate layer of hidden units is used to model the latent causes of

the data by capturing high-order statistics from the activation of visible units. A

Restricted Boltzmann Machine (RBM) is obtained by removing all the within-layer lateral

connections from the network, which therefore becomes a bipartite graph (as shown in

Fig. 1A). The dynamics of the network is governed by an energy function that describes

which configurations of the units are more likely to occur by assigning them a joint prob-

ability value:

Pðv; hÞ ¼ e�Eðv;hÞ

Z
;

where v represents visible units, h represents hidden units, and Z is a normalizing factor

known as a partition function. The energy function E is defined as:

Eðv; hÞ ¼ �bTv� cTh� hTWv;

where W is the matrix of connection weights, b and c are the biases of visible and hidden

units, respectively, and T indicates the transpose operator. The learning process gradually

changes weights and biases to minimize the discrepancy between the data distribution

and the model distribution, that is, the objective of learning is to construct an internal

generative model that produces examples with the same probability distribution as

the examples contained in the training dataset. Unfortunately, computing the model’s
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expectations requires iteratively performing block Gibbs sampling until the network

reaches equilibrium (Ackley et al., 1985). The high computational demand of this proce-

dure has long been a strong limitation of the original learning algorithm, thereby limiting

the practical use of this type of models. However, a recent efficient learning procedure,

called contrastive divergence (CD) (Hinton, 2002), greatly speeds up the learning process,

thereby allowing fast training of large RBMs. Notably, once an RBM has learned a good

generative model of the training data, its internal representations (i.e., the activations of

its hidden units) can be used as input to another RBM, thereby building a “deep” network

that learns a hierarchical generative model (Hinton, 2007).

This modeling framework has been successfully applied to many perceptual tasks (see

Zorzi et al., 2013; for a tutorial review), but its use has been limited to the modeling of

learning tasks that imply static input patterns. In the case of temporal data, input patterns

are not independent from each other because they are supplied in a precise sequential

order. A generative model should therefore consider not only the current sensory evidence

(i.e., visible units activations) but also the history provided by the previously presented

items of the sequence. In particular, the aim is to predict the probability distribution of

an element of a sequence, possibly given other preceding elements as context. The

RTRBM (Sutskever et al., 2008) extends the architecture of traditional RBMs by adding

a set of recurrent connections in the hidden layer, which are used to propagate informa-

tion over time to keep track of past states of the system. This augmented network can be

seen as a partially directed graphical model (see Fig. 1B), where some of the parameters

are not free but are instead parameterized functions of conditioning random variables

(i.e., the context).

Probabilistic models of sequential data with hidden variables, which act as an internal

state, can capture the temporal dependencies between elements of a sequence by using

either a localist state representation (as in HMMs) or by exploiting a distributed represen-

tation of the state (as in RTRBMs and SRNs). In the latter case, each entity is represented

by a pattern of activity distributed over many hidden units, and each unit is involved in

representing many different entities (Hinton, McClelland, & Rumelhart, 1986). Moreover,

unlike models that use slot-based representations on which visible units encode position-

specific elements of a sequence, recurrent neural networks learn to gradually integrate

temporal information over time, generalizing knowledge about letters across positions by

encoding their statistical relations in the hidden layer. In this way, the internal representa-

tions created in the hidden layer can implicitly encode distal temporal interactions that

can span an arbitrary number of elements. The network might therefore in principle be

able to build fixed-width, internal representations of whole sequences as static activation

patterns (Sibley et al., 2008; Stoianov, 1999). In this work, we focused on learning ortho-

graphic structure, and the systematic investigation of internal representations in RTRBMs

is left for future studies (see Testolin, Sperduti, Stoianov, & Zorzi, 2012, for a prelimin-

ary report).

The joint distribution of a whole sequence of T visible and hidden variables

ðvT1 ; hT1 Þ ¼ ðv1; h1Þ. . .ðvT ; hTÞ
� �

induced by an RTRBM is defined as:

A. Testolin et al. / Cognitive Science (2015) 7



PðvT1 ; hT1 Þ ¼ P0ðv1ÞPðh1jv1Þ
YT

t¼2
Pðvtjht�1ÞPðhtjvt; ht�1Þ;

where P0ðv1ÞPðh1jv1Þ specifies the distribution of the first pair of the sequence when

no context is available. In this case, the probability distribution of visible units is not

conditioned (there is no context), whereas the probability distribution of hidden units is

conditioned to the state of visible units, which represents the current evidence. The follow-

ing conditional distributions Pðvtjht�1ÞPðhtjvt; ht�1Þ are computed step by step, conditioning

the visible activations vt on the previous hidden activations ht�1 (contextual information)

and conditioning the hidden activations ht on both the previous hidden activations ht�1 and

current visible activations vt. The joint distribution of visible and hidden variables for the

whole sequence is given by the product of all these conditional distributions.

During the processing of a sequence, to predict the successive visible layer activations

vtþ1 we first infer the hidden state ht given the current element of the sequence vt and the

previous hidden state ht�1 using a mean field approximation (Peterson & Anderson,

1987):

Pðhtjvt; ht�1Þ ¼ sigmðVHTvt þ bh þ HH ht�1Þ

where VH is the matrix of visible-to-hidden connections, bh is the static hidden unit bias,

HH is the matrix of the additional hidden-to-hidden connections, and sigm is the logistic

activation function:

sigmðzÞ ¼ 1

1þ e�z
:

The term HH ht�1 represents the dynamic hidden bias, which is used to propagate con-

textual information over time. Once the conditional hidden activations ht have been

inferred, we can generate a prediction of vtþ1 by starting from a random binary state of

the pair ðvtþ1; h0tþ1Þ and performing iterative block Gibbs sampling until convergence, in

which the activation of the hidden units also accounts for the dynamic bias HH ht (see
Fig. 1B). If we do not condition the model on a given context, we can let the network

generate a sequence by starting from an initial learned bias and sequentially generating

visible and hidden states. As discussed above, the RTRBM uses the same set of connec-

tions to perceive a stimulus and generate predictions for the upcoming stimulus (see

Fig. 1B). In our simulations, the network was used in either an “inference” or a “genera-

tive” modality, but never in a mixed mode. During inference, all the visible units are

hard-clamped with the current element of the sequence and the activation of the hidden

units at a given time step is inferred through a single bottom–up pass (using the mean

field equation reported above), considering the activation of the visible units at the cur-

rent time step and the activation of the hidden units at the previous step. During genera-

tion, the bias of the hidden units is dynamically adjusted according to the previous
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hidden unit activations, and then Gibbs sampling is performed in the hidden and visible

layers by starting from a random initialization, until equilibrium is reached. In generation,

therefore, no clamping is used in the visible layer.

It should be noted that the network processes temporal information in a strictly sequen-

tial way, one element at a time and only using the last hidden activations as context.

Thus, in contrast to other probabilistic language models that introduce additional temporal

connections between preceding elements and the hidden state (e.g., Mnih & Hinton,

2007), the RTRBM only exploits local temporal interactions, which can nonetheless allow

to encode in the hidden layer an arbitrary number of preceding elements as context. As

for RBMs, RTRBMs can be efficiently trained in an unsupervised fashion by using CD to

compute the local gradient of the prediction error for each element of a sequence. The

gradients are then propagated to previous time steps using backpropagation through time

(for details, see Sutskever et al., 2008). In the original work, the network learned a con-

tinuous dynamic model that described the physical behavior of bouncing balls in a con-

strained space. Here, we address the intriguing question of whether the same network can

also learn discrete dynamics, or temporal structures like the grammars describing various

linguistic phenomena.

We focused on the sublexical level, investigating whether RTRBMs could exploit

unsupervised learning to extract the compositional rules of elementary units forming

words. These units could be either letters or phonemes, and the corresponding grammars

are known as graphotactics and phonotactics (Nerbonne & Stoianov, 2004). These two

grammars are strongly related because there is a tight link between letters and phonemes

in alphabetic languages. In English, graphotactics and phonotactics are comparable in

terms of overall complexity: There are fewer graphemic tokens than phonemic ones, but

the graphotactic compositional rules are generally deeper than the phonotactic ones

(Chomsky, 1970). Although most sequential connectionist models traditionally focused on

spoken language (see, e.g., Elman, 1990; McClelland & Elman, 1986), our study on

learning graphotactics from printed letter sequences is intended as a testbed problem for

the general task of learning the structure of a sequence of discrete units. Moreover, sev-

eral connectionist models of visual word recognition and reading aloud entail a serial pro-

cessing mechanism (Perry et al., 2007; Plaut, 1999; Sibley et al., 2008). Most notably,

sequential processing of letters is prominent during reading acquisition in childhood,

whereby phonological decoding bootstraps the development of orthographic representa-

tions (Share, 1995; Ziegler, Perry, & Zorzi, 2014). Finally, sequential generation of letters

is a prominent feature of written spelling, and it is a key aspect in popular computational

models of spelling (Glasspool & Houghton, 2005; Houghton, Glasspool, & Shallice,

1995).

To learn the sequential structure of words, the network was exposed to a corpus of Eng-

lish monosyllables, with each word presented one letter at a time. After learning, the genera-

tive model was expected to have inferred the orthographic structure underlying the training

data. To assess this, we first evaluated the accuracy of context-dependent predictions

(Section 3, illustrated in Fig. 2A). Moreover, the model should be able to reproduce the

training sequences and generalize, thus producing well-formed pseudowords (Section 4).
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3. Learning graphotactics

3.1. Dataset

We used a dataset of 6,670 English monosyllables of variable length (from three to

seven letters) extracted from CELEX (Baayen, Piepenbrock, & van Rijn, 1993), which is

an electronic corpus that comprises lexicons of British English, German, and Dutch. The

dataset was randomly split into a training set of 5,300 words and a test set of 1,370

words. Words were codified as sequences of letters, represented with fixed-size binary

orthogonal vectors of 27 units (one for each possible letter, plus a termination symbol).

3.2. RTRBM training

The RTRBM model was trained using the CD learning algorithm. Following Sutskever

et al. (2008), CD started with few iterations (CD-5) and gradually increased as learning

proceeded (until CD-40). Learning rate, number of hidden units and number of learning

epochs were tuned with the aim of obtaining high prediction accuracy on the training

data. In particular, parameter tuning resulted in a learning rate of 0.1, 200 hidden units,

and learning was stopped when no significant improvements occurred on the training set

(after approximately 300 epochs). We did not tune the parameters to maximize general-

ization performance (e.g., using cross-validation) because this procedure is implausible

from a cognitive modeling perspective. Training times were significantly reduced by

exploiting multi-core graphical processors (Testolin et al., 2013; Tieleman, 2010) and by

(A) (B)

Fig. 2. (Panel A) A prototypical prediction problem, in which a certain context is given (i.e., the first four

letters of a word) and the aim is to predict the probability distribution of the following letter. (Panel B) Pre-

diction error on training set (gray) and test set (black) for different models, measured as the KL-divergence

between predicted and empirical distributions (small is better).
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adopting a mini-batch learning scheme (mini-batch size = 50), obtaining a speed-up of

about 25 times relative to a quad-core CPU implementation. The complete source code of

our model is publicly available for download.1

3.3. Alternative models: SRNs, n-grams, HMMs

We compared the prediction performance of the network with that of SRNs (Elman,

1990) and to that of other two popular families of probabilistic generative models for

sequential data, n-grams (Brown, DeSouza, Mercer, Della Pietra, & Lai, 1992) and

HMMs (Rabiner, 1989).

Simple recurrent networks are feed-forward neural networks composed by three

layers. The input layer contains both the current element of the sequence that is being

processed and contextual information encoded by the network, which is simply a copy

of the hidden layer activity at the previous time step. At the beginning of a sequence,

the activations of context units are usually set to zero. An output layer is used to per-

form a prediction of the next element of the sequence, and learning is performed by

back-propagating the mismatch error between the network prediction and the desired tar-

get value. At each prediction step the vector of output unit activations was normalized

(i.e., made to sum up to 1) to obtain conditional probability distributions. This type of

output is more appropriate for the comparison between SRNs and probabilistic models,

and it is also a prerequisite for extending the classic SRN into a stochastic version

(SSRN, see below) that can be used to spontaneously generate sequences. As for the

RTRBM, the learning parameters of the SRN were tuned to maximize accuracy on the

training data. The resulting network had 200 hidden neurons; thereby the two connec-

tionist models had about the same number of connections (the SRN had slightly more

connections due to the additional set of hidden-to-output weights, as also shown in

Fig. 1D). This implies that both models had approximately the same complexity (i.e.,

the same number of parameters to be fit). Learning rate was set to 0.01 and training

was performed for 250 epochs.

The n-gram models were implemented as look-up tables, where each row contained

the successor distribution computed from the training data for each possible context (i.e.,

the n � 1 preceding letters), with n varying between 2 and 4 (see Fig. 2A). These models

therefore treat two sequences as equivalent if they end in the same n � 1 letters: assum-

ing a value k ≥ n, it holds that

Pðlkjlk�11 Þ ¼ Pðlkjlk�1k�nþ1Þ;

where lk�11 represents the sequence of letters l1l2. . .lk�1 and lk is the k-th letter of a word.

Although this might seem a somewhat crude approximation, n-grams have demonstrated

very good performances (Brown et al., 1992) and still constitute a reference framework

for language modeling. One of the major drawbacks of n-grams is caused by data

sparsity: Items not present in the training set will be given a probability of zero, which

A. Testolin et al. / Cognitive Science (2015) 11



motivates the use of smoothing techniques. In our study, we used a simple form of additive

smoothing (Chen & Goodman, 1996).

We also tested HMMs of first- and second-order, with a number of states ranging

from 7 to 60 following a previous study (Sang & Nerbonne, 1999). HMMs assume that

the system being studied can be modeled as a Markov process with a certain number of

unobserved (i.e., hidden) states. In first-order models, the probability of being in a cer-

tain state at the current time step only depends on the state of the model at the immedi-

ately preceding time step. In second-order models, this dependence is extended to the

last two states. Each state has an associated emission distribution that describes the

probability of emitting (i.e., observing) each symbol of the alphabet from that state. A

transition distribution specifies the probability of moving from each hidden state to any

other. If two states are not connected, the corresponding transition probability will be

zero. Finally, an initial state distribution specifies the probability of starting the genera-

tion of a sequence from each of the states of the model. The parameters of an HMM

can be estimated using an iterative procedure known as the Baum–Welch algorithm (Ra-

biner, 1989), which adjusts the probability distributions to raise the likelihood of the

training data using an expectation-maximization method. As for the other models, HMM

hyper-parameters were tuned to maximize accuracy on the training data. In particular,

the highest performance was obtained using a first-order model with 40 hidden states,

trained for 10,000 iterations with a likelihood cut-off of 0.001 and 1,000 steps in the

Baum–Welch algorithm.

3.4. Evaluation of context-dependent predictions

We evaluated the performance of all models on predicting the next element of a

sequence, given a certain context. Accuracy was measured as mean prediction error on

both training and test sets using a computationally efficient procedure that exploits a tree-

based data structure (Stoianov, 1998). In particular, we evaluated the response of each

model across all possible left contexts in the evaluation sets (i.e., variable length, initial

parts of words). To this aim, we created a k-tree data structure, where k is the size of the

alphabet (26 letters plus one termination symbol). Words were encoded as paths in the

tree, starting from the root. Every node in the tree represents a left context (which is the

path from the root to the current node) and it might have a number of children or alterna-

tively constitute the end of a word. It is possible to efficiently compute the empirical suc-
cessor distribution of each context in the dataset by counting the frequency of each child

of a node (i.e., the frequency of each letter following that context) and normalizing the

resulting vector to sum up to 1. Once the empirical successor distribution has been com-

puted for all the variable length contexts in the dataset, each model is probed with all

possible contexts to compute the predicted successor distributions. The vectors of empiri-

cal and predicted successor distributions can then be compared according to some metric

to measure the discrepancy between observed and predicted values. We used the

Kullback–Leibler (KL) divergence as distance metric (Kullback & Leibler, 1951), which

measures the difference between the two probability distributions as:

12 A. Testolin et al. / Cognitive Science (2015)



DKLðEjjMÞ ¼
Xk

i¼1
log

Ei

Mi
Ei;

where E is the empirical distribution, M is the predicted (model) distribution, and k is the

size of the alphabet. DKLðEjjMÞ measures the information lost when M is used to approxi-

mate E and it tends to approach zero as the two distributions become more similar (i.e.,

when the model makes accurate predictions). We preferred the KL-divergence over other

metrics (e.g., Euclidean distance or cosine similarity) because of its sound probabilistic

interpretation and its direct link to the notions of cross-entropy and perplexity, which are

two other metrics commonly used to assess language models. Nevertheless, it is worth

noting that the results reported below are robust with respect to the type of metric (see

Testolin, Sperduti, Stoianov, & Zorzi, 2012, for a preliminary study based on the Euclid-

ean distance measure). The total error of each model was the average KL-divergence

across all possible contexts in the evaluation datasets.

To compute the predicted successor distribution for the RTRBM, a response was col-

lected by sequentially clamping the visible units on the given letters (i.e., left context)

and letting the network generate visible layer activations. The normalized activations

(i.e., summing up to 1) constitute the predicted successor distribution M, which corre-

sponds to the conditional probability distribution of all letters in the alphabet given the

context v1; v2; . . .; vt�1 encoded by the hidden unit activation ht�1:

M  Pðvtjv1; v2; . . .; vt�1Þ � Pðvtjht�1Þ:

A vector M representing the predicted successor distribution for each context was also

obtained for the other models tested. For SRNs, we collected the output values (normal-

ized to sum up to 1) in response to a given context (i.e., the sequence of preceding let-

ters). For n-grams, the successor distribution directly corresponded to the row associated

with a particular context. For HMMs, the optimal sequence of hidden states (i.e., the one

with the highest probability under the current context) was first computed using the Viter-

bi algorithm, and then the successor distribution was read out from the emission probabil-

ities of the last state of the sequence.

3.5. Results

Prediction errors for the different models are plotted in Fig. 2B. The prediction accu-

racy of the RTRBM on the test set (black columns) was higher than that of all n-gram
models, and just slightly lower than that of SRN and HMM. It can be noted that the 2-

gram model is inadequate for accurately predicting which letter will follow a given

context, because it only takes into account the last letter as context. Other models reach

better accuracy thanks to their ability to consider longer context when making predic-

tions. Moreover, the results confirmed a critical limitation of n-gram models, which is

their poor generalization (Brown et al., 1992). The longer the context of the n-gram, the
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greater was the prediction accuracy on the training data. However, on test data the

performance of the 4-gram model significantly decreased due to coding of too specific

contexts. This limitation could be alleviated by using more sophisticated smoothing tech-

niques. On the other hand, both connectionist models avoid the problem of specificity by

exploiting distributed representations of the context, which turns into good generalization

performance.

Overall, the results show that both the RTRBM and the SRN successfully learned the

context-dependent transition probabilities between the letters of English words, yielding a

level of accuracy that is comparable to that of other popular sequential language models.

4. Generative abilities

Having assessed the prediction accuracy of the different models, we then investigated

their ability to autonomously generate well-formed sequences of letters. Indeed, a genera-

tive model will produce a sequence of letters even when there is no external context to

drive the generation. Due to the deterministic, input-driven nature of the SRN, its basic

version cannot be used to autonomously generate sequences. We therefore propose a sim-

ple extension of the model that allows it to produce sequences from the learned probabil-

ity distribution. We evaluated the quality of the letter sequences generated by the

learning models by comparing them with those contained in the training and test sets,

and with those produced by two published pseudoword generator algorithms.

4.1. Augmenting the SRN: Stochastic sampling for sequence generation

Stochastic sampling was implemented by first transforming the SRN’s output activa-

tions into a (conditional) probability distribution of letters. As the coding scheme is

orthogonal, whereby each letter is coded by a specific unit, the probability distribution

could be obtained by simply normalizing the vector of output units to sum up to 1. The

next element of the generated sequence can then be selected by using an external stochas-

tic process that samples one letter according to the conditional probabilities. A straight-

forward way to realize this is to calculate the corresponding cumulative distribution, and

then select the letter corresponding to a random number drawn from the interval [0, 1].

This procedure does not require any selection threshold, because all letters with non-zero

probability can potentially be chosen to be the successor. The selected element is given

as input to the network at the next time step, and this process is repeated until the termi-

nation symbol is produced. A similar approach has been recently applied to a different

class of recurrent neural networks (Sutskever et al., 2011). Even if we used logistic sam-

pling, it should be noted that other approaches can be used to obtain a probability distri-

bution in the output units, for example, by using a softmax function (see McClelland,

2013; for a discussion about the relation of logistic and softmax sampling and their

Bayesian interpretation). A graphical representation of the stochastic SRN (SSRN) is
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provided in Fig. 1C, whereas Fig. 1D illustrates the generation process of a three-element

sequence when the network is unfolded in time.

4.2. Pseudoword generators

Pseudoword generators are commonly used in psycholinguistic research. They provide

a useful benchmark for assessing the quality of letter sequences because they have been

engineered to maximize the well-formedness of the generated items. We considered the

ARC pseudowords database (Rastle, Harrington, & Coltheart, 2002) and Wuggy (Keu-

leers & Brysbaert, 2010). The ARC database contains 310,000 non-pseudohomophonic

monosyllabic pseudowords, built using a hand-crafted grammar that defines phonological

constraints on monosyllables. A set of phoneme-to-grapheme correspondences extracted

from CELEX is used to derive possible spellings of legal phonological strings, which are

then converted back to phonological representations using a set of grapheme–phoneme

correspondences. Finally, phonological strings that differ from the initial phonologies are

excluded from the database. The Wuggy pseudoword generator takes a different

approach. Instead of combining subsyllabic elements like in the ARC database, it starts

from a given set of words, which are syllabified and used to build a bigram chain.

Pseudowords are then generated by recursively iterating through the chain (Keuleers &

Brysbaert, 2010). Wuggy is particularly interesting for our comparison, because it does

not use phonological representations and it starts the generation from a reference list of

words. Thus, we could generate pseudowords using the same training set of our RTRBM.

It is worth stressing that the pseudoword generators should not be considered as a “gold-

standard” to assess the performance of the models, because they do not necessarily repre-

sent human performance. Nevertheless, the reference to ARC and Wuggy provides a use-

ful benchmark for assessing the performance of learning models with respect to carefully

engineered algorithms.

4.3. Evaluation of generative performance

Each model was used to generate an arbitrary number of sequences, which was chosen

to be 300 times the size of the training set (i.e. 1,590,000 samples). We then calculated

two indexes:

• Completeness of the generation, computed as the ratio between the number of sam-

pled sequences that also appeared in the training set (without repetitions) and the

total number of sequences contained in the training set;

• Fidelity of the generation, computed as the ratio between the sampled sequences

that also appeared in the training set (possibly repeated) and the total number of

sampled sequences.

The first indicator describes the ability of the model to regenerate the training

sequences and it depends on the sampling size. Augmenting the number of the samples

generally increases the completeness of the generation. The second indicator does not
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depend on the size of the sampling and gives an idea about the model tendency to generate

new wordforms instead of reproducing only previously seen sequences: the lower the

fidelity, the greater this tendency.

Given that all models generated a consistent amount of new wordforms (as reported

below), we inspected the quality of the generated strings that did not belong to the train-

ing set. All models produced a number of real English words that were not part of the

training set, which we excluded from the analysis to allow a fair comparison with the

pseudoword generator algorithms. We therefore analyzed the 20,000 most frequently gen-

erated pseudowords composed by at least three letters. We randomly selected the same

number of pseudowords (with at least three letters) from the ARC database for a compar-

ison with its underlying generation algorithm. The Wuggy pseudoword generator was

supplied with the words of the training dataset as input to build the bigram chain, and we

selected the 20,000 most frequently generated pseudowords using the following parameter

set: maximal number of candidates was set to 15, maximal search time was set to 10 s,

and all output restrictions were required (i.e., match length of subsyllabic segments,

match letter length, match transition frequencies and match subsyllabic segments). The

set of pseudowords generated by each model or algorithm was evaluated in terms of the

following statistical features (Duyck, Desmet, Verbeke, & Brysbaert, 2004):

• Sequence length, that we expected to be close to the average length of words in

the training set;

• Orthographic neighborhood (Coltheart’s N): The number of orthographic neighbors

that a string has. An orthographic neighbor is a word of the same length that differs

from the original string by only one letter. For example, given the pseudoword

“cat,” the words “bat,” “fat,” and “cab” are orthographic neighbors;

• Constrained bigrams and trigrams frequency: Averaged type frequency of con-

strained bigrams (trigrams) for the wordform. A constrained bigram is defined as a

specific two-letter combination in a specific position and specific word length. That

is, “es” in “best” is considered the same as in “nest,” but is different both in “yes”
(different length) and in “does” (different position).

4.4. Results

The results of the generation process in terms of completeness and fidelity are shown

Table 1.

With regard to the RTRBM and the SSRN, Fig. 3 shows that both indicators improved as

training proceeded and that eventually both networks were able to generate a large fraction

Table 1

Completeness and fidelity of the generation process for each tested model

RTRBM (%) SSRN (%) HMM (%) 2-gram (%) 3-gram (%) 4-gram (%)

Completeness 91 98 92 67 96 99

Fidelity 16 37 13 5 21 58
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of the words in the training set. Nevertheless, the low fidelity suggests that both models are

not encoding entire sequences, but they rather exploit local transition rules during the gener-

ative process. Indeed, the networks generated many legal sequences that were not present in

the training set (a few samples generated by the RTRBM are reported in Fig. 4A). Some of

these sequences were in fact real English words that were not part of the training set, and a

similar pattern was found for the other models (see first row of Table 2 for details). It is

worth noting that the generated pseudowords might be composed by “legal” bigrams (i.e.,

combinations of two subsequent letters that are observed in the training set) or by novel

(and potentially illegal) bigrams. To investigate this point, we computed the fraction of ille-

gal bigrams produced by the RTRBM with respect to the total generated bigrams in the con-

sidered set of pseudowords. We found a ratio of 0.2%, which confirms that the RTRBM

generated many novel pseudowords without introducing illegal bigrams.

Results of the analysis of pseudoword quality for all models are reported in Table 2.

The number of pseudowords shorter than three letters that was excluded from the analysis

was very small for all the models. As expected, the average length of the pseudowords

generated by the different models was similar to that of the words in the training set,

except for the 4-gram model, which produced longer sequences. Interestingly, only the

RTRBM and Wuggy never generated words longer than seven letters, which is the maxi-

mum length of the words in the training data (note that Wuggy was explicitly required to

respect this constraint). All the other models, instead, generated a certain number of

pseudowords longer than seven letters. This ranged from just 16 for the SSRN to several

thousand for the 4-gram model.

Importantly, pseudowords generated by connectionist models had the highest mean

orthographic neighborhood (4.96 for the RTRBM and 5.03 for the SSRN), followed by

those generated by the 3-gram model and Wuggy (Fig. 4C). On the other hand, ARC

pseudowords had the lowest orthographic neighborhood (0.56). The mean constrained

bigram frequency (Fig. 4D) was higher for the RTRBM compared to all other models,
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Fig. 3. Recurrent Temporal Restricted Boltzmann Machine (RTRBM) and SSRN completeness and fidelity

(percentage) of generation as a function of training time (in epochs).
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approaching the value of the words in the training set. Both these measures indicate that

the RTRBM produced high-quality pseudowords. Note that the statistics computed over

the training set are very close to those computed over the test set (compare the last two

columns of Table 2), thereby showing that these values are representative of the statisti-

cal distribution in English monosyllabic words.

It is also interesting to note that the RTRBM, the SSRN, and Wuggy generated

pseudowords with similar statistics, even if the latter exploits a sophisticated algorithm

based on bigram chains that are carefully constructed taking into account linguistic infor-

mation and that are processed using an optimized search procedure (Keuleers & Brysba-

ert, 2010). At the same time, trigram frequencies (Fig. 4E) computed on the pseudowords

generated by all the tested models are substantially lower than those computed on the

words contained in the training and test sets. This result indicates a partial mismatch

between existing models and their ability to encode actual distal statistics that are present

in the word corpus.
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5. Discussion

In this study, we modeled the process of learning orthographic structure from

sequences of letters using a recently proposed generative neural network, the Recurrent

Temporal Restricted Boltzmann Machine (RTRBM; Sutskever et al., 2008). We showed

that this sequential network is able to learn the structure of English monosyllables in a

completely unsupervised fashion, by only trying to accurately reproduce input wordforms

presented one letter at a time.

We first demonstrated that the RTRBM successfully learned graphotactics by testing

its performance on a prediction task, where initial parts of words were given as a context

and the network predicted the probability distribution of the following letters. The

RTRBM yielded a prediction performance comparable to that of a simple recurrent net-

work (SRN), which is the most widely used connectionist architecture to model sequential

data. We also compared the RTRBM with other popular (non-connectionist) probabilistic

generative models, Hidden Markov Models and n-grams, which constitute the state-of-

the-art in several sequence learning tasks but do not provide insights in terms of the

underlying neural computations. We then assessed the generative ability of the considered

models by letting them to autonomously produce sequences of letters and measuring their

well-formedness. In particular, we calculated the mean length, orthographic neighborhood

and constrained bigram and trigram frequencies of the generated sequences, and we used

these indicators to compare the quality of these pseudowords with that of the words in

the training and test sets, and with that of two popular pseudoword generators used in

psycholinguistic studies, namely the ARC non-words database (Rastle et al., 2002) and

Wuggy (Keuleers & Brysbaert, 2010). We found that the RTRBM produced very high-

quality pseudowords, thus confirming that it correctly learned the orthographic structure

of English monosyllables. In this regard, it is worth noting that the results of our model

should readily extend to other alphabetic languages. It should also be emphasized that

our assessment of the generative ability of the network was not performed over a sample

of pseudowords generated by human subjects. This constitutes an important future

research direction because, to our knowledge, there is no study that has systematically

investigated the spontaneous production of pseudowords by humans. An empirical study

on human pseudoword generation would provide a critical baseline to measure the quality

of different models.

To allow autonomous generation of sequences with the SRN, which is inherently deter-

ministic and input-driven (i.e., bottom–up), we extended its basic formulation. We there-

fore implemented a stochastic variant of the SRN, the SSRN, in which the activations of

the output units are first normalized to be treated as conditional probability distributions.

An external stochastic process is then used to sample the next element of the sequence,

which is fed back as input to the network at the following time step. Interestingly, the

pattern of results obtained with the RTRBM was very similar to that obtained with the

SSRNs. On the one hand, this is not surprising because both connectionist models try to

predict the next element of a sequence by learning conditional probabilities from the

training data. Indeed, there is a tight formal relationship between probabilistic graphical
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models and recursive neural networks (Baldi & Rosen-Zvi, 2005). However, the two

architectures also differ in several fundamental aspects. The SSRN learns a mapping

function between the current input (plus temporal context) and a separate output represen-

tation. In contrast, the RTRBM learns an internal model of the data (i.e., the hidden

causes that generated the input patterns) by trying to accurately reproduce the incoming

information through feedback (i.e., top–down) connections. That is, sequential informa-

tion is learned by trying to re-generate the training sequences on the same layer that is

used for providing the input. Moreover, the SSRN relies on two additional operations,

one that performs a non-local normalization over the activations of output units and

another that samples the predicted element exploiting an external, ad-hoc stochastic pro-

cess. In contrast, autonomous sequence generation from the RTRBM is an intrinsic fea-

ture of the network: There is no need to perform normalization and to sample from the

corresponding distribution because the probabilistic behavior is caused by the stochastic

dynamics that is also a crucial part of the learning process. Nevertheless, also the SSRN

might be appealing as a cognitive modeling architecture due to its much simpler formula-

tion and its close relationship to the widely used SRNs. On the other hand, the RTRBM

is the only choice when the learning task involves multimodal, distributed representations

as input to the network (Sutskever et al., 2008) instead of the simpler, localistic scheme

adopted in our simulations. Indeed, in such a case it is not possible to choose which ele-

ment should be generated at the next time step using the straightforward sampling scheme

implemented in the SSRN.

In a broader perspective, stochastic generative neural networks represent an appealing

framework for modeling cognitive phenomena because they have a sound probabilistic

formulation and incorporate key principles of neural computation that are not captured by

classic connectionist architectures (see Zorzi et al., 2013; for discussion). For example,

bidirectional activation propagation (interactivity) seems to be a fundamental characteris-

tic of information flow in the cortex (McClelland, Mirman, Bolger, & Khaitan, 2014;

O’Reilly, 1998) and the model-driven, top–down generation of activation over sensory

layers is consistent with a Bayesian view of perception as well as with a predictive cod-

ing framework (Clark, 2013; Huang & Rao, 2011). Moreover, stochastic generative net-

works like Boltzmann Machines only rely on locally available signals to efficiently

compute the global state of the system. However, these networks did not become popular

among connectionist modelers due to the very high computational demands of their

original learning algorithm. Recent advances in the theory of graphical models (Jordan &

Sejnowski, 2001; Koller & Friedman, 2009), the introduction of an efficient learning

procedure (Hinton, 2002), and the extension to hierarchical architectures (Hinton &

Salakhutdinov, 2006) have paved the way to the deep learning framework, which repre-

sents a major breakthrough for the connectionist modeling enterprise (for reviews see

Hinton, 2013; Zorzi et al., 2013). Although generative neural networks are being success-

fully applied in cognitive (neuro)science modeling, their use so far has been primarily

focused on the investigation of perceptual tasks with static information (e.g., space cod-

ing, De Filippo, De Grazia, Cutini, Lisi, & Zorzi, 2012; numerosity estimation, Stoianov

& Zorzi, 2012; visual word recognition, Di Bono & Zorzi, 2013). The RTRBM extends
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the application of generative networks to the temporal domain, where the system has also

to extract the dynamic aspect of sequentially presented input. In this regard, it is worth

noting that the RTRBM is not a deep network, but it could be used as a building block

of a deep architecture for learning a hierarchical generative model of the sequential data.

Language is a prominent example of a domain where sequential processing is ubiqui-

tous, data dynamics is highly structured, and information is integrated over time. For this

reason, the problem of discovering structure in time is a key issue for connectionist mod-

eling of language (Elman, 1990). Even if there is clear evidence that statistical learning

principles underlie several basic linguistic abilities (Romberg & Saffran, 2010), it has

been argued that the great complexity of language (and, more generally, of knowledge

representation) might be better captured by probabilistic models defined over rich sym-

bolic structures, in which learning and processing are seen as problems of induction and

inference (Chater & Manning, 2006; Chater, Tenenbaum, & Yuille, 2006; Griffiths et al.,

2010). Though the probabilistic formulation greatly improves the descriptive capability of

symbolic rules and representations, the appeal of connectionism is that it shows how

structure can emerge as high-order statistical features of the input from learning within a

neurally plausible architecture (McClelland et al., 2010). Generative neural networks can

be formally defined within the powerful framework of probabilistic graphical models (Jor-

dan & Sejnowski, 2001), which also represents the basis for a broad class of structured

Bayesian models (Koller & Friedman, 2009). Probabilistic graphical models provide a

general approach to model complex statistical distributions involving a large number of

stochastic variables that interact together. Basically, the topology of a graph defines the

scope of interaction and the conditional dependencies between random variables, thereby

allowing to compactly represent joint distributions through factorization. This permits to

derive efficient inference and learning procedures, which can often be implemented

through operations that are local with respect to the structure of the graph (Pearl, 1988).

We therefore argue that generative neural networks constitute a promising avenue for

research in computational cognitive science, because they can bridge the gap between

emergentist connectionist approaches and structured Bayesian models of cognition (Zorzi

et al., 2013). Some attempts to integrate these two approaches have recently led to a

compositional architecture that learns a hierarchical Dirichlet process prior over the activ-

ities of the top-level features in a deep Boltzmann Machine, allowing to learn novel con-

cepts from very few examples (Salakhutdinov, Tenenbaum, & Torralba, 2011).

Sequential statistical learning is a general phenomenon that is found across sensory

modalities (Conway & Christiansen, 2005). Although it is not yet clear whether the

underlying mechanism is unitary or modality constrained, it is interesting to note that the

sequential generative network used in our study has been previously applied to modeling

video sequences (Sutskever et al., 2008). The RTRBM was able to capture the high-

dimensional, multimodal nature of the pixels distribution across subsequent frames,

despite the complex nonlinearities characterizing the movies of the dataset. An extension

of the RTRBM, called RNN-RBM, has also recently been used to model temporal depen-

dencies in polyphonic music (Boulanger-Lewandowski, Bengio, & Vincent, 2012),

thereby supporting the intriguing hypothesis that music, language, and statistical learning
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might be tightly linked (McMullen & Saffran, 2004; Patel, 2003). In our work, we did

not consider the RNN-RBM as a reference architecture due to its increased complexity,

which is caused by the fact that the network is composed by two separate modules, one

recurrent neural network (RNN) that propagates the contextual information over time and

one RTRBM that models the conditional distributions at each time step. It is not clear

whether this separation can be justified from a psychological perspective, but it would

certainly be an interesting research direction to also investigate the potential of the RNN-

RBM to model sequential cognitive tasks. Moreover, it has recently been shown that even

a simple RNN can significantly outperform the more complex RNN-RBM on music pre-

diction if weights are properly initialized through an effective pre-training (Pasa & Sper-

duti, 2014; Pasa, Testolin, & Sperduti, 2014). It would therefore be interesting to explore

in which way such pre-training schemes could also affect learning of orthographic struc-

ture.

While our results on learning orthographic structure are encouraging for the application

of RTRBMs to language learning problems, there are several important questions that

should be addressed in future psycholinguistic modeling research. First, analysis of the

hidden units’ dynamics might reveal the nature of the temporal features extracted by the

RTRBM, for example, some neurons might become sensible to particular transition rules

(e.g., see Nerbonne & Stoianov, 2004; Stoianov, 2001). Second, a systematic investiga-

tion of the “memory span” of the network would allow estimating how much contextual

information can be maintained in the hidden layer. If the network is able to encode entire

sequences at the hidden layer in a way that allows discrimination of different words, such

static distributed representation of sequences could be used as input to higher level net-

works/modules (Sibley et al., 2008; Stoianov, 1999). This would allow to better investi-

gate the extent to which unsupervised statistical learning could generate novel word-like

units (Saffran, 2001), thereby showing how syntactic structures could emerge by first seg-

menting the words from continuous speech, and subsequently discovering the permissible

orderings of the words (Saffran & Wilson, 2003). As noted before, the shallow architec-

ture of the RTRBM could serve as the basis for a deeper generative model, which is

likely to increase its ability to discover complex structure hidden in sequential data and

expand its applicability to a broader range of phenomena. In this respect, it is worth men-

tioning that there exist some other recent models, like the Conditional RBM (Taylor, Hin-

ton, & Roweis, 2011), which might be more easily stacked into a hierarchical system.

Finally, the application of the model should also be investigated on linguistic tasks, such

as word segmentation and decomposition, in which probabilistic generative models repre-

sent the state-of-the-art (Creutz & Lagus, 2002; Spiegler, Golenia, & Flach, 2010). The

RTRBM could also represent a very useful platform for studies of language similarities

and dialectology (Nerbonne & Heeringa, 2009).

In conclusion, our study suggests that sequential, stochastic generative networks are

appealing for modeling dynamic cognitive processes. We believe that this line of research

holds great promise to build more powerful connectionist architectures for representing

and manipulating structured information, using hierarchies of processing levels that oper-

ate across different temporal and spatial scales.
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