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ABSTRACT In response to the new challenges in the design and operation of communication networks,
and taking inspiration from how living beings deal with complexity and scalability, in this paper we
introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The pro-
posed approach develops around the systematic application of advanced machine learning techniques and,
in particular, unsupervised deep learning and probabilistic generative models for system-wide learning,
modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this
learning architecture with the emerging network virtualization paradigms, which make it possible to actuate
automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential
of the learning approach. Compared with the past and current research efforts in this area, the technical
approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic
combination of expertise of computer scientists, communications and networking engineers, and cognitive
scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern
understanding of cognition can be used in themanagement and optimization of telecommunication networks.

INDEX TERMS Cognitive networks, deep learning, hierarchical generative models, optimization.

I. INTRODUCTION
Traditionally, the ISO/OSI system architecture has been the
cornerstone of network design, due to its modularity that
enables the optimization of individual sets of functionalities
and guarantees scalability. While such an ordered and simple
structure has successfully served the needs of the Internet
users up to now, the always increasing number and variety
of services deployed over the network, and the effort of the
Internet service providers to continuously improve the quality
of the services offered to their customers, are challenging the
current network architecture, which suffers from ossification
in the underlying infrastructure and does not appear capable
of scaling up with the growing complexity of the upcoming
communication scenarios.

This trend is indeed expected to accelerate in future
fifth-generation (5G) mobile systems that, though not yet
fully specified, will certainly pose extreme challenges in
terms of heterogeneity of both device capabilities and traffic;

scalability in terms of number of functions and
parameters within a single node, and of number of nodes in
the system; efficient use of the resources, such as bandwidth
and energy; and effective management of Quality of
Experience (QoE) [1]–[3].

A few examples that illustrate well the difficulties that need
to be solved by future network technologies are the following.

a) Massive Access: Current cellular networks have been
designed to serve a small number of users per cell
at high bit rate, particularly in the downlink. This
paradigm is being challenged by massive access
scenarios, characterized by a very large number of
devices in each cell, and prevalent uplink traffic.
An example is themachine-to-machine scenario, which
requires the base stations to guarantee access to a very
large number of machine-type devices that sporadically
transmit very short packets [4], [5]. Another example is
the simultaneous upload of pictures or videos taken by
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people attending a public event and wishing to share
the moment with others, using social media or cloud
services. With current technologies and protocols,
massive access will generate overwhelming signaling
overhead and cause service outages.

b) Mobility in HetNets: The demand for high-speed
connectivity is also expected to dramatically increase
in the near future. A promising approach to tackle this
problem is to place pico and/or femto base stations
within a macro cell, a paradigm known as
Heterogeneous Networks (HetNets). While HetNets
can provide better coverage and higher connection
speed to users, the higher density of base stations with
different coverage areas and backhaul connectivity
raises new technical challenges for both the mobile
users and the network operators, which include the
design of efficient handover policies, resource
allocation/reservation schemes, service migration
strategies, and so on [6], [7].

c) Concurrent Multimedia Flows: The popularity of
smartphones and tablets has generated a growing
demand for mobile multimedia content. A wireless
access point, hence, may be required to serve simulta-
neously multiple video connections with dynamic rates
via scalable coding and different quality requirements,
data transactions of various kinds, several file transfers
and possibly some voice connections and audio stream-
ing. To provide the maximum QoE to the end user
while using resources efficiently, the new generations
of communication systems have to differentiate the
services not only by class of application, but even per
flow within each class, thus providing content-based
service optimization [8], [9].

d) Self-Organizing Networks: The ever increasing
topological and functional complexity of networks,
in particular cellular networks, calls for automated
mechanisms for handling some fundamental network-
ing operations, in particular the Self-Configuration of
system parameters when network elements are added
or removed from the system (e.g., IP addresses,
neighbours list, frequency allocation, propagation
channel model, antenna tilt); the Self-Optimization of
the network performance when the system is opera-
tional (coverage, capacity, energy consumption); and
the Self-Healing of the system, i.e., the recovery of
the network functionalities and services after faults or
failures of some components [10]–[12]. These capabil-
ities, collectively referred to as Self-X, are fundamental
in future wireless networks to ensure high quality of
the mobile services while reducing capital expendi-
tures (CAPEX) and operational expenditures (OPEX)
of the radio access network. However, the realization
of Self-X mechanisms that are scalable and fully
autonomic is still an open research challenge.

There is hence a need to manage more efficiently the
available resources, taking into account the vast variety of

traffic features and of their performance requirements, as well
as the extreme heterogeneity of device capabilities and of
communications technologies.

Recent trends in networking have shown that crossing the
boundaries of the layering architecture can lead to much
higher efficiency than respecting the orthodox layered model,
and cross-layer approaches have been proposed and shown to
provide very good results, especially in resource-challenged
environments [13], [14], although one should always be
careful when and how to use cross-layer techniques [15].
Furthermore, newly emerged networking paradigms and
capabilities, including Software Defined Networking (SDN)
and Network Function Virtualization (NFV) [16], open
up unprecedented opportunities towards new systems and
applications.

However, greater flexibility in network management
implies more degrees of freedom in the setting of the network
parameters and, consequently, a much bigger optimization
space, which will call for more advanced (and complex)
optimization strategies. If in addition we try to use the
abundance of sensory data already present (or easily
obtainable) in networks and devices, the dimensionality
of the problem quickly becomes very large, making
traditional approaches insufficient and calling for disruptive
paradigms.

As a response to these challenges, and inspired by
how the nervous system of living beings deals with com-
plexity and scalability, we introduce the new concept of
COgnition-BAsed NETworkS (COBANETS), intelligent
communication systems which are much more than just a
collection of smart or cognitive nodes, and instead include
a network-wide cognitive infrastructure for learning, mod-
eling and optimization, and data representation. Advanced
machine learning techniques, in particular unsupervised deep
learning and probabilistic generativemodels (suitable for sce-
narios with massive unlabeled data, such as those previously
described), along with network optimization at all layers of
the protocol stack and corresponding reconfiguration through
SDN tools, are the key building blocks of our approach,
which significantly departs from state-of-the-art solutions in
cognitive networking.

The conceptual design and practical implementation of
cognition-based networks have been elusive for years. In this
paper, we claim that this vision is now at hand, because of the
following key enabling factors:

i) The recent advances in machine learning and
cognitive science, with the development of deep
unsupervised learning networks which have been
successfully applied to solve extremely difficult
classification problems.

ii) The impressive performance improvements of process-
ing units, with the commercial diffusion of parallel
computing architectures that are particularly suitable
for running very-large-scale deep learning models,
such as those based on powerful Graphics Processing
Units (GPUs).
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iii) The rapidly growing popularity of new networking
paradigms, such as SDN and NFV, that have the
potential to overcome the ossification in the under-
lying infrastructure of the Internet and to enable a
more dynamic and flexible management of the net-
work, thus making it possible to actuate network-wide
optimization strategies.

Despite the conjunction of these favorable factors, building
the grand vision of a learning network, able to adapt to chang-
ing conditions and to serve multiple communication services,
still remains a great challenge, which requires pushing the
research significantly beyond the current state-of-the-art. The
path however is littered with a number of roadblocks, among
which we identify the following as the most critical:

i) No attempt has been made so far to design and
implement a practical network-wide learning
framework for network optimization.

ii) Little is known about what can be fundamentally
achieved using such a learning approach for network
optimization.

iii) Although the excellent performance of deep networks
in many challenging machine learning tasks provides
strong evidence on their suitability for learning and
adaptation, their application to network optimization
has not yet been widely explored.

iv) A large-scale testbed that incorporates deep learning
concepts and uses them for network optimization
through SDN tools does not yet exist.

We remark that the availability of large datasets of
experimental data, and the possibility of testing the proposed
algorithms in real scenarios, are essential elements for the
proper design of a cognition-based network. Indeed, the pro-
posed approach gravitates around the possibility of turning
the complexity of the system into an advantage, rather than an
obstacle, by exploiting the inner capabilities of deep learning
architectures to capture and discriminate hidden features of
the complex multidimensional signals that are observed in
real scenarios, whose richness cannot be fully replicated by
any mathematical or even simulation model.

In the rest of this position paper, we address these
roadblocks and describe our vision on how to move forward
towards the practical realization of the COBANETS concept.
The paper is organized as follows. In Sec. II we will quickly
survey the recent history of cognitive networking and of
machine learning methods applied to network optimization.
Furthermore, the section offers a brief introduction of unsu-
pervised learning techniques, which are at the core of the
COBANETS framework. The reasons behind this choice are
discussed in Sec. III, which describes in more details the
COBANETS concept, and the specific properties of Gen-
erative Deep Neural Networks that make them particularly
attractive as the enabling elements of a cognitive architecture.
In Sec. IV, as a concrete example, we illustrate the potential of
the proposed concept by describing some preliminary studies
wherewe applied deep learning neural networks to gain richer
context information on video flows, thus making it possible

to design resource management algorithms capable of maxi-
mizing the connection performance while guaranteeing high
QoE to the final users. Sec. V discusses the most relevant
research challenges opened by the proposed approach, and
finally Sec. VI concludes the paper with a short summary of
the study and some final considerations.

II. STATE OF THE ART
In order to set the stage for the description of the
proposed approach, we first provide a brief overview of the
recent history of cognitive networking and machine learn-
ing approaches, with particular focus on deep learning and
generative models which are the basic building blocks of our
approach.

A. COGNITIVE RADIOS AND NETWORKS
Cognition as a way to deal with the challenges of future
networks has been suggested several times in the past. The
pioneering work in [17] and [18] proposed to apply cognition
to special communications devices, called cognitive radios,
able to learn and adapt to the environment, with the goal
of providing reliable communication and efficient utiliza-
tion of the radio spectrum. This concept of adaptability at
the physical layer was later extended to a paradigm called
cognitive radio network [19], where the spectrum owned by
the so-called primary users (i.e., the legitimate users of a
licensed band) is also exploited by secondary cognitive radios
to communicate while coexisting with the primary users.

A popular application of this concept is dynamic spectrum
access, motivated by the observation that licensed bands are
heavily underutilized and there is room for their opportunistic
usage [20]. Several other works in this area have dealt more
recently with networking aspects (such as medium access
and routing protocol design) based on this primary/secondary
paradigm, for example in the context of Cognitive Radio
Ad Hoc Networks [21], where a population of secondary
users in ad hoc mode opportunistically coexist with primary
users in a cellular environment. In all cases, primary users are
assumed to use legacy technology and to be unaware of the
cognitive operation, whereas secondary users are equipped
with a frequency-agile transceiver and have the intelligence
necessary to perform spectrum sensing, dynamic spectrum
access, as well as possibly other advanced functionalities.

Even though in most of the existing papers on cognitive
radio and cognitive radio networks the ‘‘cognitive’’ aspects
are focused on sensing, channel selection, and adaptive com-
munications, both Mitola [17] and Haykin [18] actually gave
a broader definition of cognitive radio, which includes aspects
that relate to the true essence of cognition, such as intelligent
observation, learning, and decision-making. From this view-
point, the existing studies that have addressed these cognition
issues in networks, though certainly interesting and valuable
in their own right, have only scratched the surface of what
promises to be a rich research area with high potential for
innovation [22]. In this direction, cognitive networks for
wireless systems [23]–[26] and the Knowledge Plane (KP)
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for the Internet [27] have been proposed as new paradigms in
which the concepts of cognition, learning and adaptability are
applied in an end-to-end fashion to the whole protocol stack.

The vision of the KP given in [27] is quite abstract,
and more conceptual than practical, but contributes to better
shape the general idea of cognitive network by defining the
functionalities and properties that are expected from such a
system. The KP is seen as a separate construct, parallel to
the existing data and management planes, that shall become
the depository of a distributed and system-wide intelligence,
which is here intended as the capability to ‘‘abstract and
isolate high level goals from low level actions, to integrate
and act on imperfect and conflicting information, and to learn
from past actions to improve future performance’’ [27, p. 3].
In [27], the authors also attempt a speculative characterization
of the KP architecture in functional terms, claiming that
the KP structure shall be: distributed, in order to somehow
reflect and respect the structure and dynamics of the current
Internet, which is the result of the combination of a multitude
of networks of the most disparate sizes, interconnected in a
loosely hierarchical topology; and compositional, i.e., com-
posed by modules of different sizes that can combine into
more complex modules or decompose themselves in simpler
entities, as appropriate.

In order to be able to achieve its global monitoring and
control objective, the KP architecture shall make it possible
to access sensors distributed across the system, which shall
produce observations of the current status of the system that
are connected with relevant performance indices, and to oper-
ate on actuators, that implement control actions according to
certain policies. This concept is taken up in [24]–[26], where
the authors identify the Software Adaptable Network (SAN)
as a fundamental building block of a cognitive network.
Practically, the concept of SAN is that of a network able to
modify one or several layers of the protocol stack in its nodes
according to the adaptation strategies decided by a cogni-
tion entity, with the aim of achieving end-to-end objectives.
The interaction with the SAN is supposed to be provided
through an Application Programming Interface (API), which
is used by the cognitive engine to both act on the modifiable
elements of the network and collect reports on the network
status, which are then fed to the learning process, closing the
cognition cycle.

A somewhat similar architecture is proposed
in [28] and [29], where the authors define a framework for
a cognitive resource manager (CRM) that aims at enabling
autonomic optimization of the whole communication stack
of a wireless system by interacting with and dynamically
adapting the layered protocol stack. The CRM is described as
a sort of ‘‘micro kernel’’ that can be enhanced with additional
software modules implementing different types of algorithms
for data management, representation, and learning, such as
neural networks, Bayesian reasoning, genetic algorithms, and
so on. The interaction of the CRM with the different and
heterogeneous link layer technologies is realized by means
of the Unified Link Layer API (ULLA), first proposed in the

European project GOLLUM.1 The CRM framework hence
shares the general structure and purpose of the Knowledge
Plane, but with the extra requirement of real-time
functioning, which makes its actual implementation much
more complicated.

B. THE ROLE OF MACHINE LEARNING
Recent research that makes explicit use of Machine
Learning (ML) tools in a networking context includes [30]
that proposes a framework for cognitive inference in the
presence of partial and noisy observations, and [31] that
introduces the concept of ‘‘docitive networks,’’ where nodes
effectively teach other nodes for improved performance,
whereas a recent survey on learning techniques for cognitive
radio networks is provided in [32]. A generic architecture
model is formalized in [33], which focuses on the learning
engine of cognitive networks as a way to improve capacity
maximization and dynamic spectrum access.

An example of application to data routing and clustering
in sensor and ad hoc networks can be found in [34], where
ML approaches are surveyed and compared. In [35] the
authors study the optimization of routing and scheduling
through reinforcement learning, showing that good perfor-
mance can only be achieved by using a joint approach that
simultaneously acts on the route selection and the scheduling
policy applied by the nodes along the path.

Other researchers have used supervised learning methods
to address various classification tasks. Decision trees have
been used for system failure diagnosis [36], and for file type
classification [37]. In [38] the authors survey a number of
learning strategies able to classify IP packets and identify the
application that generates network traffic, using supervised,
unsupervised and hybrid approaches. In [39], the authors
show how Bayesian techniques can greatly improve the
accuracy when analyzing Internet traffic based on packet
header-derived discriminators, whereas [40], [41] evaluate
several different algorithms working on empirical data, in
terms of accuracy and complexity.

Reference [42] proposes a computer program able to
automatically design end-to-end congestion-control algo-
rithms based on human-supplied specifications, such as
throughput maximization and/or delay minimization, and to
outperform the best-known human-designed techniques in
many different scenarios. This type of approach shows that a
unified framework endowed with enough intelligence has the
potential to do better than customized solutions, and could be
complemented with the deep learning approach we propose.
Another approach to improve TCP performance based on
both prior file transfer history and measurements of simple
path properties is presented in [43].

Similarly, in [44] the authors propose a predictive model
of Internet video QoE based on a data-driven approach and
on the analysis of metric interdependencies and complex
relationships by means of decision trees.

1http://www.ist-gollum.org
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C. SELF-ORGANIZED NETWORKS
In the last years, growing attention has been devoted to
the development of machine learning mechanisms to pro-
vide Self-X capabilities in future wireless networks [45].
The general idea underlying the Self-Organization concept
is to replicate in man-made systems the capabilities of some
biological systems (e.g., flocks of cranes, schools of fish,
swarms of insects) to autonomously adapt to the dynamics
of the surrounding environment, in order to achieve a desired
objective. Although a formal and widely accepted definition
of Self-Organization is still lacking, in [46] the authors have
attempted a reasoned synthesis of the different interpretations
of this concept that have been proposed in the literature,
defining self-organization in a system as an adaptive and
autonomous functionality that is ‘‘scalable, stable and agile
enough to maintain its desired objective(s) in the face of all
potential dynamics in its operating environment’’ [46, p. 339].
Therefore, self-organized networks shall not just be able to
autonomously adapt to changing conditions, but also to learn
based on experience.Machine learningmechanisms naturally
take a primary role in this context for what concerns the
learning aspect, but can also play a significant part in network
optimization, in particular when combined with reinforce-
ment learning [47].

As an example, reinforcement learning, in combination
with fuzzy logic, is proposed in [48] and [49] to optimize
the downtilt of the antennas of a Long-Term Evolution (LTE)
base station, in order to achieve the self-configuration, self-
optimization, and self-healing functionalities. The scheme is
proved to outperform other heuristic algorithms and to be
robust to environmental noise. In [50], the authors present
different learning strategies to maximize the coverage and
optimize the capacity of a wireless cellular network, using
a Fuzzy Q-Learning based solution. They observed that the
stability of the proposed solution (which, according to [46], is
a fundamental requirement for a truly self-organizing system)
depends upon the number of agents (base stations in this
case) that simultaneously try to adjust their antennas downtilt:
when a single agent at a time can adjust its parameters, the
stability and performance of the whole system are eventually
maximized, but the convergence time can become very long;
conversely, when all agents can take actions simultaneously,
the convergence process is sped up, but at the cost of
larger oscillations and reduced performance gains. Hence,
a clustering mechanism that combines the benefits of both
strategies is proposed to find a satisfactory tradeoff between
the two approaches.

Despite the appreciable body of literature on Self-X
mechanisms, practical solutions that exhibit the scalability,
stability and agility requirements for proper self-organization
of upcoming wireless systems are still missing.

D. UNSUPERVISED LEARNING
The above applications of ML to networking problems are
meant to solve specific issues, and make use of either
supervised learning (in which correct inputs/outputs are

explicitly presented and/or suboptimal actions are explicitly
corrected) or some form of reinforcement learning (where an
agent receives a reward based on the action it chooses, trying
to find a balance between exploration and exploitation) [51].
These learning approaches are typically effective in the pres-
ence of a well-defined goal (as in the above examples) and of
a tight action-reward feedback loop through which the agent
is informed about the goodness of a certain action, which is
thereby learned for future use.

However, there is a broad range of situations where
learning is fully unsupervised, and its only objective is that of
building rich internal representations of the sensory world.
For instance, although humans often learn through supervi-
sion (e.g., by teacher instruction) or reinforcement (e.g., by
understanding the effects of actions), we also continuously
perform unsupervised learning, in which we receive a variety
of stimuli from the environment and we gradually develop
a worldview that constitutes the background upon which we
build our cognitive activities [52], [53].

Importantly, once the system has developed expressive
internal representations of the data, supervised tasks can be
more easily carried out by introducing additional modules,
which directly operate on such high-level representations and
can yield very high classification performance [54], [55].
This framework is often associated with the notion of
representation learning [56], which is in turn applied
to implement effective transfer learning algorithms [57],
where abstract knowledge extracted from one domain is
readily re-used to solve many different supervised tasks.
Conversely, knowledge obtained through supervised learning
is necessarily goal-specific and does not easily transfer to
novel tasks. Finally, when applied to real-world problems,
unsupervised learning can exploit the huge amount of
data that comes without any label to build rich internal
representations.

It is worth noting that a pure supervised learning approach
applied to a sufficiently complex problem may even fail to
achieve adequate performance, because it might not be able
to build an appropriate representation of the data distribution
that can be effectively used to support discriminative tasks
(see [58] for an example of this behavior in the context of
an image classification problem consisting in estimating the
numerosity of a visual set).

E. GENERATIVE MODELS AND DEEP
LEARNING ARCHITECTURES
In the context of unsupervised learning, a generative model is
a probabilistic model of how the underlying physical proper-
ties of the world cause sensory data, and is built by extracting
a useful set of features from the input space that allows to
accurately reconstruct the input information and to support
similarity judgments among different (and possibly novel)
patterns [59]. In other words, the learner estimates a model
representing the probability distribution of the data and uses
this knowledge to test hypotheses about how to best interpret
the (possibly noisy and unreliable) information coming from
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the external environment. The learning goal is therefore to
discover the latent structure of the data distribution, wich can
be accomplished without any external supervision or reward
since the learning signal is provided by the discrepancy
between the input pattern and the corresponding reconstruc-
tion performed by the model.

Notably, generative models can be efficiently imple-
mented in stochastic recurrent neural networks, such as the
Boltzmann Machine [60]. Boltzmann Machines have been
recently formalized within the framework of probabilistic
graphical models [61], thereby allowing the exploitation
of powerful analytical and computational tools to improve
learning algorithms [62], [63]. One version known as
Restricted Boltzmann Machine (RBM), which is schemati-
cally represented in Fig. 1, is particularly attractive because
training can be very fast using the contrastive divergence
learning algorithm [62]. Learning involves the iteration
between a positive and a negative phase. During the positive
phase (inference), visible units are clamped to the values of
the data observed in the training set. The network then propa-
gates activations to hidden units, according to the weights of
the connections. The entire vector of hidden unit activations
constitutes an internal representation of the pattern observed
in the visible units. During the negative phase, instead, hidden
units are fixed and activations are propagated backward to the
visible units in a similar fashion, in order to accurately recon-
struct the original input vector. The objective of the (unsu-
pervised) learning process is to find a good set of weights to
obtain accurate reconstructions of the input patterns.

FIGURE 1. The structure of a Restricted Boltzmann Machine.

These advances have made it possible for the very first
time to effectively stack together several basic modules, like
the RBM, in order to learn multi-layer architectures [64],
which paved the way for the introduction of a variety of so-
called deep learningmodels [65], [66] that are now the focus
of many academic and industrial research groups.

Deep learning architectures make it possible to efficiently
encode complex probability distributions using multiple
levels of representation [67], where basic features extracted
at lower levels are successively combined to form more com-
plex, high-level features, thereby providing a practical way to
build hierarchical generative models from the training data.
Therefore, unlike ‘‘shallow’’ architectures, deep learning sys-
tems exploit feature reuse in order to process information
through multiple stages of transformation and representation,
which seems to be a strategy adopted also by the primate
cerebral cortex [68]. Note that this approach is currently the
state-of-the-art in cognitive science modeling [58], [67].

In addition, the introduction of extremely powerful
parallel computing architectures, such as the CUDA
framework [69], now makes it possible to efficiently build
very-large-scale deep learning models containing millions
of connection weights [70], [71], which can be trained in
an unsupervised way using the huge number of patterns
contained in modern digital datasets [72].

By exploiting these advances, deep learning algorithms
led to impressive performance gains in many difficult ML
tasks, such as object recognition [73], speech processing [74],
natural language modeling [75], predicting the activity of
potential drug molecules [76] and studying the effects of
mutations in DNA [77], just to name a few.

Although most recent research on deep learning has
focused on the use of supervised techniques (see [78] for a
review), unsupervised (i.e., generative) deep learning remains
the only choice when data cannot be easily labeled (as in our
scenarios of interest), and represents a key research frontier
for the future. Indeed, although supervised algorithms such
as error back-propagation represent a powerful way to train
multi-layer architectures, it is evident that ‘‘we discover the
structure of the world by observing it, not by being told the
name of every object’’ [78, p. 442]. Moreover, generative
neural networks have also been recently extended to model
more complex sequential data, where the temporal dimension
can be efficiently processed by exploiting distributed repre-
sentations of the contextual information [79]–[81].

Finally, although the COBANET architecture described in
this paper is mostly concerned with the problem of build-
ing useful representations of the networking environment,
its overall performance is also heavily dependent on the
set of control policies that are used to govern the sys-
tem. Although there exist several ‘‘engineered’’ solutions to
define which actions should be performed at each timestep
in order to optimize the behavior of the system, human-
programmed approaches become infeasible in many com-
plex scenarios, and better performance can be obtained by
exploiting learning-based methods. Learning optimal control
strategies is usually achieved by means of trial-and-error
procedures, which allow to learn how specific actions affect
the system behavior based on feedback received from the
environment. Interestingly, some recent research has shown
how deep learning approaches might be effectively com-
bined with such reinforcement learning strategies to build
control systems approaching human-level performance [82].
In particular, the rich and abstract representations created
by a deep network were given as input to a control module
implementing a variant of the Q-learning algorithm, thereby
allowing the agent to learn a meaningful mapping between
observation and actions. Such tight synergy between ‘‘per-
ceptual’’ and ‘‘control’’ modules could greatly improve the
overall behavior of a cognitive system, for example pro-
viding a principled way to shape the internal representa-
tion of the deep network to give prominence to the envi-
ronmental features that are of most value for the control
task.
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III. THE COBANETS CONCEPT
From the above review of the related literature, we learn that,
although the powerful paradigm of bringing cognitive pro-
cesses into networks has been suggested in various forms in
the past fifteen years or so, the idea has not yet found its way
into a comprehensive and practical design, and even less so to
a large-scale application in real systems. We believe the main
reasons for this are to be found in the lack of a sufficiently
general tool to implement intelligence in a scalable way, and
the lack of actionable schemes able to effectively implement
decisions in complex systems, possibly combined with the
lack of a broader view of the cognition-based system beyond
the ad hoc application of specific ML techniques to a limited
set of functionalities.

New paradigms that have emerged only very recently in
the areas of machine learning and cognitive science (deep
networks and generative models, i.e., the intelligence) and
networking (software defined networks, i.e., the actionable
schemes) make this the right time for a disruptive change of
paradigm and for realizing the ambition to bring cognitive
networking techniques to the next level, by moving from
the limited scope of a set of specific applications towards
the development of a comprehensive framework in which
large-scale unsupervised learning is the stepping stone and
a key enabler of a wide range of optimization techniques for
the whole network, as well as for its individual components.

According to these premises, the COBANETS con-
cept focuses on generative models, and in particular
Generative Deep Neural Networks (GDDNs), and net-
work virtualization paradigms as key enabling factors for
the development of a groundbreaking novel approach to
network optimization.

In the remainder of this section, we describe inmore details
the characteristics that make GDNN extremely appealing in
this context and, then, we give a broad description of the
system architecturewe envision. In Sec. IV, wewill substanti-
ate our arguments by describing a possible implementation of
a subset of the COBANETS principles in a practical scenario.

A. GDNN: GENERATIVE DEEP NEURAL NETWORKS
At an intuitive level, the unsupervised training of a deep
neural network builds an inner model of unlabeled input
signals that is independent of any specific concept defined
by the user. Unlike in typical supervised learning tasks
(i.e., classification or regression), the system is not forced
to learn an appropriate output response for a given input
pattern. Instead, here the learning objective is to extract a
useful set of features from the input space, which allow to
accurately represent and reconstruct the input information
and to support similarity judgments among different (and pos-
sibly novel) patterns. Any input signal applied to the visible
layer of a deep neural network is indeed mapped to a certain
configuration of the neurons in the deeper layer (features),
whose joint statistical distribution can capture the highly
non-linear and complex interactions between the observed

examples. The values taken by these higher-level hidden
units provide a more abstract representation of the input
data, according to the model learned by the network [53].
The generative model obtained from unsupervised training
of a deep neural network (hereafter called Generative Deep
Neural Network – GDNN) supports the comprehensive learn-
ing framework represented in Fig. 2, and is characterized by
the following specific properties.

FIGURE 2. Schematic representation of a learning framework based on a
Generative Deep Neural Network (GDNN).

1) GENERATIVE PROPERTY
GDNNs are trained to minimize the error between the
observed data and its estimate obtained from the internal
model (i.e., top-down reconstruction of the data). If the gen-
erative model includes the temporal dimension (for example,
by learning data patterns presented according to a sequential
structure [81]) it can be readily used to make predictions
about the upcoming input information based on the recent
history of the system, thereby exhibiting a proactive and
anticipatory behavior that can be exploited to further improve
information encoding [83]. Similarly, it is possible to estimate
missing or noisy input terms, and to detect anomalies or
unexpected patterns in the input signal.

2) HIERARCHICAL FEATURE EXTRACTION
The internal representations extracted by unsupervised
learning are not tied to a specific discriminative task and
turn out to be generally more informative than those obtained
with supervised training. Moreover, hierarchical architec-
tures capture the underlying factors of variability present
in the data distribution by exploiting multiple levels of
representation, which allow to extract increasingly more
complex and abstract features at the deepest layers of the
network [53], [67], [72]. This property is particularly useful
because it makes it possible to train a single GDNN and
use its top-level, abstract internal representations in place
of the original input to train multiple supervised networks
for specific tasks, as shown in Fig. 2. Moreover, the per-
formance of such networks is typically better than that
obtained by operating directly with the original sensory
patterns [53], [56], [58].
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3) COMPACT DATA REPRESENTATION
Deep unsupervised learning can also be interpreted as a
particular type of efficient coding strategy, where the redun-
dancies present in the input space are compactly described
by using a reduced set of latent factors [64]. Within this
perspective, deep networks represent a promising framework
to study data compression and dimensionality reduction and
to achieve scalability.

4) SYNERGY WITH REINFORCEMENT LEARNING
The generative approach also offers new insights about the
possible role of actions performed by an agent on the environ-
ment. For instance, specific actions might allow to actively
search for information that can disambiguate competing
hypotheses and improve the internal model of the external
world [84]. Moreover, the abstract representations obtained
through deep learning appear to be a much better guide for
reinforcement mechanisms than the raw data [82].

These properties of GDNNs can be exploited to develop
a system architecture capable of efficiently dealing with
the scalability, management, and multipurpose optimization
challenges offered by the next generations of communication
systems and services.

For example, in a HetNet scenario we may train a GDNN
to learn the model of the wireless channel from the samples
of the signal power received from the base stations, and then
exploit the generative property of the model to predict the
evolution of the wireless channel and proactively adapt all
protocol layers accordingly. Also, endowing GDNNs with
reinforcement learning features, we can develop generative
models that link actions (e.g., settings of system parame-
ters) and effects (e.g., the corresponding performance), thus
making it possible to automatically find optimization actions
tailored to the specific operational scenario, according to the
Self-Configuration and Self-Optimization paradigms.

A similar approach can be applied to the massive access
scenario, where a GDNN may be used to learn the number
of active nodes and their traffic patterns by just observing
the overall channel activity. Furthermore, the GDNN may be
used to infer the nature of the traffic generated by the devices,
thus making it possible to discriminate not only between dif-
ferent classes of traffic sources (e.g., alarms versus periodic
metering data), but even between different streams of the
same class (e.g., between sensory data with higher or lower
priority depending, for instance, on their temporal trends).
By considering the traffic generated by multiple sources, the
GDNN may also reveal the presence of inter-flow correla-
tions due, for instance, to wide-range environmental or social
phenomena that impact the readings of multiple sensors and
meters deployed in the same geographical area. For example,
a GDNN that is fed with the readings of all the sensors and
power meters of a building may capture correlations that
depend on the specific type of building (e.g., office or residen-
tial). Such a richer context information can then be exploited

to maximize the QoE offered to the final users, or to optimize
the usage of the transmission resources by applying differen-
tial encoding between the actual value read by the sensors and
the estimate obtained by the GDNN from the context.

The capability of GDNNs to build rich context models
can also be exploited to detect different types of anomalies
that can occur in (wireless) networks as a consequence of
malfunctioning, faults, malicious attacks, or natural disasters.
For instance, a base station can feed a GDNN with uplink
and downlink traffic parameters (number of connected cus-
tomers, data packet size, packet generation rate, queue length,
packet loss rate, and so on) in order to build a model of its
‘‘normal’’ behavior. A classifier can then be trained to recog-
nize any anomaly, such as traffic surges or fallings, sudden
variations of the number of customers or access requests,
and so on. The data that has generated the anomaly detection
can then be passed to expert systems for diagnosing the nature
of the problem, so that proper reactions can be promptly
and automatically undertaken, according to the Self-Healing
paradigm.

Yet another example of the type of optimization that the
COBANETS vision can enable is given in Sec. IV, where we
describe some recent results concerning the management of
video streaming flows in communication networks.

B. GENERAL ARCHITECTURE
The COBANETS concept is based on the idea that GDNNs
can be employed to cope with the growing complexity of
modern communication systems and services, and to enable
optimizations at different levels, from local operations per-
formed by end devices (such as modulation, channel access,
buffer management, etc), up to system-wide policies that
affect multiple data flows (resource reservation, routing,
content caching management, security, and so on).

To fully express the potential of GDNNs, we envision an
architecture that enables network-wide observation and sens-
ing at multiple levels, including quantities such as protocol
parameters and state variables, traffic conditions, channel
statistics, transmission and error events, interference, and
so on. In short, the architecture shall possess the capability
of sensing its own state and to share this information
among the different cognitive entities, in order to achieve the
system-level self-awareness that Mitola claims to be a
fundamental requirement of any cognitive system [17]. From
this perspective, the COBANETS architecture can be embed-
ded within the general framework of the Knowledge Plane
described in [27], of which it shares the distributed and
compositional characteristics.

The architecture shall also provide the flexibility required
for the practical implementation of the proposed approach.
In other words, the COBANETS architecture shall embed
the SAN concept presented in [24]–[26] that, however, can
now be rooted into the emerging SDN and NFV paradigms,
which will be the basic building blocks of COBANETS.
An advanced SDN controller, indeed, may be able to collect
the inter-device data generated by the cognitive nodes in the
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system, and make decisions for system-wide optimization.
SDN protocols, such as OpenFlow [85], can be used to imple-
ment the optimization actions on the different nodes, thus
realizing the functionalities of the API defined in [24], or
the ULLA described in [28], whereas the modifiability of the
SAN elements finds its correspondent in the virtualization of
the network elements as per the NFV concept. In addition,
the controller may instruct the nodes to instantiate generative
deep learning modules for the optimization of local function-
alities (e.g., PHY and MAC), using inter-device data only,
thus fulfilling the distributed and collaborative characteristics
of the cognitive resource manager described in [28] and [29].

The Cognitive Engine, receiving input signals from a
number of peripheral sensorial units (cognitive devices), can
progressively build a representation of the surrounding world
and learn the effect of different actions (e.g., settings of
protocol parameters, enforcement of system policies, man-
agement of network resources, and so on) that will be actuated
by means of the SDN and NFV protocols.

According to this vision, the COBANETS architecture
loosely fits within the previous cognitive networking
architectures, but brings in some disruptive elements of
innovation when identifying GDNNs as the basic learning
structure to provide context awareness, information represen-
tation, and inference capabilities to the system, and propos-
ing the SDN and NFV paradigms as ways to practically
implement the proposed architecture in future networks.

Clearly, there is still a long way to go to turn this broad and
very general vision into a practical and well defined system
architecture. In the remainder of this section, we describe
some of the main components that we believe may help
reach this ultimate objective. These components, which shall
all be part of the final COBANETS architecture, are here
presented in order of increasing generality and scope, thus
reflecting the natural path we envision for the development
of the COBANETS concept.

1) FUNCTIONAL ABSTRACTION AND OPTIMIZATION
Important components of COBANETS will be generative
models that provide an informative representation of
fundamental elements and functionalities of a communica-
tion network, including traffic sources, radio channel, MAC
protocols, and so on. These representations can be used to
train different types of classifiers that will provide detailed
context information, thus making it possible to develop
context-aware optimization strategies, with an approach sim-
ilar to [86] and [87] where the authors applied this method to
classify different video flows according to their (estimated)
rate-distortion characteristics, by only analyzing the size of
the video frames sent over the network. We hence envision
generative models that can learn the traffic patterns of
different sources, thus providing alternative and more expres-
sive representations of the data source. In parallel, we may
have GDNNs that can capture the interdependencies among
the parameters within a certain protocol layer (e.g., at the
physical layer the transmission parameters of a mobile node

and the interference from adjacent cells, or at the MAC layer
the packet inter-arrival times and the number of retransmis-
sions). These generative models can be used to predict the
offered traffic in the near future and/or to train classifiers to
get more detailed context information, for instance the type
of application(s) generating the data flows, the operational
scenarios (indoor, urban, vehicular, rural), or the congestion
level of a certain connection. This context information, in
turn, may be used to optimize some network functionalities
(e.g., handover, content caching, transmit rate, and so on).

It is worth remarking that the concept of optimization
in COBANETS shall be intended in a network-wide
perspective. The optimization goal, indeed, will generally
entail multiple objectives simultaneously, possibly includ-
ing end-user QoE, service provider revenues, network ele-
ments utilization, and so on. Furthermore, the optimization
objectives shall be subject to feasibility constraints. Refer-
ring to [88], we can hence define the optimization as the
problem of finding a vector of decision variables (actions)
which satisfies a given set of constraints and makes all the
objective functions take values in an acceptable performance
region, as defined by the system designer. Such a system-
wide multi-objective optimization goal can sometimes be
broken down to local optimization functions, which can be
addressed independently by local entities (e.g., maximization
of the physical layer throughput). In general, however, local
optimizations shall be intended as functional to the achieve-
ment of system-wide goals. For instance, if the system-wide
objective of a wireless system is to provide a minimum
guaranteed quality level to mobile video customers, the target
quality level of the customers with better link quality may
actually be lower than what would be potentially achievable,
in order to leave more resources to the other customers in the
system.

2) INTEGRATION OF DIFFERENT GENERATIVE MODELS
In analogy with the sensory segregation and integration
observed in the brain, the specialized modules operating in
different domains, as described above, should be combined
in a learning architecture capable of building more abstract
representations of the world. Implementing this strategy is
very challenging, because it requires to carefully engineer
the scope of each sub-module and to integrate the internal
representations created by different models without disrupt-
ing domain-specific knowledge. A possible solution can be
to concatenate the representation of different models and to
jointly train an additional generative model with the task of
reconstructing this composite input, thereby learning useful
correlations among the abstract representations provided by
different sensory domains [89]. Another approach consists
in mapping the abstract representations learned by the sub-
models into layer-specific performance indices and then
training a combined generative model using such indices.
These two approaches, as well as others, need to be deeply
studied and compared in terms of complexity and efficiency,
with the goal of identifying the best solution.
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3) INTER FLOW OPTIMIZATION
As an intermediate step to system-wide optimization,
we believe that COBANETS shall make it possible to
jointly optimize multiple functionalities with local scope
(e.g., within a single node). Current networks employ adap-
tive solutions at various layers of the protocol stack, such
as adaptive modulation, beamforming and MIMO at the
PHY layer, contention window adaptation at the MAC
layer, congestion window control at the transport layer, or
video coding scalability at the application layer. A proper
model-learning algorithm, however, can identify the cross-
relationships between the protocols and allow for their joint
optimization in a cross-layer fashion. Unlike in traditional
cross-layer optimization, where prior knowledge of some
explicit interdependencies among protocols is assumed, the
approach based on generative model learning has the poten-
tial to discover and exploit hidden relations among the differ-
ent parameters, which can be specific for a certain application
scenario or user profile and, hence, are not replicable in other
contexts. For example, daily habits of users (e.g., watching
movie trailers on the smartphone while commuting by train)
may be reflected in specific inter-relations among the type
of traffic generated by the device, the interference produced
by other devices, the radio channel characteristics, and the
geographical location. Therefore, COBANETS shall entail
generative models capable of capturing these multifold corre-
lations, thus supporting the design of optimization strategies
that are adapted to a specific device and scenario.

4) SYSTEM LEVEL OPTIMIZATION
As mentioned, the final objective of COBANETS shall have
a global scope, and shall refer to the whole system. A pos-
sible global optimization may include the routing strategy
to be applied to the different flows crossing the network,
according to the nature of the data (machine-type data, video
streaming, web browsing), the characteristics of the user
(static, mobile), the congestion on the links, and so on.
Scheduling policies in the switches, resource allocation at the
base stations, and transport protocol parameters can also be
jointly optimized for the specific context. Pursuing such a
multidimensional optimization of the whole protocol stack
is a formidable task, which is likely impossible to solve
directly in real time using traditional approaches. However,
we believe that GDNNs can indeed enable the development
of an innovative scalable approach to the above problem, by
taking advantage of the data provided by the single agents
of the system and collected by the cognition-based archi-
tecture designed, thus making it possible for a centralized
network controller to autonomously derive strategies for the
maximization of multi-objective functions, and to actuate
such strategies in the network elements by means, e.g., of
SDN. Therefore, the last components of the COBANETS
architecture are represented by GDNNs with global scope,
which will be likely fed by and incorporate GDNNs with
local scope, though the actual structure of such components

is still to be defined and is in fact a very interesting research
challenge.

IV. A PRACTICAL EXAMPLE: COGNITIVE
VIDEO TRAFFIC CONTROLLER
To exemplify the potential of the cognition-based approach
described in this paper, in this section we report some results
we obtained in a preliminary study that addressed the
optimization of the QoE perceived by the customers of a
video streaming service in the presence of network conges-
tion. The scenario discussed below provides an illustrative
case to exemplify the main ideas underlying the proposed
framework, even though not all of the COBANETS features
described above are explicitly included. In particular, we only
used a single-layer RBM to build abstract representations of
the training patterns, as the use of hierarchical generative
models was found not to provide any gain for the limited
dimensionality of these inputs. In addition, in this simple case
we did not explore the possibility to actively learn optimal
action schemes from environmental feedback (i.e., reinforce-
ment learning). Nevertheless, this example provides evidence
about the soundness of the COBANETS technical approach,
in which a representation built via unsupervised generative
learning can be successfully exploited towards a specific task
via supervised learning.

The problem of providing quality-fair delivery of
multimedia contents to mobile users has been addressed in
many other works in the literature (see [90]–[92]). Many
of these works assume that the rate-distortion curve of
each video is known in advance. Such a characterization,
however, is typically computationally expensive and gen-
erally impractical to be performed in real-time, e.g., by
means of deep packet inspection techniques. Instead,machine
learning approaches can be of use in this respect.

The problem of automatic video processing is closely
related to that of image recognition, with the additional
complexity given by the temporal dimension of the data.
In the so-called ‘‘content-based’’ video retrieval [93], for
instance, a range of different techniques can be applied
depending on the task of interest, e.g., video indexing, scene
recognition and/or classification, object tracking, and motion
detection. In recent years, deep learning has been successfully
applied in several machine vision tasks, achieving state-of-
the-art performance [64], [73]. Although themain application
of these systems has been primarily focused on still frames,
there have also been successful extensions to the temporal
domain [94].

All the above-mentioned machine learning methods,
however, are usually applied at the pixel level, or to
some higher-level representations obtained after additional
pre-processing of the raw images. Nevertheless, for the task
of classifying different videos depending on the dynamics of
their content, we assume that the relevant information is still
preserved after the video has been encoded to be sent on a
transmission channel.

In the remainder of this section we elaborate on this intu-
ition and show how raw data, readily available at the network
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FIGURE 3. Reference scenario of the cognitive video traffic controller. (a) Reference network topology: video
clients require video streaming services to a remote video server, through a shared bottleneck link.
A cognitive engine, coupled with all network elements and with a SDN/NFV controller, manages the
functionalities of all network elements. (b) Graphical representation of a video server storing multiple
versions of each video clip with different compression levels, in H.264 format. The right-hand side graph
shows the quality-rate curve of a sample video, where the quality is expressed in terms of SSIM.

level, can be used to train, in an unsupervised manner,
a generative model that captures themain features of the input
data (and, in turn, of the original video sources), thus offering
a richer representation of the data source. Then, we show
how such a representation can be used, in a supervised frame-
work, to successfully classify the different frame sequences,
according to their inner features. Finally, coherently with
the COBANETS vision, we exploit such a better context
knowledge to optimize the QoE offered to the final user, by
tuning the amount of resources allocated to the different users
according to their actual needs, as estimated by our cognitive
framework.

In the following, we briefly summarize the approach and
the results we presented in [86], [87], [95], [96], and refer
the reader to the original papers for additional details and an
in-depth discussion.

The reference scenario considered in the study is sketched
in Fig. 3. The upper part of the figure shows N users that
require video streaming services from a remote media server.
To exemplify a critical network condition, we assume that all
video flows go through a common link with limited capacity,
which is hence the bottleneck for the video streaming ser-
vice. The Cognitive Engine represents the entity in charge of
managing the network of the Internet Service Provider (ISP)
in an ‘‘intelligent’’ manner. To this end, we assume that the

Cognitive Engine can communicate with and configure all
the network elements (e.g., by means of an OpenFlow–like
protocol [85]).

As shown in the lower part of Fig. 3, we assume that the
video server stores multiple copies of each video, encoded
at different quality levels. In our study, we consider the
popular H.264-AVC video encoding standard [97], though
the approach can be extended to any other type of video
encoder. The different source rates correspond to different
perceived quality levels, here measured in terms of the
average Structural SIMilarity (SSIM) index, which is a full
referencemetric thatmeasures the image degradation in terms
of perceived structural information change, thus leveraging
the tight inter-dependence between spatially close pixels
which contain the information about the objects in the visual
scene [98]. The range of the SSIM index goes from 0 to 1,
and fairly good video qualities are associated with values
greater than 0.95 [99]. The right-most plot in Fig. 3(b) shows
an example of the quality-rate characteristic of one of the
sample videos we considered in our study.

When the bottleneck link is saturated, additional video
requests cannot be accepted unless the rates of active videos
are decreased to leave resources for the new flows. There-
fore, we assume that the Cognitive Engine intercepts all
requests for new video streaming sessions generated by the
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end users and implements Video Admission Control (VAC)
and Resource Management (RM) algorithms to manage the
different flows.

Scaling down the rate of a video stream, however,
decreases the video quality perceived by the end user, accord-
ing to a quality-rate relation that is specific for each single
video. In [96], we showed that, after a suitable rescaling
and normalization of the source rate, the SSIM-to-bitrate
curve of a video can generally be well approximated by
a polynomial function. Knowing such a polynomial would
make it possible to dynamically choose the quality level that
best fits the connection conditions. Unfortunately, calculating
the SSIM for all possible encoding rates of each video is
computationally prohibitive in realistic scenarios.

A possible way to overcome this obstacle is to resort to
generative models for learning expressive representations of
video clips from some easily accessible features. Following
this idea, in [87] we proposed an approach, based on RBMs
(see Fig. 1), to reliably estimate the coefficients of the polyno-
mial that approximates the SSIM-to-bitrate curve of a video
without processing the actual content of the video frames,
but only considering the size of the encoded video frames.
The rationale is that the SSIM-to-bitrate function of a video
is closely related to the dynamics of its content, and this
information is reflected in the structure of the corresponding
sequence of frame sizes after encoding. Indeed, the content
of a video influences the structure of its compressed version.
For example, highly dynamic videos, with complex spatial
and temporal structure, will likely result in larger frame sizes,
with lower temporal correlation, while more static video
sequences will likely be encoded in frames with smaller size,
with amore regular pattern. TheGDNN can then extract these
informative features from the sequence of the frame sizes of
encoded videos, and such features can successively be used
to infer the relevant characteristics of the video sequences.

FIGURE 4. Graphical representation of video source modeling using a
Restricted Boltzmann Machine (RBM), and of three specific tasks that can
be realized on top of it.

To test the effectiveness of this approach, we collected a
training dataset containing the frame sizes of the different
Groups of Pictures (GOPs) of the test videos. These ‘‘raw’’

data have then been used to train an RBM in an unsuper-
vised fashion. The RBM captures the latent features in the
input data and provides a high-level representation of such
data. This richer representation can then be exploited by
different supervised learning algorithms for various purposes,
as graphically exemplified in Fig. 4 where we show three
possible tasks that can be performed on top of the RBM,
namely Video Recognition, Video Classification, and
Quality-rate Estimation.

TheVideo Classification task aims at assessingwhether the
internal representations learned by the RBMmake it possible
to assign each GOP to the video sequence it belongs to.
To succeed in this task, the RBM has to extract descriptive
features that make it possible to discriminate the content
of the videos starting from the information provided by
the frame sizes, which is a challenging task. The Video
Classification task, instead, aims at clustering the input GOPs
into a small number of classes, each containing videos with
similar quality-rate characteristics. The Quality-rate Estima-
tion task, finally, aims at the estimate of the coefficients of
the polynomial curve that approximates the actual SSIM-to-
bitrate characteristic of each single video.

To test the approach, we considered several video clips
with CIF and HD resolutions, taken from a reference video
database.2 Each video has been encoded with the Joint
Scalable Video Model (JSVM) reference software into
H.264-AVC format at C = 18 increasing compression
levels, which correspond to as many quality levels. Note that
there are no scene transitionswithin each video sequence. The
SSIM of a frame encoded at compression level c is obtained
by comparing the decoded frame with the full quality version
of the same frame. For practical reasons, we take the average
values of the SSIM index for each video.

We denote by rv(c) the transmit rate of video
v ∈ {1, . . . ,V } encoded at rate c ∈ {1, . . . ,C}, with
rv(1) being the maximum (i.e., full quality) rate. To ease the
comparison between different video clips, we found that it is
convenient to rescale the source rate as follows

ρ = log(rv(c)/rv(1)). (1)

The resulting index is called Rate Scaling Factor (RSF).
Fig. 5 reports the classification accuracies computed on

the training set and on the separate test set for both Video
Recognition and Video Classification tasks. The difficulty of
the first task (video recognition) is confirmed by the poor
performance of the classifier that operates directly on the raw
data patterns, i.e., on the vectors containing the frame sizes
of the different GOPs. However, the internal representations
learned by the RBM model capture some critical features
of the data, thereby providing a significant improvement of
the classification accuracy. The second task is apparently
easier, but the performance obtained by using the internal
representations of the RBM is still better than that achieved
with raw data.

2http://media.xiph.org/video/derf/; ftp://132.163.67.115/MM/cif
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FIGURE 5. Classification accuracy for the Video Recognition and Video
Classification tasks, computed on the training (TR) and test (TE) datasets.

The third task, i.e., the estimation of the SSIM-to-bitrate
coefficients, is the most interesting for the purpose of video
service optimization. To evaluate the quality of the esti-
mation, we compute the Root Mean Square Error (RMSE)
between the exact SSIM curve and the curve generated using
the coefficients estimated by the classifier.

Fig. 6 shows the mean estimation accuracy obtained for

FIGURE 6. Coefficients prediction error in terms of mean RMSE between
the actual and predicted quality-rate curve for different HD videos.

FIGURE 7. Accuracy of SSIM-to-RSF estimates, for two sample videos.
(a) Video number 7. (b) Video number 10.

some HD videos in the test set. We can appreciate how the
RBMmodel is indeed capable of capturing critical features of
the data, thereby providing an increased estimation accuracy
for almost all test videos.

Fig. 7 compares the actual SSIM-to-RSF curve (•) with the
estimates obtained by applying the linear classifier directly on
the raw data patterns (N) and on the internal representation
learned by the RBM (�). By visual inspection, we can see
that the estimate provided by the RBM is closer to the actual
curve, thus resulting in better performance of QoE-aware
VAC and RM algorithms.

We remark that these results are obtained without resorting
to computationally expensive procedures, such as deep packet
inspection or image processing, but rather exploiting the
information that is embedded in easily accessible parameters,
such as the packet size. It is hence conceivable that the video
server, or the Cognitive Engine, employs such an RBM to
enrich each video clip with additional information such as,
for instance, the inner representation of the GOP sizes given
by the RBM, or the quality-rate class the GOP belongs to,
or even the estimate of the coefficients of the SSIM-to-RSF
polynomial curve. This information can then be used by the
Cognitive Engine to allocate the network resources to the
different video clients, according to the characteristics of each
single video. For instance, the Cognitive Engine can instruct
the edge router to differentiate the share of the bottleneck link
assigned to each user in order to provide equal QoE to all
active users, while minimizing the call blocking probability
(see [87]). Another possibility is that the Cognitive Engine
recognizes the presence of a bottleneck link and reconfigures
the network to differentiate the path of the different video
flows using alternative (e.g., wireless) access networks to
reach the final users, or that it generates other instances of
the video servers in different points of the network, to better
distribute the load.

These examples show that the potential of generative mod-
els is greatly expanded by the possibility of managing the
entire system, or even part of it, in a flexible and dynamic
manner, as per the SDN and NFV paradigms. How to fully
unleash this disruptive potential, however, is still an open
research question.

V. RESEARCH CHALLENGES
Despite some initial studies, which provided encouraging
results, the application of the generative deep learning prin-
ciples to network optimization is still in its infancy. The
design of an effective GDNN-based framework for network
optimization poses a number of new scientific and technical
challenges that need to be systematically addressed, in order
to reach the expected gains.

In the following we discuss what are, in our opinion,
some of the most appealing challenges raised by this exciting
scenario.

A. DATA COLLECTION AND SHARING
A key enabler for the optimization approach proposed in this
paper is the ability to collect data from various layers of
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the protocol stack, the environment, and even the final user,
and to share these data at the network level. In general, we
envision several types of data that can be collected, namely:

i) intra-device data (collected within each single device,
e.g., protocol parameters or location), to be used in
local optimizations (e.g., energy efficiency of a node);

ii) inter-device data (exchanged between devices, e.g.,
traffic patterns or queue lengths at routers), to be used
for optimization on a wider scale (e.g., maximization
of the number of flows the system can serve);

iii) user-profile data (which represent the user’s prefer-
ences) to define the Quality of Experience objective
function to be used in the optimization.

Finding which data is most useful in the GDNN and for
network optimization, studying the granularity and frequency
at which these data need to be collected, and defining practi-
cal methods for representing, storing and retrieving such data
at both the device and the system level are all open research
problems.

B. DATA REPRESENTATION AND SYNCHRONIZATION
Another open issue of the proposed optimization framework
is the choice of the format of the data patterns that should
be given as input to the GDNNs. In the context of network
optimization, indeed, the sensory data might come in many
different formats, which should nevertheless be encoded as
activation values in the input layer of the network. This
implies the need to carefully design a variety of encoding
modules that should be used to transform the collected data
into a unified representation, which should preserve as much
as possible the inherent structure present in the data. This
problem becomes even more challenging when considering
data coming from heterogeneous devices and/or abstraction
layers and from different time scales, or collected with differ-
ent sampling frequencies or even asynchronously. Therefore,
some effort needs to be devoted to the identification of a solu-
tion for the data representation problem,whichwill also allow
to better understand which are the most critical dimensions of
the data domain (i.e., the most informative input signals) that
should be given to the learning system.

C. EXPLOITING LONG-TERM SPATIO-TEMPORAL
RELATIONSHIPS
An important component of cognition is the ability to adapt
based on behaviors that have been observed and learned in the
past and are likely to be encountered again. How to include
knowledge of the long-term spatio-temporal behavior of the
network parameters (such as congestion or channel charac-
teristics) into the optimization framework is an open research
issue. Different strategies to include the time dimension into
the generative models can be considered. A possible way is to
build input vectors that collect the system parameters sampled
at different time scales, in order to provide a representative
example of the time evolution of the system. Another promis-
ing possibility is to use more complex generative models that
are inherently sequential, such as the Recurrent Temporal

Restricted Boltzmann Machine [79] or similar models that
can be even combined into hierarchical architectures [80].
Further research is needed to gain a deeper understanding of
these and other approaches and to find the best solution for
the different optimization goals.

D. MULTI-OBJECTIVE OPTIMIZATION STRATEGIES
The final objective of COBANETS shall be the automatic
management of complex systems, in which individual agents
may have both selfish objectives and common social goals
to pursue (the latter possibly encouraged by game-theoretic
or trust and reputation-based incentives). This problem may
be approached usingmulti-objective optimization techniques,
or by properly defining utility functions that jointly account
for multiple objectives, appropriately weighed, or through a
hierarchical organization of the goals. The specific properties
of the generative models shall likely be combined with rein-
forcement learning mechanisms to automatically learn the
best strategies in such a complex scenario.

E. IDENTIFICATION OF DOMAIN-SPECIFIC
DEEP ARCHITECTURES
A crucial aspect to improve the performance and the scala-
bility of many learning systems is to identify a useful set of
constraints that can facilitate learning, for instance by reduc-
ing the complexity of the model or by improving conver-
gence. For example, the most successful deep architectures
for visual object recognition have been designed to exploit the
strong local spatial correlation found in natural images [73].
It is therefore of interest to investigate how the distinguish-
ing characteristics of telecommunication network signals
can influence the deep architectures for learning-based opti-
mizations. For example, deep network architectures may be
designed to better process data with strong spatio-temporal
correlation, or to account for the interdependencies among
network elements induced by network topology. Moreover,
when the deep network is fed with data originated by
multiple devices interconnected through a communication
network, there may be significant communication delays or
even packet losses, thereby posing concrete challenges to a
learning system that is usually expected to receive ‘‘clean’’
and reliable training patterns. These problems represent a less
studied field of research that can potentially generate new
insights and advances also in the machine learning domain.

F. ALTERNATIVE BUILDING BLOCKS
FOR UNSUPERVISED LEARNING
In relation with the previous point, we observe that, while
in this paper we referred to hierarchical generative models
in generic terms, they can actually take different forms, such
as autoencoders, RBMs and, more generally, energy-based
models. Most of these models obtain similar performance in
canonical machine learning experimental evaluations [100].
However, deterministic and probabilistic models have
different optimization objectives, which result in
implementations with different computational properties.
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Moreover, several advanced regularization techniques have
been recently proposed to improve generalization in deep
networks, for example by imposing sparsity constraints or by
exploiting drop-out schemes [101]. Therefore, an interesting
research topic will be the systematic study of the strengths
and weaknesses of each approach in light of the considered
optimization framework, and the investigation of which regu-
larization techniques are more effective with the type of data
and tasks required in such scenarios.

G. KNOWLEDGE DISTRIBUTION ACROSS
NETWORK ELEMENTS
A centralized management system may become the
bottleneck of the optimization framework, in which case
it would be preferable to distribute the optimization tasks
to different network elements that should nevertheless be
able to perform optimizations according to a global view of
the networking environment. Some interesting recent studies
have shown that the performance level obtained by very-
large-scale deep neural networks in supervised classification
tasks can be replicated in much smaller learning modules
(model compression), such as simple networks with only one
hidden layer, if we use as training labels the soft labels at the
output of the large-scale deep network [102]. This intriguing
result motivates further research about how to possibly create
‘‘lightweight’’ processing nodes that can support efficient
optimization in a highly distributed system. Moreover, dis-
tributing the generative model over multiple nodes might
be a valuable approach to speed up learning and inference
tasks via efficient parallelization [70]. This feature is even
more appealing considering that modern mobile devices
(e.g., smartphones or notebooks) are equipped with powerful
computing hardware, as discussed later on.

H. SECURITY ASPECTS
In our cognition-based approach, the network will need to
continuously collect large amounts of data, apply a learn-
ing process to it, and take actions as a result, which will
make the confidentiality of the original data, as well as
that of the ‘‘reasoned’’ outcome, much more important than
in traditional TCP/IP networks. For example, by changing
behavior and observing how the network reacts, a user may
obtain private information of others [103]. An open issue
is to find the proper tradeoff between confidentiality and
effectiveness of the proposed solutions, also considering pos-
sible de-anonymization techniques and privacy attacks based
on machine learning [104]. Another problem is to design
solutions to assess the trustworthiness of both peers and data
(against attacks to either evade security checks or poison
the learning process with fake data), as well as to make the
learning process resilient to malicious attacks (e.g., based on
Adversarial Machine Learning [105]). These are just a few
examples of a number of innovative and challenging research
problems concerning the security of cognitive systems, which
shall also include data confidentiality, trustworthiness, and
resiliency to attacks.

I. IMPLEMENTATION AND PROTOTYPING
As mentioned, we believe that experimental activities shall
take a primary role in the design of COBANETS.While some
testbeds capable of collecting system-wide cross-layer
parameters have been proposed (see [106]), the real-time
testing of machine learning algorithms on experimental data
has not yet been systematically addressed. Running machine
learning algorithms is indeed computationally intensive,
because learning might involve the optimization of millions
of parameters. Since the introduction of CUDA [69],
a new parallel computing framework for common Graphics
Processing Units (GPUs) presented by NVIDIA R©, many
computational tasks (e.g., the matrix manipulations typical
of deep learning algorithms) can be efficiently carried out.
Our prior experience on optimizing the parallel design of
deep learning algorithms [55], [107], and on their implemen-
tation on GPU platforms, has shown that impressive perfor-
mance can be achieved in terms of learning time and datasets
size. For example, we found that even an entry-level GPU
card (336 cores) yielded a 10-fold speed-up in a benchmark
problem compared to a quad-core PC (where the card was
mounted) and was twice as fast in learning as a computer
cluster with 60 CPU cores. Based on this experimental evi-
dence, it seems possible to exploit GPU parallelization on
mobile devices to run complex machine learning algorithms.
Indeed, top-level Android-based devices (smart phones and
tablets) are built around the NVIDIA R© Tegra mobile parallel
computing platform endowed with many GPU cores. Using
such devices shall make it possible to run even complex
algorithms in real-time and at affordable prices. However,
the practical implementation of complex GDNNs in mobile
devices, and the development of a system-wide cognitive
testbed capable of performing learning tasks in real time, are
still open research fields.

VI. CONCLUSIONS
In this paper we advocated Generative Deep Neural
Networks (GDNNs) as the key building block for a new
generation of cognition-empowered networks and systems,
called COgnition-BAsed NETworkS (COBANETS), where
the ability of GDNNs to extract richer context representations
will be combined with different kinds of machine learning
techniques to realize specific tasks, and will be integrated
with the Software Define Networking and Network Function
Virtualization paradigms to enable the flexible actuation and
management of complex systems.

We provided some preliminary examples of the potential
of such an approach, reporting some results of a study where
the size of the encoded data frames was used to train a
generative neural network in an unsupervised manner. The
model learnt by the network was then used to estimate
the quality-rate characteristics of video flows, and this con-
text information was then exploited in QoE-aware resource
management schemes. These preliminary results, though
encouraging, only scratch the surface of the potential of the
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proposed approach, which opens a number of interesting
interdisciplinary research issues.

A possible way to address these exciting challenges
is to approach the problem gradually, progressively
widening the scope of the network optimization goal.
The first fundamental step shall consist in gaining a deeper
understanding of the potential of the generative deep learning
approach to model and optimize specific network functional-
ities, such as resource allocation at the PHY layer, setting
of MAC parameters, scheduling, routing, traffic source
modeling, and so on. Supported by a solid theoretical and
experimental foundation, it will then be possible to develop a
generative deep learning approach to system-level optimiza-
tion. This phase will require the design of GDNNs capable
of representing all the relevant functionalities that concur
in determining the system performance, and to address the
most critical and challenging issues related to the scala-
bility of the approach, the multi-objective optimization of
the system parameters, the coordination of the different
functionalities and network elements, and the implemen-
tation of the planned actions. Such theoretical and simu-
lation studies need to be complemented in a synergistic
manner by experimental activities, with the dual objective
of validating the proposed innovative techniques and reveal-
ing other possible challenges that may arise in practical
settings.

Besides leading to novel methods for the optimization
of communications systems, this research may stimulate
innovation in cognitive science and machine learning as well,
leading to the development of new learning techniques that
need to obey different constraints and boundary conditions
than traditionally found in those areas. Therefore, we believe
that the COBANETS concept may pave the way to new
research avenues that intersect multiple sectors in cognitive
science and information and communication engineering,
with the potential of leading to disruptive innovation in these
fields and unpredictable effects on other fields that may ben-
efit from the stimuli and the change of perspective brought
about by the proposed vision.
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