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Many animal species have evolved a capacity to estimate the number of 

objects seen1. Numerosity estimation is foundational to mathematical 

learning in humans2,3, and susceptibility to adaptation suggests that 

numerosity is a primary visual property4. Nonetheless, the nature of 

the computations underlying this “visual sense of number”4 remains 

controversial5. Variability in object size prevents a simple solution 

based on the summation of their surface area (cumulative surface 

area), which is a main perceptual correlate of numerosity. A promi-

nent theory6 requires object size normalization as key preprocessing 

stage for numerosity estimation. Others circumvent the problem, 

assuming the use of “occupied area” independent of object size7.

Here we show that visual numerosity emerges as a statistical prop-

erty of images through unsupervised learning. We used deep networks, 

multilayer neural networks that contain top-down connections and 

learn to generate sensory data rather than to classify it8,9. Stochastic 

hierarchical generative models are appealing because they develop 

increasingly more complex distributed nonlinear representations of 

the sensory input across layers9. These features make deep networks 

particularly attractive for the purpose of neuro-cognitive modeling.

The deep network had one ‘visible’ layer encoding the sensory 

data and two hierarchically organized ‘hidden’ layers (Fig. 1). The 

training database consisted of 51,200 unlabeled binary images 

containing up to 32 randomly placed objects with variable surface 

area, such as those in Supplementary Figure 1a. Crucially, learning 

concerned only efficient coding of the sensory data (that is, maxi-

mizing the likelihood of reconstructing the input) and not number 

discrimination, as information about object numerosity was not  

provided (Supplementary Methods and Supplementary Fig. 1).
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Figure 1 Deep network model and number-sensitive neurons.  

(a) Architecture of the deep network model and sample input images 

(samples with 4, 8 and 16 objects and equal cumulative area).  

(b) Regression coefficients for log(numerosity) and log(cumulative area) of 

neurons in the second hidden layer. Selectivity is indexed by large absolute 

value of one coefficient combined with near-zero value of the other. Red, 

numerosity detectors; black, cumulative-area detectors; gray, non-selective 

neurons. (c) Population activity of numerosity detectors (mean activation 

value) as a function of number of objects (±1 s.d. bands represent 

variability across images). Inset (adapted from ref. 10): corresponding 

response (mean firing rate ± s.e.m.) of a number-sensitive neuron in the 

monkey LIP area (red and purple represent different experimental blocks). 

(d) Population activity of numerosity detectors (mean activation value), 

showing invariance to cumulative area in pixels (px). (e) Spatial properties 

of off-center (blue) and on-center (red) basis functions in hidden layer 1  

(HL1) (samples in Supplementary Fig. 2) superimposed on the image 

space (gray area). (f) Spatial selectivity of numerosity detectors in hidden 

layer 2 (HL2), represented as 30 × 30 pixel plots superimposed on the 

image space (light gray area). Each colored point in a neuron’s receptive 

field (dark gray squares) represents an HL1 center-surround neuron.
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We first sought sensitivity to numerosity information after learning 

in terms of internal coding by hidden neurons, controlling for the 

confounding cumulative surface area. Compressed monotonic coding 

that resembles a scalar variable is the simplest number code found in 

the lateral intraparietal (LIP) area of the monkey brain10. We found 

distinct populations of neurons in the second hidden layer (HL2) 

that noisily estimated numerosity and cumulative area, respectively 

(Fig. 1b and Supplementary Methods). The numerosity detectors in  

particular showed response profiles consistent with the neurophysio-

logical data (Fig. 1c). Average activity across numerosity detectors 

was well explained by log(numerosity) of the stimulus (regression  

R2 = 0.82) and was invariant to cumulative area (Fig. 1d), suggesting 

that population coding can support numerosity estimation.

We then assessed whether HL2 neurons could support numerosity 

comparison2,3,11. A linear classifier, fed with HL2 activity, was trained 

on the image dataset to decide whether a visual numerosity was larger 

than a reference number (either 8 or 16) (Supplementary Methods). 

The classifier scored 93% on a novel test set of 51,200 images. This 

set was also used to thoroughly assess numerosity discrimination, 

which is modulated by numerical ratio in humans and animals1–3,11. 

Probability of the response “larger”, plotted as a function of the log 

ratio of the two numbers (test numerosity/reference), followed a clas-

sic sigmoid curve (Fig. 2a). Notably, the curves for the two reference 

numbers were identical, in accordance with Weber’s law for numbers1  

and in excellent agreement with human behavioral studies2,3,11  

(Fig. 2b). The response distributions were used to compute an index of 

number discriminability (also known as number acuity2,3), the inter-

nal Weber fraction11 w (Supplementary Methods). More intuitively, 

2w represents the proportion by which a numerosity must differ from 

the reference to be discriminable with about 95% confidence11. The 

model’s w was 0.15, which is in line with the mean values observed 

in human adults3,11. Crucially, numerosity estimation was invariant 

to cumulative area (Fig. 2c).

We also generated four more test sets to assess the model’s numer-

osity estimation ability under specific conditions, as in animal stud-

ies12,13 (Fig. 2d and Supplementary Methods). Set A contained 

objects with fixed size and shape (squares of 3 × 3 pixels) for all 

numerosities, set B had equal cumulative surface area (100 pixels) 

for all numerosities (object size therefore decreased with increasing 

numerosity), set C had objects with variable features (shape, size and 

orientation) in each image and set D had two density levels for each 

numerosity. The w values for these sets were 0.13, 0.14, 0.14 and 0.17, 

respectively. These results show that numerosity estimation in the 

model, like that in animals and humans1,13, is invariant to cumulative 

area, density and object features (Fig. 2c,d).

Analyses of the network computations revealed that most of the 

first hidden layer (HL1) neurons were center-surround detectors 

that uniformly covered the image space (Fig. 1e; see examples in 

Supplementary Fig. 2). Also, the numerosity detectors in HL2 were 

spatially selective (Fig. 1f). They received strong input from HL1 

neurons with spatially aligned receptive fields. They also received 

inhibition from a few HL1 neurons that encoded cumulative area, 

thereby providing a normalization signal. Thus, the numerosity 

detectors encoded local, size-invariant numerosity. The popula-

tion activity of HL2 numerosity detectors was well predicted by 

a linear combination of the population activity of the two types of 

HL1 neuron (Supplementary Fig. 3), and it adequately supported 

numerosity comparison when used as the sole input to a classifier 

(Supplementary Methods). Simulations with a simplified math-

ematical model confirmed these analyses (Supplementary Methods 

and Supplementary Fig. 4). We emphasize that the response 

properties of the hidden neurons were not stipulated in any way 

but represent an emergent property of the image data obtained  

without supervision.

Unsupervised ‘deep learning’ discovered statistical features that 

efficiently coded a large set of images8. Visual numerosity, a high-

order feature, was progressively extracted across hidden layers, and it 

was coded invariantly from other visual properties only in the deepest 

layer of a hierarchical generative model9. The emergent monotonic 

encoding is consistent with single-cell recordings in monkey LIP10 

and functional magnetic resonance imaging blood oxygen level–

dependent (BOLD) modulation in the human homolog of LIP14. 

The model computed numerosity through the combination of local 

computations and a simple global image statistic (cumulative area), 

without explicit individuation and size normalization of visual objects 

(compare refs. 6,15). The numerosity detectors were spatially selec-

tive, which is consistent with the properties of LIP neurons10 and with 

numerosity adaptation4. Thus, local visual numerosities are invari-

ants that can support various numerosity-related estimates, and they 

form the basis of a “visual sense of number”. Though the adequacy 

of the proposed neural mechanism should be further tested in new 

behavioral and neurophysiological studies, its relative simplicity fits 

well with the long phylogenetic history of numerosity estimation1. 

Future studies should also assess whether sensitivity to numerosity 

can emerge when this dimension is a less salient stimulus feature 

in the training data, such as in natural images. One overarching 

implication of our findings is that learning a hierarchical generative 

model was the key to understanding the neural mechanism under-

lying numerosity perception and thus to bridging the gap between 

neurons and behavior.
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Figure 2 Numerosity comparison task. Probability of the response “larger” as a function of the log-ratio of input numerosity and reference. (a) Numerosity 

discrimination on the test dataset with 8 (diamonds) or 16 (squares) as reference, indexed by a Weber fraction of w = 0.15 (sigmoid fit). (b) Human adult 

data (replotted from ref. 3) in numerosity comparison (squares, 16 as reference; circles, 32). (c) Invariance to cumulative area in pixels (px). (d) Performance 

on control data sets A–D: constant object area (black), constant cumulative area (green), variable object features (purple) and variable density (red and blue).
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Note: Supplementary information is available on the Nature Neuroscience website.
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Supplementary Information

Emergence of a “Visual Number Sense” in Hierarchical Generative Models

Ivilin Stoianov and Marco Zorzi

Dipartimento di Psicologia Generale, Università di Padova, Italy

Supplementary Figure 1  Images generated by the deep network at the end of the learning 

phase when HL2 activity is  fed back through the generative weights.  The original  image is 

shown to the right of each generated image. Cumulative area increase from left  to right and 

numerosity increases from top to bottom.
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a b

OFF-detector ON-detector

Supplementary Figure 2 Response  of  center-surround  neurons  emerged  in  HL1.  

(a) Sample off-center detector and (b) sample on-center detector.
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Supplementary Figure 3   Numerosity extraction in the deep network. (a) Population activity of 

HL1 center-surround neurons (red lines with squares) is modulated by both numerosity (separate 

lines for N=4, 8,  and 16) and cumulative area (x-axis). The remaining HL1 neurons encode 

cumulative area invariant to numerosity (black lines with circles). (b) The population activity of 

HL2 numerosity detectors (red lines with squares) is invariant to cumulative-area and can be 

approximated by a linear combination of the activity of the two types of HL1 neurons (dashed 

red lines with diamonds). Other HL2 neurons encode cumulative area invariant to numerosity 

(black lines with circles).
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Supplementary Figure 4   Simplified mathematical model. (a) Average response of numerosity 

detectors  based  on  off-detectors  (left)  and  on-detectors  (right)  for  each  level  of  numerosity 

(abscissa, log-scale) and cumulative surface area (separated lines). (b) Performance of the linear 

classifiers trained to decide whether the visual numerosity was larger than 8 (diamonds) or 16 

(squares).  Input  was the activity of numerosity detectors  based on on-detectors (left)  or off-

detectors (right). Both classifiers yielded a Weber fraction of w=0.14 (fit: sigmoid).

a

b
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Supplementary Methods

1. Training Database. Each example was a binary 30-by-30 pixel image containing from 1 

to  32  randomly-placed  non-overlapping  rectangular  objects,  separated  by  at  least  1  pixel. 

Objects’ cumulative surface area noisily ranged from 32 to 256 pixels at 8 levels (with a step of  

32).  Individual  objects  were  iteratively  generated  for  each  image.  Object  area  was  initially 

obtained by dividing the target cumulative area by the number of objects to be generated and 

adding  Gaussian  noise  (σ=0.15).  Two  Gaussian  random  variables  (both  with  σ=0.3)  were 

independently added to the square root of object area (followed by rounding) to define object 

width  and  height,  respectively.  The  actual  object  area  was  then  subtracted  from the  target 

cumulative  area  to  start  a  new iterative  step.  200  images  were  generated  for  each  level  of 

numerosity (n=32) and cumulative surface area (n=8), for a total of 51,200 images. The images 

were not labeled and learning was only unsupervised. 

2. Deep network model.  We used a multilayer neural network with one visible layer that 

represents  sensory  data  and  two  (hierarchically  organized)  hidden  layers.  The  layers  were 

connected by both bottom-up (recognition) and top-down (generative) weights. Deep networks 

can be conveniently reduced to a stack of Restricted Boltzmann Machines (RBM), one for each 

hidden layer1. Each RBM has a layer of feature detectors (hidden units) h
j  receiving weighted 

input x
j
=∑ w

ji
v

i passed through the logistic function h
j
=1/(1+e

−x j ) . The first RBM had 80 

hidden units and the input was a vector of 900 units encoding vectorized images. Note that the 

spatial information (e.g., which pixels go together to form one object) is only implicitly coded in 

the input. The second RBM had 400 hidden units and the input was the activation of the first  

RBM’s hidden layer.

3. Learning. The network was trained to generate the sensory data (i.e.,  maximizing the 

likelihood of reconstructing the input data), starting from a given state of the feature detectors 
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and using the weights  w
ji in a top-down direction. Contrastive-Divergence learning2, given an 

input  vector  v i
+

,  first  activates  the  feature  detectors  h j
+

(“positive”  phase).  Starting  from 

stochastically selected binary states of the feature detectors (using their state h j
+

as a probability 

to turn them on), it then infers an input vector v i
−

used in turn to reactivate the features detectors 

h j
−

(“negative” phase).  The weights  w
ji are updated with a small  learning fraction  η of the 

difference between input-output correlations measured in the positive and the negative phases:

δw ij =η(v i
+

h j
+−v i

−
h j

−) (1)

The two RBM layers  were trained in  succession,  300 epochs each.  Each learning epoch 

comprised  the  entire  data-set,  randomly  subdivided  into  320  mini-batches.  As  shown  in 

Supplementary  Fig.  1,  after  learning  the  network  was  able  to  generate  reasonable 

reconstructions of the images when activation of the deepest hidden layer was fed back to the 

visible layer through the top-down weights. 

4. Numerosity detectors: Sensory magnitudes typically have compressed monotonic neural 

representations.  Such  a  simple  coding  of  numerosity  was  indeed  found  in  the  LIP monkey 

cortex3. A similar modulation of the BOLD signal was recently found with fMRI in the human 

homologue of LIP4. Thus, we sought detectors of numerosity (N) and cumulative surface area (A) 

in the deep network by regressing each neuron’s activity  h
j with the logarithm of those two 

properties (all variables normalized) across the entire image database:

h
j
=β

1
log (N )+β

2
log ( A )+ε (2)

Our criterion for a neuron to extract one of those properties was that the regression explained 

at  least  10%  of  the  variance  (R2≥0.1)  in  its  activity  and  the  regression  coefficient  of  the 

complimentary property had an absolute value smaller than 0.10 (the large number of samples 

made a criterion based on statistical significance too lenient). The “ideal” numerosity detector is 

invariant  to  cumulative  surface area  and thus  it  is  indexed by a large  absolute value of  the 

coefficient for numerosity and zero value of the coefficient for cumulative area. 



Emergence of a “Visual Number Sense” Supplementary Information  p. 7

In HL1 we only found feature-detectors extracting cumulative-surface area (n=6), with the 

regressions  explaining  on  average  57%  of  their  response  variability  (range  40%  – 74%). 

Sensitivity to this feature was also found in many HL2 neurons (n=164; average R2= 17%; range 

10%  – 36%).  Most  importantly,  we also  found detectors  of  numerosity (n=35)  in  HL2;  the 

regressions explained on average 22% of their response variability (range 11% – 35%).

5.  Network  analysis.  As  noted  above,  few  HL1  neurons  computed  inversely  coded 

cumulative surface area (n=6). These neurons simply summed activity over the entire stimulus, 

because their connection weights were roughly uniformly distributed across the 2D input space. 

All other HL1 neurons can be described as on-center (n=21) and off-center (n=53) spatial filters 

(samples in Supplementary Fig. 2). The receptive fields of the on- and off-center neurons were 

uniformly spaced across the 2D input and approximately 6-pixels wide (corresponding to about 

1.1 octave-wide 2D-spatial filter). Center-surround neurons are very common in the early visual 

system (e.g., in LGN)5.

We further analyzed the 35 HL2 neurons tuned to numerosity (see section 4 above). Notably, 

each neuron performed localized numerosity estimation, receiving strong input only from HL1 

on- and off-center neurons with spatially aligned receptive fields, spanning in total about 10% of 

the overall input field. The input was positive from off-neurons and negative from on-neurons, 

thereby  providing  the  same  type  of  local  signal.  This  local  input  was  combined  with  the 

negatively weighted activity of HL1 cumulative-area detectors (normalization signal) to yield an 

output representing the local numerosity. We illustrate this analysis in  Supplementary Fig. 3. 

The graphs show the population activity of the different types of HL1 and HL2 neurons as a 

function of cumulative area (x-axis) and numerosity (three separate lines for numerosities 4, 8 

and 16). The activity of center-surround HL1 neurons (population activity of off-detectors minus 

population  activity  of  on-detectors)  was  sensitive  to  both  numerosity  and  cumulative  area, 

whereas  HL1  cumulative-area  neurons  were  strongly  modulated  by  area  but  invariant  to 

numerosity  (see  panel  a).  In  contrast,  the  activity  of  the  two  populations  of  HL2  neurons 

identified in Section 4 was sensitive to one dimension and invariant to the other (see panel b). 

Most notably, the population activity of HL2 numerosity neurons, invariant to cumulative area, 
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could be predicted by a linear combination of the population activity of HL1 center-surround 

neurons and HL1 cumulative-area neurons (i.e., HL1_center surround – k * HL1_cumulative-

area; least square fitting yielded k = 0.29 and R2=0.98). 

6. Numerosity estimation.  We used a classic behavioral task, numerosity comparison6,7, to 

assess whether the model’s deepest layer (HL2) can support human-like performance. A two-unit 

linear classifier was trained on the entire training dataset to decide whether a visual numerosity 

was larger than a reference number (either 8 or 16) by turning on the corresponding yes/no units. 

We  generated  a  test  dataset  that  contained  the  same  number  of  images  of  the  training 

database (using the same method, see section 1). This was used to test the classifier’s ability to 

generalize to novel examples and to assess numerosity discrimination. We also generated four 

smaller control datasets to assess the model’s performance in specific conditions (see refs. 8, 9). 

Dataset  A (6,400 images) contained objects with fixed size and shape (3x3 pixels). Therefore, 

object  area  was  constant  but  cumulative  surface  area  increased  with  numerosity.  Dataset  B 

contained 12,800 images with equal cumulative surface area of 100 pixels. Cumulative area was 

therefore constant but object area decreased with numerosity. Dataset C contained 6,400 images 

composed of randomly selected objects with variable shape (triangles and ovals), size (object 

area was 4 or 9 for triangles, 8 or 11 for ovals), and orientation (0 and 90 degrees), for a total of 8 

different  shapes.  This  allowed us  to  assess  performance when numerosities  were formed by 

objects with variable features. Dataset D contained 25,600 images and had objects spread across 

the entire image (low density) or confined in an area of 20x20 pixels (high density), all with 

constant  cumulative  area  of  100  pixels.  This  allowed  us  to  assess  whether  performance  in 

numerosity comparison was invariant to density. Since images in the high density condition were 

markedly different  from those in  the  training  database,  the classifier  was trained on half  of 

dataset D and tested on the other half to perform this test. 

To  thoroughly  assess  numerosity  discrimination  we  selected  from  the  test  dataset  all 

numerosities that were relatively close to the reference, using a range of numerical ratio (test 

numerosity / reference) between 0.625 and 1.50 (see ref. 6). For reference 16, this included all 
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numerosities between 10 and 22, whereas for reference 8 the test numerosities ranged from 5 to 

12.  On this  subset,  the  classifier  accuracy was  still  81% correct.  The response  distributions 

(probability  of  “larger”  responses)  were  then  used  to  compute  an  index  of  number 

discriminability, the internal Weber fraction (w), which corresponds to the standard deviation of 

the estimated Gaussian distribution (on a log scale) of the internal representation of numerosity 

that generates the observed performance (see ref. 6 for details). Thus, the smaller the value of w, 

the better is numerosity discrimination ability, also known as “number acuity”7,10. Discrimination 

ability in humans improves throughout childhood and the mean  w ranges from about 0.3 in 

preschoolers to about 0.14 in adults7,10. The model’s Weber fraction (w = 0.15) compared well 

against the mean adult value observed in three independent studies (w = 0.176, 0.157, and 0.1110). 

The discriminability index was very similar for the control datasets (from A to D, the w values 

were 0.13, 0.14, 0.14, and 0.17, respectively), thereby confirming the human-like performance of 

the model in various conditions and invariance to both cumulative surface area and density. 

We also performed a series of additional simulations with the deep network to investigate the 

robustness of numerosity estimation as a function of model parameters. The only parameters that 

are relatively free regard the number of hidden units (other learning parameters, such as learning 

rate, were not manipulated and were set to values similar to those used in the seminal paper of 

Hinton  and  Salakhutdinov1 to  ensure  efficient  learning).  We  found  that  the  model’s  Weber 

fraction improved systematically as a function of HL1 size (w = 0.26, 0.19, 0.17, 0.15, 0.14, 

0.12, 0.13 for 50, 60, 70, 80, 100, 150, 200 HL1 neurons, respectively; number of HL2 neurons 

was fixed  to  400 as  in  the main simulation).  Greater  acuity with more HL1 neurons is  not  

surprising  given  that  center-surround  detectors  need  to  cover  the  input  space.  In  contrast, 

variation of the Weber fraction was small and not systematic as a function of HL2 size (w = 0.17, 

0.15, 0.15, 0.15 for 200, 300, 400, 500 HL2 neurons, respectively; number of HL1 neurons was 

fixed to 80 as in the main simulation).

We  also  assessed  how  well  the  numerosity  detectors  alone  can  support  numerosity 

comparison. To this aim, a new linear classifier was trained on the training database, receiving as 

input  the  activity  of  the  HL2  numerosity  detectors.  The  generalization  performance  of  the 
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classifier on the test dataset was still very reasonable: number discriminability was indexed by a 

Weber  fraction  of   w  =  0.21.  Notably,  analysis  of  the  classifier's  weights  revealed  that  it 

performed the  comparison task  by simply thresholding the  weighted  sum of  the  numerosity 

detectors, thereby corroborating our finding that the population activity of the HL2 numerosity 

detectors encodes numerosity information (cf. section 5).

7.  Control  simulations.  We also  performed  a  series  of  control  simulations  to  determine 

whether numerosity information can be directly extracted from the image data or from the first 

hidden layer (HL1) of the deep network. First, a linear classifier directly fed with the visual input 

was unable to learn the numerosity comparison task. Though lacking any plausibility for neuro-

cognitive  modeling,  we  also  tested  a  more  powerful  learning  algorithm,  Support  Vector 

Machines (SVM)11. SVMs with linear kernels, after training on subsets of various sizes (50 or 

100  images  for  each  level  of  numerosity  and  cumulative  surface  area),  showed  very  poor 

generalization  performance  and  fully  inadequate  numerosity  discrimination  performance  (as 

shown by a Weber fraction of 0.91 and 0.94, respectively). SVMs with Gaussian kernels could 

not generalize at all.

In contrast, a linear classifier fed with the activity of the entire HL1 yielded a Weber fraction 

of w = 0.24. Although this value indicates much poorer numerosity discrimination performance 

(the w is similar to that of young children6) compared to the classifier trained on HL2 , this result 

is  consistent  with  our  finding  that  numerosity  information  can  be  extracted  by  a  linear 

combination of the activities of HL1 neurons (see Section 5). Indeed, when the classifier was 

prevented from combining the activity of center-surround HL1 neurons and cumulative-area HL1 

neurons by restricting the input to either type of information, performance dropped to a fully 

inadequate level (w = 0.42 and  w = 1.19, respectively). These analyses show that  numerosity 

information is progressively extracted across hidden layers in the deep network.

8. Simplified mathematical model.  Building on the analyses of the neural network model, 

we tested a simpler mathematical model governed by just few parameters. The first layer (size: 

13 x 13) consisted of uniformly spread off-detectors O
ij :
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O
ij
=f (∑ V

ij
I+1 ) (3)

where  I is  the  input  image,  V
ij are  2D-Gaussian-shaped  weights  ( σ=2 )  defining  the 

detector's receptive field (for simplicity, surround suppression was not modeled), and f ( .) is the 

logistic function. The second layer (size: 6 x 6) consisted of uniformly spread local numerosity 

detectors N
kl

 receiving the activity of layer-1 off-detectors and a normalization signal c :

N
kl=∑ W

kl
O+c (4)

where  W
kl are  2D-Gaussian-shaped  weights  ( σ=10 ).  The  term  c represents  the  image 

(log) cumulative surface area and is defined as follows:

c= log(1+
∑ I

c
max

) (5)

where c
max is the maximal cumulative surface area across the image data.

The model  was assessed in  terms of internal  coding and capacity to  support  numerosity 

comparison using the entire image database. The numerosity detectors showed monotonic coding 

of numerosity on a log scale, as in the deep network model. Population activity (average across  

numerosity  detectors)  decreased  as  a  function  of  log  numerosity  (R2  =  0.83)  and  was  not 

modulated by cumulative surface area (Supplementary Fig. 4a, left). A linear classifier trained 

to perform numerosity comparison and tested on the novel test set yielded a Weber fraction of w 

= 0.14 (Supplementary Fig.  4b,  left).  Thus,  the simplified model  faithfully represented the 

learned model; the greater accuracy of the former in representing numerosity is the consequence 

of a more regular spatial structure and the absence of learning-derived noise. A control model 

with no normalization signal performed much worse: log numerosity explained only 46% of 

variance in the population activity of numerosity detectors and the Weber fraction of the linear 

classifier increased to w = 0.39.

Monotonic coding of numerosity in monkey LIP neurons has been observed in two variants, 

with firing rates that either increase or decrease as a function of numerosity3. We therefore tested 
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a version of the model where off-detectors were replaced by on-detectors and the normalization 

signal had opposite sign. In this model, the activation of the numerosity detectors monotonically 

increased with numerosity.  Population activity increased as a function of log numerosity (R2 

=0.83)  and  was  not  modulated  by cumulative  surface  area  (Supplementary  Fig.  4a,  right). 

Performance in numerosity comparison was identical to the first version of the model ( w = 0.14, 

Supplementary Fig. 4b, right). Finally, combining both on- and off-detectors in a single model, 

whereby numerosity was coded with both monotonically increasing and decreasing activation, 

did not increase performance in numerosity comparison (w = 0.14).
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