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a b s t r a c t

Localized damage to different brain regions can cause specific cognitive deficits. However,

stroke lesions can also induce modifications in the functional connectivity of intrinsic

brain networks, which could be responsible for the behavioral impairment. Though resting

state networks (RSNs) are typically mapped using fMRI, it has been recently shown that

they can also be detected from high-density EEG. We build on a state-of-the-art approach

to extract RSNs from 64-channels EEG activity in a group of right stroke patients and to

identify neural predictors of their cognitive performance. Fourteen RSNs previously found

in fMRI and high-density EEG studies on healthy participants were successfully recon-

structed from our patients’ EEG recordings. We then correlated EEG-RSNs functional con-

nectivity with neuropsychological scores, first considering a wide frequency band (1

e80 Hz) and then specific frequency ranges in order to examine the association between

each EEG rhythm and the behavioral impairment. We found that visuo-spatial and motor

impairments were primarily associated with the dorsal attention network, with contri-

bution dependent on the specific EEG band. These findings are in line with the hypothesis

that there is a core system of brain networks involved in specific cognitive domains.

Moreover, our results pave the way for low-cost EEG-based monitoring of intrinsic brain

networks’ functioning in neurological patients to complement clinical-behavioral

measures.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The conception of the brain as a collection of organized

neuronal networks has important implications for under-

standing the relationship between brain structure and
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function (Friston, 2002; Park & Friston, 2013): although we

know a fair amount of details about a specific brain region,

information processing is mediated by longerange in-

teractions with other regions (Varela, Lachaux, Rodriguez, &

Martinerie, 2001). A deeper understanding of how brain
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areas cooperate is important to elucidate the link between

functional connectivity (FC) and human behavior, with the

potential to also clarify how network organization can be

altered or disrupted in neurological and neuropsychiatric

diseases (Baldassarre et al., 2014; Bullmore & Sporns, 2009;

Greicius, 2008). Indeed, although localized brain damage can

cause specific behavioral impairments, it has long been

known that even the function of brain areas far from the

lesion site can be modified after a stroke insult (Beis et al.,

2004; Carrera & Tononi, 2014; Carter et al., 2010; Hillis et al.,

2002; Perani et al., 1987). Interestingly, these physiological

transformations show a strong relation with the behavioral

deficits caused by a stroke, supporting the view that neuro-

psychological disorders should be interpreted by also

considering the large-scale organization of the brain

(Baldassarre et al., 2014; He et al., 2007; Hillis et al., 2002; Park

et al., 2011; Wang et al., 2010).

It is now widely believed that resting state FC provides a

window into the effects of stroke on brain networks organi-

zation and the consequent behavioral deficits (Carter,

Shulman, & Corbetta, 2012; Fox, 2018; Siegel et al., 2016). For

example, resting state FC abnormalities are strongly associ-

ated with both attentional and motor impairments following

stroke (Carter et al., 2010; Carter, Patel, et al., 2012; Chen &

Schlaug, 2013; Park et al., 2011; Wang et al., 2010; Yin et al.,

2012). Attentional deficits have been linked to dysfunctions

within the dorsal attention network (Carter et al., 2010; He

et al., 2007) and more generally to a pattern of FC that is

distinct from that related to motor deficits (Baldassarre et al.,

2016). In a study on patients with hemispatial neglect,

Baldassarre et al. (2014) observed a reduction in themagnitude

of interhemispheric FC within dorsal attention, fronto-

parietal, motor and auditory networks. Visual attention im-

pairments also correlated with a loss of segregation between

networks in the right hemisphere. Overall, these studies

support the idea that physiological dysfunctions at the level of

specific brain networks underlie specific behavioral deficits.

This is revolutionizing the way of thinking about post-stroke

deficits, because they do not only depend on lesion site.

Though resting state networks (RSNs) are typicallymapped

using functional Magnetic Resonance Imaging (fMRI) (e.g.,

Baldassarre et al., 2014, 2016; Siegel et al., 2016, for studies on

stroke patients), the study of the neural organization has also

been supported by other techniques, such as magnetoen-

cephalography and electroencephalography (EEG). Patterns of

altered alpha and beta interhemispheric FC, measured at

sensors level, were found to be associated with cognitive im-

pairments (Kawano et al., 2017; Wu et al., 2011). However, the

activity extracted from single or groups of sensors cannot be

attributed to specific brain regions and thus this method does

not allow the study of RSNs’ activity. In contrast, despite the

poor spatial resolution compared to fMRI, source localization

is a convenient approach for computing measures of FC from

EEG signals (Dubovik et al., 2013; Guggisberg et al., 2011; Nicolo

et al., 2015) and for the investigation of RSNs dynamics (Liu,

Farahibozorg, Porcaro, Wenderoth, & Mantini, 2017; Marino

et al., 2018; Porcaro, Liu, Mantini, Farahibozorg, &

Wenderoth, 2017; Samogin, Liu, Marino, Wenderoth, &

Mantini, 2019). A key contribution has been provided by the

study of Mantini and collaborators (Mantini, Perrucci, Del
Gratta, Romani, & Corbetta, 2007), who investigated the cor-

respondence between neuronal oscillatory processes in

different EEG frequency bands and fMRI fluctuations. Their

analysis showed that each network was characterized by a

specific combination of EEG frequency rhythms. Recently, Liu

and collaborators (Liu et al., 2017) provided the first empirical

evidence that large-scale brain networks can be detected even

by only relying on the EEG signal recorded in resting state (also

see Liu, Ganzetti, Wenderoth, & Mantini, 2018; Marino et al.,

2018; Samogin et al., 2019).

The study of RSNs has provided important insights into the

functioning and the organization of the brain when cognitive

tasks are not required. However, there is growing evidence

that FC properties of RSNs can also be used to predict behav-

ioral outcome in stroke (Carter et al., 2010; Ktena et al., 2019;

Park et al., 2011; Siegel et al., 2016), thereby motivating the

development of a low-cost method based on resting state EEG

and dispensing with the complexity of patient fMRI data-

analysis (Carter, Shulman, et al., 2012).

The first and crucial aim of our study was to validate the

EEG-RSNs detection method of Liu and colleagues (Liu et al.,

2017) in a clinical setting and with a more limited number of

electrodes. The second and complementary aim was to iden-

tify neural markers of specific cognitive impairments in the

intrinsic activity of the EEG-RSNs. The correlation analysis

between EEG-RSNs and neuropsychological scores was

initially carried out considering a wide frequency interval

(1e80 Hz). However, FC analysis was also performed over

specific frequency ranges to examine the contribution of each

EEG rhythm in predicting the impairments, thereby providing

information that is not captured by fMRI.
2. Methods

We report how we determined our sample size, all data ex-

clusions (if any), all inclusion/exclusion criteria, whether in-

clusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study.

2.1. Participants

Thirty right hemisphere damaged (RHD) patients took part in

the study. All participants (mean age ¼ 64.1 years ± 10.49;

mean education level¼ 10.3 years ± 4.54) were admitted to the

San Camillo Hospital (Venice-Lido, Italy) to receive neuro-

cognitive rehabilitation. All patients were in sub-acute/

chronic phase (minimum time from onset: 46 days, see

Table 1). An approximation of the sample sizewas determined

based on previous studies that applied the method for the

EEG-RSNs detection and that showed a successful maps

reconstruction in a group of minimum 19 participants (Liu

et al., 2017, 2018; Marino et al., 2018; Samogin et al., 2019,

2020). According to a standard questionnaire (Oldfield, 1971)

all participants were right-handed. Inclusion criteria for the

study were: a) presence of unilateral brain lesion (first ever

event); b) absence of history of neurodegenerative disorders

and/or of substance abuse. The study was approved by the

regional Ethics Committee (Comitato Etico per la Sper-

imentazione Clinica della Provincia di Venezia e IRCCS San

https://doi.org/10.1016/j.cortex.2021.01.019
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Table 1 e Demographical and neurological data.

Patient Age Gender Education Etiology Lesion Site Lesion size (mm3) Time since stroke (days)

1 56 M 13 I C; T 37,179 93

2 68 F 5 H C 7009 133

3 79 F 5 I C 8718 82

4 43 F 8 H C 34,827 173

5 60 M 13 H F; T 53,429 2240

6 64 F 13 H T; P 109,487 3647

7 72 M 13 H C 2421 93

8 59 M 16 I O; P 118,574 259

9 67 M 13 I MCA 185,846 160

10 69 M 13 I MCA 154,505 84

11 65 F 17 H T; Ta 479,447 697

12 50 M 13 I C; T 17,857 46

13 50 M 8 H BG 20,499 111

14 80 M 5 I Pu 1260 472

15 57 M 8 I F; P 112,932 101

16 73 F 5 H F; P 73,069 160

17 74 M 5 H BG; F 39,357 126

18 69 M 18 I P; O 126,242 71

19 59 M 17 I MCA; T; P 231,265 70

20 57 F 18 I MCA 167,011 187

21 57 M 8 H T; P 67,965 130

22 75 M 13 I I; T; P 54,875 107

23 68 M 13 I T; BG 108,370 1294

24 66 F 5 H Pu 8629 2991

25 63 F 5 I C; F 291,589 208

26 48 F 13 I F; P; O; T n.a. 699

27 81 F 5 I C; I 37,165 221

28 45 M 8 H C 7572 90

29 72 M 8 H C 23,422 99

30 77 M 5 I P 27,139 140

Gender: M ¼ male, F ¼ female; Etiology: I ¼ ischemic, H ¼ hemorrhagic; Lesion site: C ¼ capsule; T ¼ temporal; F ¼ frontal; Ta ¼ thalamus;

O ¼ occipital; P ¼ parietal; MCA ¼ middle cerebral artery; BG ¼ basal ganglia; I ¼ Insula; Pu ¼ putamen; n.a.: data not available.
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Camillo; protocol n. 2014.09 and n. 2018.04). All participants

gave their written informed consent to take part in the study,

which was conducted in accordance to the principles of the

Declaration of Helsinki. No part of the study procedure was

pre-registered prior to the research being conducted.

2.2. Neuropsychological assessment

All patients underwent neuropsychological assessment. The

Functional IndependenceMeasure (FIM) (Linacre, Heinemann,

Wright, Granger, & Hamilton, 1994) was administered to

quantify the severity of disability. The battery consists of 18

items and provides two clinical indices: a motor index and a

cognitive index, which were scored separately. The motor

scale comprises 13 items on seven-levels scales referring to

severe disability in case of complete dependency (i.e.,

1 ¼ “total assistance” and 2 ¼ ”maximal assistance” with au-

tonomy less than 50%) to independency in case of good

functional autonomy (i.e., 6 ¼ “modified independence” and

7 ¼ “complete independence”). The cognitive scale consists of

5 items on seven-levels scales (the same used for the motor

scale). In order to assess visuo-spatial abilities the conven-

tional part of the Behavioral Inattention Test (BIT) (Wilson,

Cockburn, & Halligan, 1987) was administered. The evalua-

tion included 6 subtests (lines, letters, and stars cancellation;

line bisection; figure copy and spontaneous drawing) that are
used to compute the overall BIT score. Attentional matrices

(Spinnler & Tognoni, 1987) were also administered to assess

selective attention deficits. This task is a digit cancellation test

consisting of three different matrices. Patients had 45 sec to

cross out the digit(s) printed at the top of eachmatrix (1 target

in the first matrix, 2 targets in the secondmatrix and 3 targets

in the last matrix). Raven’s progressive matrices test

(Carlesimo, Caltagirone, & Gainotti, 1996) was also adminis-

tered to assess the overall cognitive functioning of our pa-

tients. This test investigates abstract, relatively culture-free

non-verbal reasoning abilities and was not considered in the

statistical analyses. Neuropsychological data are displayed in

Table 2.

2.3. Brain lesion segmentation

CT or MRI were available for 29 out of 30 patients. MRI data

were not acquired for patient 26 due to severe claustrophobia.

An automated brain lesions segmentation was performed

using the Lesion Identification with Neighborhood Data

Analysis software (Pustina et al., 2016) and the resulting lesion

maskwas visually inspected at least by two researchers under

the supervision of a neurologist. Whenever necessary, lesion

masks were manually corrected using ITK-snap software

(Yushkevich et al., 2006). Individual scanswere reoriented and

then normalized to an age-appropriate template brain by

https://doi.org/10.1016/j.cortex.2021.01.019
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Table 2 e Neuropsychological assessment.

Patient BIT Cut off: >130 FIM motor index
(max 91)

FIM cognitive index
(max 35)

Attentional matrices
Cut-off: >30

Raven Cut-off: >18.96

1 142 64 31 40.5 30.3

2 143 53 27 51 38.9

3 98a 21 19 27a 15.2a

4 140 26 21 27.75a 36

5 144 81 35 43.5 21.5

6 140 57 32 50.75 26.4

7 138 58 26 43.75 33.2

8 124a 29 27 22a 25.2

9 118a 26 29 25.25a 20.4

10 142 66 31 49.75 33.1

11 102a 40 33 14.25a 24.7

12 145 91 27 41.25 28.1

13 143 75 29 43 30.3

14 137 43 26 39.75 22

15 66a 58 30 17.5a 27.8

16 71a 51 29 20.5a 21.5

17 125a 84 27 37.25 31.2

18 132 72 31 20.75a 18.4a

19 107a 23 30 28a 26.2

20 144 49 35 49 29.6

21 141 42 32 33.5 28.8

22 139 28 28 24.25a 24.8

23 141 30 35 42.25 31.1

24 146 77 35 56 33.9

25 102a 52 29 37.2 27

26 140 61 29 41.8 26.3

27 136 32 26 44.25 23

28 133 16 21 27.25a 28.8

29 140 60 31 32.25 31.8

30 137 26 26 55.25 31.2

BIT Behavioural Inattention Test (Wilson et al., 1987): global scores. FIM Functional Independence Measure (Linacre et al., 1994): raw scores for

motor and cognitive indices. Attentional matrices (Splinner e Tognoni, 1987): age and education corrected scores. Raven’s progressive matrices

(Carlesimo et al., 1996): age and education corrected scores.
a Performance below cut-off.
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means of the SPM Clinical Toolbox (Rorden, Bonilha,

Fridriksson, Bender, & Karnath, 2012) using enantiomorphic

normalization. The maximal overlap (23 patients) occurred in

the white matter adjacent to putamen (MNI: X ¼ 29, Y ¼ � 20,

Z ¼ 12) (see Fig. S1 e Supplementary Materials).

2.4. EEG data collection

Electrophysiological data were collected at the San Camillo

Hospital in a dedicated lab. Resting state EEG was recorded for

10 min. Data were acquired using an elastic cap with 64 pre-

amplified electrodes (Acticap, BrainProducts) mounted ac-

cording to the International 10e20 system (Oostenveld &

Praamstra, 2001). The sampling rate was set at 500 Hz and

the impedancewas kept below 5 kU. During the EEG recording,

patients were asked to keep their eyes open and to fixate the

center of a computer monitor in order to reduce eye

movements.

2.5. EEG-RSNs detection

We employed the method of Liu et al. (2017) (also see, Liu

et al., 2018; Marino et al., 2018; Porcaro et al., 2017; Samogin
et al., 2019, 2020) for EEG-RSNs detection. The pipeline of

analysis consists of four steps (see Supplementary Materials

for details): 1) data preprocessing; 2) volume conduction

model creation; 3) brain activity reconstruction; 4) temporal

independent component analysis (ICA) for RSN mapping.

Specifically, a time-frequency decomposition of the recon-

structed neural signal for each voxel was performed using the

spectrogram method. The power time-courses were

computed for the classic frequency bands (delta: 1e4 Hz,

theta: 4e8 Hz, alpha: 8e13 Hz, beta: 13e30 Hz, gamma:

30e80 Hz) and for the full 1e80 Hz band. Temporal ICA

(Calhoun, Adali, Pearlson, & Pekar, 2001) was applied only on

the full band (1e80 Hz) power envelopes to ensure an unbi-

ased detection of EEG-RSNs (Liu et al., 2017). The ICA output

consists of a number of ICs, each comprising a spatial map

and an associated time-course (Brookes et al., 2011; Liu et al.,

2017; Mantini et al., 2007). For EEG-RSNs detection, a

template-matching procedure based on similarity with RSNs

derived from fMRI data was used (Mantini, Corbetta, Romani,

Orban, & Vanduffel, 2013). Each IC can be associated only to

one template. The fMRI templates consisted of 14 networks:

default mode network (DMN), dorsal attention network

(DAN), ventral attention network (VAN), right fronto-parietal

https://doi.org/10.1016/j.cortex.2021.01.019
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network (rFPN), left fronto-parietal network (lFPN), language

network (LN), cingulo-opercular network (CON), auditory

network (AN), ventral somatomotor network (VSN), dorsal

somatomotor network (DSN), visual foveal network (VFN),

visual peripheral network (VPN), medial prefrontal network

(MPN), and lateral prefrontal network (LPN). After the identi-

fication of the IC associated with a specific network, the

spatial maps for delta (1e4 Hz), theta (4e8 Hz), alpha

(8e13 Hz), beta (13e30 Hz), and gamma (30e80 Hz) bands,

respectively, were obtained by correlating the power enve-

lopes of the source-reconstructed EEG data with the band-

limited power envelope of the selected IC.

2.6. Statistical analyses

Brain-behavior correlation analyseswere carried out using the

SPM12 software (https://www.fil.ion.ucl.ac.uk/spm/). Linear

regressions were performed considering each EEG-RSN con-

nectivity as predictor and the neuropsychological indices [BIT;

motor index of FIM; cognitive index of FIM and Attentional

matrices (corrected scores)] as dependent variables. The pre-

dictor is an index of FC expressing, for each voxel, the corre-

lation between the EEG power and the specific time course

associated with each RSN (that is, a measure of voxel inte-

gration within the network). Lesion size (standardized value)

was included in the regression model as variable of no inter-

est. For patient 26 the average group lesion size was used. The

first analysis was performed on the wide frequency band

(1e80 Hz), producing a correlation map expressed in terms of

T-scores. Local clusters were then identified by only consid-

ering regions at least 1 cm3 in size, showing a significant

correlation (p � .05, FDR-corrected for multiple comparisons).

For each cluster identified within a particular network for the

band 1e80 Hz, linear regressions were repeated by separately

considering the contribution of each of the five EEG frequency

bands.

In order to explore the possible influence of other neuro-

logical variables (i.e., time from stroke and stroke etiology), we

also performed supplementary analyses by creating sub-

groups of patients with more homogeneous neurological

characteristics. The latter results are only reported in the

Supplementary Materials and should be taken with caution

due to the smaller number of patients (see Supplementary

Methods and Analyses and Tab. S4).

No part of the study analyses was pre-registered prior to

the research being conducted.
3. Results

The Results section is organized as follow. First, behavioral

performance at neuropsychological tests and their correlation

with neurological variables are presented. Second, EEG-RSN

maps obtained using temporal ICA in the wide frequency

band (1e80 Hz) are presented. Then, correlation analyses be-

tween EEG-RSNs and neuropsychological scores are pre-

sented, showing the significant clusters of voxels identified for

each EEG-RSN and their correlation with neuropsychological

indices. T-scores and corrected probability levels are reported

for each significant result.
3.1. Behavioral performance

Overall cognitive functioning was good, as measured by Rav-

en’s test (mean¼ 27.56, ± 5.32), with only two patients scoring

below the cut-off. The evaluation of visuo-spatial abilities

using the BIT yielded poor performance (overall score < 130)

for 9 out of 30 patients (mean ¼ 128.53, ± 21.39). The atten-

tional matrices test (mean ¼ 36.22, ± 11.73) showed patho-

logical scores for 11 out of 30 patients. Motor autonomy in

everyday life was measured by the motor index of FIM (scores

range: 13e91). The performance of our patients was hetero-

geneous with a minimum score of 16 and high scores (>78)
only for 2 patients (mean ¼ 49.70, ± 21.02). We also adminis-

tered the cognitive scale of FIM in order to assess the general

cognitive performance in daily situations (scores

range ¼ 5e35). We found a general good performance with a

minimum score of 19 and high scores (�30) for 13 out of 30

patients (mean ¼ 28.90, ± ¼ 4.05).

Spearman correlations (with p-values adjusted formultiple

comparisons using Holm’s method) were computed in order

to investigate potential relations between neurological char-

acteristics and patients’ performance at neuropsychological

tests. The correlation results are provided in the

Supplemental materials (see Tab. S1). We found a significant

correlation between BIT and Attentional matrices test (r ¼ .71,

p ¼ .0001), showing that the two attentional measures were

highly correlated in our patients’ sample. The correlation be-

tween Lesion size and FIM cognitive index also reached sig-

nificance (r ¼ .52, p ¼ .0410), but its sign went in the

unexpected direction (i.e., larger lesion size associated to

better performance). However, it is worth noting that the FIM

cognitive scores were in the high range for many patients. No

other significant correlations emerged. In particular, time

from stroke was not associated with any of the behavioral

measures.

3.2. EEG-RSN maps

Temporal ICA was applied to reconstruct RSNmaps in the full

frequency band (1e80 Hz). While spatial ICA is commonly

preferred in fMRI studies, temporal ICA is a convenient

approach in case of EEG/MEG connectivity analysis (Brookes

et al., 2011). Fig. 1 displays the 14 RSNs detected in the group

of 30 RHD patients. Dice Similarity (DS) analysis was per-

formed to quantify the correspondence between EEG and fMRI

RSNs maps. Results are reported in the Supplementary

Materials (see Supplementary Methods and Analyses and

Tab. S2), showing an overall good match between EEG and

fMRI maps.

3.3. Correlation between EEG-RSNs and
neuropsychological indices

3.3.1. Dorsal attention network (DAN) e attentional matrices
The analysis carried out on the Attentional matrices score

showed a significant positive correlation with a cluster that is

part of the DAN (t¼ 2.5241, p ¼ .0087) when the wide EEG band

(1e80 Hz) was considered. This cluster was located in the

inferior division of the lateral occipital cortex (left hemi-

sphere, X ¼ - 47; Y ¼ - 65; Z ¼ - 10) (Fig. 2, panel a). Moreover,

https://www.fil.ion.ucl.ac.uk/spm/
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Fig. 1 e RSNs reconstructed using temporal ICA from wide-band EEG signals (64 channels). EEG RSNs were selected on the

basis of the spatial overlap with fMRI-RSN: DMN, DAN, VAN, rFPN, lFPN, LN, CON, AN, VSN, DSN, VFN, VPN, MPN and LPN.

Group-level maps (N ¼ 30) were thresholded at z > 2 for visualization purpose.

Fig. 2 e Correlation between DAN and Attentional matrices/BIT. The figure shows significant clusters of voxels (p ≤ .05)

within DAN and their correlation with Attentional matrices (panel a) and BIT scores (panel b).

c o r t e x 1 3 8 ( 2 0 2 1 ) 5 9e7 164
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when individual EEG frequency bands were considered, this

positive correlation was also found in the beta rhythm

(t ¼ 1.8973, p ¼ .0339) and in the gamma rhythm (t ¼ 2.3694,

p ¼ .0123). These results show that lower integration of this

cluster within DAN is associated to lower scores at attentional

matrices test and that the beta and gamma bands play a

prominent role in driving this association.

3.3.2. Dorsal attention network (DAN) e BIT
The analysis carried out on the BIT battery revealed a negative

correlation in a cluster that is part of the DAN (t ¼ �2.3001,

p ¼ .0144) within the wide frequency range. The specific

cluster was located in the superior parietal lobule (left hemi-

sphere, X ¼ - 33; Y ¼ - 57; Z ¼ 39) (Fig. 2, panel b). A negative

correlation was also found when the delta band was analyzed

(t ¼ - 2.6582, p ¼ .0063) and a positive correlation emerged

when the gamma band was analyzed (t ¼ 1.7850, p ¼ .0424).

These results suggest that worse performance at visuo-spatial

tasks is predicted by higher integration of superior parietal

lobule within DAN in slow delta rhythm and by lower inte-

gration of the same cluster in high gamma rhythm.

3.3.3. Dorsal attention network (DAN) e FIM motor index
The analysis carried out on the motor index of FIM showed

positive correlations with three clusters that are part of DAN

(t ¼ 2.5986, p ¼ .0073; t ¼ 2.5146, p ¼ .0089 and t ¼ 2.6673,

p ¼ .0062, respectively). The nodes identified corresponded to

the inferior temporal gyrus (temporo-occipital division) (right

hemisphere, X ¼ 57; Y ¼ - 57; Z ¼ - 10); to the precentral gyrus

(left hemisphere, X ¼ - 28; Y ¼ - 10; Z ¼ 62) and to the superior

frontal gyrus (right hemisphere, X ¼ 26; Y ¼ �1; Z ¼ 64) (Fig. 3,
Fig. 3 e Correlation between DAN, LN, MPN and FIM. The figure

(panel a)/LN (panel b) and their correlation with FIM motor inde

with FIM cognitive index.
panel a). This effect was observed in the full EEG frequency

range (1e80 Hz), in the delta rhythm for the first and third

clusters (t ¼ 2.1699, p ¼ .0192 and t ¼ 2.2823, p ¼ .0150,

respectively) and in the theta rhythm for the second cluster

(t ¼ 1.7355, p ¼ .0466). More specifically, when the delta/theta

EEG bands are considered, lower integration of these three

regions within DAN is associated with lower levels of motor

ability as assessed by FIM.

3.3.4. Language network (LN) e FIM motor index
The analysis carried out on themotor index of FIM showed the

presence of a negative correlationwith a cluster in the LN (t¼ -

2.1514, p ¼ .0200), considering the wide frequency band. The

cluster was located in the precentral gyrus (left hemisphere,

X ¼ - 51; Y ¼ 8; Z ¼ 25) (Fig. 3, panel b). Considering individual

EEG rhythms, negative correlations were also found within

delta (t ¼ - 2.2517, p ¼ .0160), beta (t ¼ - 2.2562, p ¼ .0159) and

gamma (t ¼ - 2.4163, p ¼ .0111) frequency bands. The results

suggest that, both for full, delta, beta and gammabands higher

integration of this region within LN is associated to lower

score in the motor index of FIM.

3.3.5. Medial prefrontal network (MPN) e FIM cognitive
index
The analysis carried out on the cognitive index of FIM revealed

a negative correlation with a cluster that is part of MPN (t ¼ -

2.4938, p ¼ .0093). The region corresponded to the anterior

division of the middle temporal gyrus (right hemisphere,

X¼ 48; Y¼ 4; Z¼ - 29) (Fig. 3, panel c). This negative correlation

emerged considering the wide EEG band, but also when the

theta band was analyzed (t ¼ - 2.0902, p ¼ .0227). These results
shows significant clusters of voxels (p ≤ .05) within DAN

x. Panel c shows clusters within MPN and their correlation
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suggest that greater integration of the middle temporal gyrus

within the MPN is associated to lower levels of cognitive in-

dependence, in particular within the theta frequency range.

A complete table including all the significant correlations

between EEG-RSNs and neuropsychological indices is pro-

vided in the Supplementary Materials (see Tab. S3).

No significant correlations emerged for the other EEG-

RSNs.
4. Discussion

Recent studies suggest that the disruption of RSN connectivity

underlies the presence of behavioral deficits following stroke

(Baldassarre et al., 2016, 2014; Carter et al., 2010; Ktena et al.,

2019; Park et al., 2011; Siegel et al., 2016). Though fMRI tech-

niques are usually employed to detect brain networks at rest,

recent studies have shown that RSNs can be reconstructed

from high-density EEG signals (Liu et al, 2017, 2018; Marino

et al., 2018; Samogin et al., 2019). The present study attemp-

ted the first validation of the EEG-RSNs detection method in a

neurological population, and further investigated the link

between intrinsic brain activity and behavior, first considering

a wide frequency band and then narrowing the focus on the

contribution of different EEG rhythms. The main purpose was

to examine whether EEG-RSNs organization could be predic-

tive of cognitive deficits, thereby providing a new assessment

tool based on EEG markers that could complement classical

paper-and-pencil neuropsychological measures.

Once the spatial maps were obtained and the time-courses

for each EEG-RSNs were extracted, our analysis aimed at

exploring their correlation with neuropsychological indices.

Overall, our patients showed good general cognitive func-

tioning as assessed by Raven’s test and FIM cognitive index,

while attentional, visuo-spatial and motor impairments were

frequent across patients, as typically observed in heteroge-

neous samples of RHD patients. A first important result is that

correlations were found only between a subset of EEG-RSNs

and specific behavioral indices. In particular, impaired per-

formance was mostly associated with functional connectivity

within, DAN, LN and MPN, in line with the hypothesis that

there is a core system of brain networks involved in specific

cognitive domains (Baldassarre et al., 2016; Fox, 2018; He et al.,

2007). The significant results are discussed in the following

sections, with particular emphasis on the interhemispheric

imbalance in DAN activity and on the interplay between

visuo-spatial attention and motor planning.

4.1. Interhemispheric imbalance in dorsal attention
network activity

Two clusters within the DAN showed a significant correlation

with the Attentional matrices and the BIT scores, two neuro-

psychological tests assessing selective attention and visuo-

spatial deficits (i.e., neglect). Studies on healthy participants

suggest that the fronto-parietal regions within DAN play a

crucial role in mechanisms of selective attention that allow

the suppression of irrelevant and the detection of salient in-

formation (Corbetta & Shulman, 2002; Lanssens, Pizzamiglio,

Mantini, & Gillebert, 2020). The dorsal system is also
involved in preparing an attentional set necessary for stim-

ulus processing and for planning goal-directed responses

(Corbetta & Shulman, 2002).

The role and functioning of DAN following stroke has been

widely investigated in neuroimaging studies (Baldassarre

et al, 2014, 2016; Carter et al., 2010; Corbetta & Shulman,

2011; He et al., 2007; Ptak & Schnider, 2010; Siegel et al.,

2016). A common view is that attentional deficits (i.e.,

neglect) stem from alterations in large-scale distributed net-

works (Corbetta & Shulman, 2011). In the acute/subacute

phase, right hemisphere damaged patients with spatial im-

pairments show abnormal interhemispheric DAN activity that

correlates with the behavioral deficit (Baldassarre et al., 2014,

2016). Interestingly, dysfunction in both left and right DAN

regions were found to be related to patients’ performance,

suggesting that neglect might be caused by imbalanced DAN

activity (Baldassarre et al, 2014, 2016; Carter et al., 2010; He

et al., 2007). Corbetta, Kincade, Lewis, Snyder, and Sapir

(2005) observed a correlation between spatial impairments

and functional imbalance patterns, consisting in hyper-

activation in the left and hypo-activation in the right dorsal

parietal cortex in patients with right hemisphere damage.

Notably, these regions were structurally intact and the re-

covery of attention deficits was related to the restoration of

activity in these areas. These results are in agreementwith the

hypothesis that neglect is caused by a mechanism of inter-

hemispheric inhibition (Kinsbourne, 1987) and with the more

recent hypothesis that disruption of interhemispheric func-

tional connectivity is associated with spatial deficits

(Baldassarre et al., 2014).

In our study, we observed correlations between DAN and

patients’ attentional performance. On one hand, lower inte-

gration of a region in the left lateral occipital cortex within

DAN in high beta and gamma rhythms was associated with

poor selective attention ability. On the other hand, visuo-

spatial impairments were predicted by higher integration of

left superior parietal lobule within DAN in slow delta rhythm

and by lower integration of the same cluster in fast gamma

rhythm.

Several EEG studies showed that poor cognitive outcome is

predicted by increased delta activity and depression of faster

alpha or beta activity in the ischemic hemisphere (Assenza,

Zappasodi, Pasqualetti, Vernieri, & Tecchio, 2013; Finnigan &

van Putten, 2013; Finnigan, Wong, & Read, 2016), and that

stroke patients generally present greater slow EEG power both

in the affected and unaffected hemisphere compared to

healthy controls (Assenza et al., 2013; Dubovik et al., 2012).

However, there is also evidence that interhemispheric syn-

chronization in faster EEG bands (i.e., alpha/beta) is a sensitive

marker of patients’ outcome (Dubovik et al., 2012; Kawano

et al., 2017; Nicolo et al., 2015; Wu et al., 2011). With respect

to RSNs, it has been shown that each network is characterized

by a specific combination of different brain rhythms in

healthy brains (Mantini et al., 2007). Moreover, cognitive net-

works (including DMN, DAN, VAN) show greater power spec-

trum density in low frequency bands compared to perceptual

networks (Marino et al., 2018). In contrast, greater power

spectrum in gamma frequency is prevalent in perceptual

networks (i.e., somatomotor, auditory and visual networks).

These findings are in line with the idea that slower
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fluctuations promote information exchange on larger spatial

scale, while faster fluctuations support local processing

(Canolty et al., 2006).

Our findings could be explained in terms of imbalanced

activation of DAN regions. In particular, stroke might cause a

deactivation of fronto-parietal regions in the affected hemi-

sphere and a hyper-activation of unaffected contralesional

areas. This alteration might consequently hinder the control

of attentional focus, the ability to plan actions and the visuo-

spatial awareness. Note that we found a strong correlation

between behavioral performance at Attentional matrices and

BIT, suggesting that both deficits might be associated to the

alteration of the same neural substrate. In line with previous

evidence (Baldassarre et al., 2016; Carter et al., 2010; Corbetta

et al., 2005), we suggest that attentional deficits might be

associated with abnormal interhemispheric activity and re-

covery might be linked to a rebalancing of the bilaterally

distributed dorsal network.

4.2. DAN and motor planning

We also examined the resting state FC associated with func-

tional independence, assessed by the FIM battery. Our results

showed a positive correlation between neural organization

within DAN and the motor scale of FIM. Recent studies sug-

gested that DAN is critically involved in executive control

(Kim, 2010; Mantini et al., 2007) and selective attention,

especially in the visuo-spatial domain (Baldassarre et al., 2014;

Corbetta & Shulman, 2002; Fox, Corbetta, Snyder, Vincent, &

Raichle, 2006). Visuo-spatial attention influences the selec-

tion of sensory information relevant to the movement goal

(Goldberg & Segraves, 1987; Peters, Handy, Lakhani, Boyd, &

Garland, 2015) and activates neural circuitry also used dur-

ing motor planning (Casarotti, Lisi, Umilt�a, & Zorzi, 2012;

Craighero & Rizzolatti, 2005); in this respect, brain damage

could alter visuo-spatial/motor attention, which in turn in-

fluences motor planning (Peters et al., 2015). This is also in

agreement with the finding that the severity of motor deficit is

associated with resting state fMRI FC both within DAN and

somato-motor networks (Siegel et al., 2016). In our study, the

motor deficits emerging in everyday life activities were asso-

ciatedwith lower integration of three clusters within the DAN,

exclusively for slow EEG rhythms (i.e., delta/theta bands). In

accordance with the above-presented theories, we suggest

that the functional motor outcome after stroke is influenced

by the dorsal-attentional system.

4.3. LN and motor control

We also found a correlation between the precentral gyrus (LN)

and the FIM motor score. It has been proposed that motor

control could be strictly related to speech representation

(Hodgson&Hudson, 2018). In particular, there is evidence that

both language and fine motor control share neural regions

localized in the left hemisphere and involved in action plan-

ning and sequential processing (Hodgson & Hudson, 2018;

Verstynen, Diedrichsen, Albert, Aparicio, & Ivry, 2005). In our

study higher integration of precentral gyrus was associated

with low FIM motor scores. A possible explanation is that

activity in resting state condition within regions part of the
language network could be crucial for an efficient planning of

sequential actions. Altered communication between these

regions might therefore contribute to the difficulty in the

execution of common daily activities and more generally in

themotor representation process. Although the dominance of

the left hemisphere for motor skills has been observed in

previous studies, there is also evidence of right-hemisphere

specialization in goal-directed actions (Serrien, Ivry, &

Swinnen, 2006). In this perspective, the dynamics occurring

following unilateral stroke need further investigations, as well

as the role of slow and fast frequency activity within areas

associated with impairment.

4.4. Functional cognitive independence

The relation between FC dynamics and functional cognitive

independence was also investigated. FIM cognitive scale in-

cludes the assessment of patient’s capability to communicate,

interact with other people, solve problems and memorize in-

formation in daily activities. Given the complexity of these

tasks, it is conceivable that modifications within the MPN

might alter the recruitment of resources required for pro-

cessing stimuli in the environment and manipulating infor-

mation in autonomy. In particular, our findings suggest that

cognitive functioning impairments in everyday life might be

related to resting state FC alteration within a brain region

implicated in the multimodal integration of information

(anterior middle temporal gyrus) (Visser, Jefferies, Embleton,

& Ralph, 2012). In line with previous fMRI studies

(Baldassarre et al., 2014; He et al., 2007), we propose that FC

dysfunctions at rest can set up abnormal interactions during

active tasks. Note that the higher integration within MPN was

associated with lower cognitive independence only within

theta band. In this respect, future investigation should clarify

the possible relation between slow ipsilesional activity and

general cognitive functioning also including patients with

severe disruption of autonomy.
5. Conclusions and limitations

The current study investigated the relationship between EEG

signatures of intrinsic brain networks’ activity and behavior

following stroke. Our results show that RSNs can be success-

fully mapped from data recorded with a 64 channels system.

Thus, although information extracted from a high-density

(128e256 channels) system is certainly more accurate, our

results show that this methodology allows network recon-

struction using a relatively small number of electrodes, which

is a more typical context in clinical settings. Crucially, previ-

ous studies on EEG-RSNs involved only healthy participants,

whereas our study provides a proof-of-concept for the appli-

cation to neurological patients. Our EEG-RSNs approach is

particularly convenient both in terms of time and costs.

Indeed, this method only requires 10 min of EEG recording

during rest condition: this is particularly effective in a clinical

context, where patient’s collaboration is not always guaran-

teed, and it appears very suitable formonitoring changes in FC

during neurorehabilitation. EEG, compared to fMRI, is more

comfortable, less contaminated by head and bodymovements
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and it is a potentially bed-side system. Furthermore, typical

MRI exclusion criteria (e.g., metal plates, pace-makers,

claustrophobia, etc.) do not apply to EEG. Finally, it is worth

nothing that this approach also examines the role of individ-

ual EEG bands in predicting the impairments. Several studies

encourage the employment of electrical brain stimulation as a

potential treatment to improve neurorehabilitation after

stroke (de Aguiar, Paolazzi, & Miceli, 2015; Hummel & Cohen,

2006; Marquez, van Vliet, Mcelduff, Lagopoulos, & Parsons,

2015; Nowak, Grefkes, Ameli, & Fink, 2009). In line with this

new perspective for cognitive recovery, our analysis provides

precious information about the EEG band associated with the

impairments, highlighting which frequency range should be

prioritized for transcranial electrical brain stimulation.

As a next step, it would be interesting to systematically

compare altered functional dynamics of RSNs in EEG and fMRI

on the same patient sample. Moreover, though the current

study focused on the relation between RSNs dynamics and

attentional/motor impairments, the same method could be

used to examine the association to other cognitive functions

and also consider computerized assessment tasks that show

higher sensitivity compared to paper-and-pencil tests (see

Blini et al., 2016; Bonato et al., 2019; Bonato, Priftis, Umilt�a, &

Zorzi, 2013). Finally, the EEG-RSN method is well suited for

longitudinal studies, which would permit to track changes in

network activity during recovery from stroke and examine

how different types and doses of rehabilitation modulate the

RSNsebehavioral relationship.

One limitation of the current study is that it did not include

a group of age-matched controls, thereby preventing the

possibility to directly relate changes in networks activity to

the stroke. A second limitation is the use of the univariate

statistical approach, but this choice was primarily motivated

by the relatively small sample size. Indeed, a multivariate

approach could be implemented in future work to further

investigate the EEG-RSNs dynamics associated to behavioral

impairments in a larger sample of stroke patients, also in

relation to lesion topography. Indeed, previous studies have

shown that some cognitive deficits are better predicted by

fMRI FC (i.e., attention, visual and verbal memory), while

others are better predicted by lesion location (i.e., motor, vi-

sual) (see, Salvalaggio, De Filippo De Grazia, Zorzi, De

Schotten, & Corbetta, 2020; Siegel et al., 2016).

In conclusion, as previously proposed in the context of

fMRI studies, our results support the idea that the presence of

alterations in spontaneous network dynamics can be predic-

tive of specific neuropsychological deficits. A cost-effective

monitoring of RSNs functioning might have a great impact

on clinical diagnosis and on the development of stroke reha-

bilitation programs.
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