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Abstract

Learning to read a relatively irregular orthography, such as English, is harder and takes longer than

learning to read a relatively regular orthography, such as German. At the end of grade 1, the difference

in reading performance on a simple set of words and nonwords is quite dramatic. Whereas children

using regular orthographies are already close to ceiling, English children read only about 40% of the

words and nonwords correctly. It takes almost 4 years for English children to come close to the reading

level of their German peers. In the present study, we investigated to what extent recent connectionist

learning models are capable of simulating this cross-language learning rate effect as measured by

nonword decoding accuracy. We implemented German and English versions of two major

connectionist reading models, Plaut et al.’s (Plaut, D. C., McClelland, J. L., Seidenberg, M. S., &

Patterson, K. (1996). Understanding normal and impaired word reading: computational principles in

quasi-regular domains. Psychological Review, 103, 56–115) parallel distributed model and Zorzi

et al.’s (Zorzi, M., Houghton, G., & Butterworth, B. (1998a). Two routes or one in reading aloud? A

connectionist dual-process model. Journal of Experimental Psychology: Human Perception and

Performance, 24, 1131–1161); two-layer associative network. While both models predicted an

overall advantage for the more regular orthography (i.e. German over English), they failed to predict

that the difference between children learning to read regular versus irregular orthographies is larger

earlier on. Further investigations showed that the two-layer network could be brought to simulate the

cross-language learning rate effect when cross-language differences in teaching methods (phonics

versus whole-word approach) were taken into account. The present work thus shows that in order to
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adequately capture the pattern of reading acquisition displayed by children, current connectionist

models must not only be sensitive to the statistical structure of spelling-to-sound relations but also to

the way reading is taught in different countries.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Reading acquisition; Connectionist modeling; Cross-language learning; Phonics versus whole-word

teaching

1. Introduction

Writing systems differ in spelling-to-sound consistency.1 This has a dramatic effect on

the speed at which reading skills are acquired. For example, Italian, Spanish, Greek, and

Finnish have regular orthographies, in which letters or letter clusters consistently map onto

phonemes. At the end of grade 1, children in these countries are typically close to ceiling in

terms of reading accuracy (Goswami, Gombert, & Fraca de Barrera, 1998; Seymour, Aro,

& Erskine, 2003). In comparison, children learning to read English are faced with a large

amount of inconsistency, where the same orthographic patterns can often be pronounced in

multiple ways and the same pronunciations can almost always be spelled in multiple ways

(e.g. Perry, Ziegler, & Coltheart, 2002; Ziegler, Stone, & Jacobs, 1997). Not surprisingly,

it takes children in English-speaking countries much longer to obtain a high level of

reading performance compared to children learning more regular orthographies (Goswami

et al., 1998; Seymour et al., 2003).

One of the most critical skills for successful reading acquisition is phonological

decoding (Share, 1995). Phonological decoding can be accurately measured by examining

children’s nonword reading performance. Nonword decoding is a crucial skill because it

allows children to make the connection between novel letter sequences and words that are

already stored in their phonological (spoken word) lexicons. It is this ability to generalize

that allows the child to successfully decode and construct orthographic entries for

thousands of new words during their first years of education (Share, 1995).

Studies of nonword reading skills show that the acquisition of phonological recoding

skills in English is slow and difficult. Mean error rates for nonword reading at the end of

grade 1 typically range from 40% to 80% (e.g. Jorm, Share, MacLean, & Matthews, 1984;

Juel, Griffith, & Gough, 1986; Seymour et al., 2003; Treiman, Goswami, & Bruck, 1990).

In contrast, in Greek, a regular orthography, children of the same age made only about

10% errors when reading words and nonwords (Porpodas, 1999). In a recent review,

Landerl (2000) reports that children in regular orthographies like Dutch, German, Greek,

Italian, Portuguese or Turkish make no more than 25% errors on nonword reading at the

end of grade 1.

1 We use the term consistency in a general way to mean consistency in the statistical mapping between

orthography and phonology (e.g. Jared, 2002; Kessler & Treiman, 2001; Treiman, Mullennix, Bijeljac-Babic, &

Richmond-Welty, 1995). Note that our use of this concept is not restricted to the mapping between bodies and

rimes. We use the term regularity in a more restricted way to refer to the regularity of grapheme–phoneme

correspondences.
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Apart from monolingual studies, there have also been some direct cross-language

comparisons. A Turkish–English (Oney & Goldman, 1984), an Italian–English

(Thorstad, 1991), and a Greek–English (Goswami, Porpodas, & Weelwright, 1997)

comparison all replicated superior nonword reading skills for children learning to read

regular orthographies. Furthermore, using nonwords derived from number words

(by exchanging onsets), Wimmer and Goswami (1994) and Jansen (1995) overcame the

methodological problem of insufficient comparability that can arise when stimuli of

different orthographies are compared. Interestingly, they both found that there were

essentially no differences between children’s ability to read the highly frequent number

words in the different orthographies, but there were big differences between children’s

ability to read nonwords. Thus, again, these results suggest that the main problem of the

English children lies in their relatively poor phonological decoding skills.

One of the most interesting cross-language comparisons is between German and

English. Due to their common Germanic origin, both languages have a very similar

orthography and phonology but differ with respect to spelling-to-sound regularity

(see Ziegler, Perry, & Coltheart, 2000). This is nicely illustrated by the large number of

words that have identical orthographic forms in both languages (land, bank, ball, zoo,

etc.). This property made it possible to investigate reading development and skilled

reading in different orthographies using literally identical stimulus material (Frith,

Wimmer, & Landerl, 1998; Landerl, Wimmer, & Frith, 1997; Ziegler, Perry, Jacobs, &

Braun, 2001). These studies show a very similar picture to the one summarized above,

namely that English children show poorer nonword reading skills compared to German

children even when identical stimulus material is used. One prototypical data pattern,

taken from the study by Frith et al. (1998), is presented in Fig. 1.

Fig. 1. Prototypical data pattern illustrating the learning rate effect that can be observed in literally every cross-

language comparison involving an orthographically consistent (e.g. German) and the relatively less consistent

English orthography. Data reproduced from Frith et al. (1998).
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In the Frith et al. (1998) study, the authors collected nonword reading accuracy data for

7-, 8-, 9-, and 12-year-old children in Austria and England. The data clearly show that the

biggest difference in nonword reading between the German and the English children is early

on. As can be seen, in the regular orthography (German), children show much better

performance, with reading accuracy levels already above 75% by the age of 7. It takes the

English children several years of instruction to catch up with the German children.

However, even by the age of 12, phonological decoding of the English children is still less

accurate than that of the German children. We will refer to the developmental pattern

illustrated in Fig. 1 as the cross-language learning rate effect. It is important to note that this

effect does not depend on the way errors are coded. This is because in the Frith et al. study, as

well as in all of the above-mentioned studies, the errors of the English children were scored

in a lenient way, in which every response that was phonologically plausible (even if it was

incorrect according to common spelling-to-sound rules) was counted as correct.

In the present research, we were interested in investigating to what extent current

connectionist learning models were able to capture cross-language learning. Indeed, a

number of connectionist models are potentially capable of simulating developmental data

(Harm & Seidenberg, 1999; Plaut, McClelland, Seidenberg, & Patterson, 1996;

Seidenberg & McClelland, 1989; Zorzi, Houghton, & Butterworth, 1998a,b). Other

models exist for skilled reading (e.g. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;

Jacobs, Rey, Ziegler, & Grainger, 1998), but, because they do not tackle the question of

learning, they are not relevant in the context of the present study. More generally,

understanding how models come to solve the stability–plasticity dilemma present in any

learning situation is certainly a major challenge that deserves close attention. Typically,

connectionist learning models are presented several times with a large training corpus of

several thousands of words. Using various learning algorithms, they extract statistical

relationships between spelling and sound (see Zorzi, in press, for a review).

Developmental data have been simulated with these models, by looking at performance

on a given target set before training has been completed (e.g. Zorzi et al., 1998b).

The most influential connectionist model of reading is the triangle model proposed by

Plaut et al. (1996), which was an update of the parallel distributed processing (PDP) model

of Seidenberg and McClelland (1989). Although the full triangle model contains both

a phonological and a semantic pathway, in the present work we only focus on the

phonological pathway (i.e. orthography-to-phonology mapping) because this is the

pathway that is relevant for nonword decoding skills. The network was designed to learn to

read monosyllabic words. It uses a three-layer architecture, in which an orthographic layer

is connected to a phonological layer via a hidden-unit layer. During each epoch, the

network processes each word. The hidden units compute their states based on the active

graphemes and the weights on the connections from them. The phoneme units compute

their states based on the activation of the hidden units and the corresponding connection

weights. The back-propagation algorithm is used to calculate changes of the connection

weights in order to reduce the discrepancy between the generated phoneme activations and

the correct patterns. The original network was trained to essentially perfect performance

on about 3000 English words in the course of 300 learning epochs.

Plaut et al. (1996) showed that the model did a good job of simulating skilled reading

performance. For example, it produced the critical frequency by consistency interaction,
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which is a hallmark of skilled reading in English. In addition, it did a much better job of

nonword reading (generalization performance) than the original Seidenberg and

McClelland (1989) PDP model, which had been criticized for performing poorly on that

task. Although the model was able to simulate reading delay in developmental dyslexia, it

was never actually tested against developmental data from reading acquisition studies.

The goal of the present study was to investigate whether the triangle model could

predict developmental data and most importantly whether it could do so for orthographies

that differ in terms of spelling-to-sound consistency. Given that Plaut et al. (1996) showed

that the consistency of spelling-to-sound relations was a major factor in network learning,

there are good theoretical grounds for expecting that learning in a regular orthography

should be faster than learning in a less regular orthography. For the present simulation

work, we chose the German–English cross-language comparison for a number of reasons.

First, the learning rate effect for these languages is extremely well documented and has

proved reliable in a number of studies (Frith et al., 1998; Goswami, Ziegler, Dalton, &

Schneider, 2001; Landerl et al., 1997; Wimmer & Goswami, 1994). Second, the input and

output domains in these languages are extremely similar, making it possible to test the

models on the same set of items.

2. Simulation 1: does the triangle model predict the cross-language learning

rate effect?

The phonological pathway of the triangle model (Plaut et al., 1996) was implemented in

German and English. Both versions of the model were trained on comparable training

corpora matched in size and frequency across languages. In order to explore whether the

model would acquire differential nonword reading ability across languages (i.e. predict the

cross-language learning rate effect), we tested both implementations on an identical set of

nonwords during the course of training.

2.1. Method

2.1.1. Network architecture

The original English model was exactly reconstructed as specified by Plaut et al. (1996)

in Simulation 1. That is, the feedforward network consisted of three layers, a grapheme

layer (105 units), a hidden layer (100 units), and a phoneme layer (61 units). Connections

exist only between grapheme units and hidden units and between hidden units and

phoneme units. Each grapheme unit sends activation to each hidden unit, and each hidden

unit sends activation to each phoneme unit. Initial weights on connections are small

random values between þ0.1 and 20.1. The large number of grapheme and phoneme

units results from a scheme that codes a consonant differently as a function of its

appearance before the vowel (i.e. in the onset) or after the vowel (i.e. in the coda). All

remaining characteristics of the network, such as activation function, decay, and training

procedure (i.e. changes on connection weights based on back-propagation as learning

algorithm and cross-entropy as error measure, the global learning rate, the connection
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specific learning rate and the momentum) were the same as described by Plaut et al. (1996)

in Simulation 1.

The German network had the same architecture as the English network, but used only

82 grapheme and 52 phoneme units. The smaller number of German grapheme units

results solely from the onset and coda set. In the vowel set, more units were used for

German than for English. One reason for that is that the German vowel set includes quite a

few letters with diacritics (e.g. ä), which indicate a change in the pronunciation of the

letter. Note that simple differences in the number of grapheme and phoneme units cannot

explain differences in the speed of learning because, as the rich literature on the XOR

problem convincingly demonstrated (e.g. PDP books), it is mainly the non-linearity of the

relationships that matters rather than the number of input and output relationships. Given

the smaller number of input and output units it seemed appropriate to reduce the number of

hidden units to 80 as compared to 100 in the English implementation. Note that this change

actually makes very little difference, and using 100 and not 80 hidden units leads to an

almost identical pattern of performance. The German grapheme units also include two

disambiguation units (TS and SK) and the unit ^ to code whether the word is capitalized or

not. The phoneme units include the disambiguation unit /sk/.

2.1.2. Training corpora

For the German corpus, we selected all monosyllabic and monomorphemic words from

the CELEX database (Baayen, Piepenbrock, & von Rijn, 1993). All proper nouns and

geographical terms were excluded. We also excluded loan words. These were defined as

either not being included in the authoritative German dictionary Duden (1980) or were

marked in the Duden as loan words. Examples of such loan words are Boy, Gag and chic.

Note that these exclusion criteria were much the same as those applied by Plaut et al., who

followed Seidenberg and McClelland (1989), except they excluded loan words by hand.

No homographic homophones were included.

The resulting German corpus consisted of only 1293 words compared to about

3000 words in the original English corpus. Reasons for the smaller number of

monosyllabic words in German are that the infinitive form of German verbs always

consists of two syllables (e.g. singen – to sing) and that the final -e in many words is

pronounced in German but not in English (e.g. Nase – nose). The selected German

monosyllabic words have on average of 4.5 letters (range: 2–8).

To keep the number of words in the German and the English training corpora the same,

we randomly reduced the number of English words to 1293, but kept within the reduced

English corpus the 13 homographs and the words that the Glushko (1979) pseudowords

were derived from. The frequency of the words in the resulting English training corpus

was slightly lower than the frequency of the German words (log frequency of 0.24 versus

0.29, respectively). Because log frequency is used to scale weight changes after learning,

we reduced the German log frequency by a factor down to 0.24 to provide equal learning

prerequisites.

2.1.3. Training procedure

During each sweep through the training corpus (learning epoch), the network processed

each word. Hidden units computed their states based on the active graphemes and their
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corresponding connection weights. Phoneme units computed their states based on those of

the hidden units and their corresponding connection weights. After each word was

processed in this way during a learning epoch, back-propagation was used to calculate

changes of the connection weights in order to reduce the discrepancy between the

generated phoneme activations and the correct pattern. The German model was trained in

exactly the same way as the English model.

In order to evaluate the reading performance of the network, Plaut et al. used the

following procedure. A phoneme unit within the onset and coda set was considered to be

produced by the network when the activity level of the unit was above 0.5 (range 21.0 to

þ1.0). Within the vowel set, the vowel with the highest activity (even below 0.5) was

considered to be produced. When using these criteria, Plaut et al. found that the network

correctly pronounced all of the 2972 nonhomographic words of the training corpus after

300 training epochs. For each of the 13 homographs, one of the correct pronunciations was

produced. On the consistent and inconsistent pseudowords of Glushko (1979), it produced

98% and 72% correct pronunciations, respectively, which is quite similar to the

performance levels of human readers.

Although our implementation of the original English network was only trained on

1293 words, it produced a virtually identical performance as the original Plaut et al.

network. After 300 training epochs, it produced only four erroneous pronunciations on

nonhomographic words (BEEN as /bin/, ONE as /wOn/, OUR as /Or/ and OWN as /Wn/)

and produced a correct reading for each of the 13 homographs. On the Glushko (1979) items,

it was correct on 95% and 76% of the consistent and inconsistent pseudowords, respectively.

The implementation of the German network produced only two erroneous pronuncia-

tions after 300 epochs of training (i.e. PAPST [pope] and WEG [way]). In the case of

PAPST, the only error in the network’s pronunciation was a short vowel instead of the

correct long vowel. This is of interest, because PAPST is one of the few irregular words of

the German orthography (since a consonant cluster after a vowel normally marks this

vowel to be pronounced short) – the network’s wrong pronunciation is therefore a

regularization error. In the case of the nonhomophonic homograph pair Weg/weg, only one

correct pronunciation was produced.

2.1.4. Testing procedure

Because the critical test is with regard to nonword reading (network generalization), the

German and English implementations were tested on a set of 80 nonwords during the

course of training. The 80 nonwords were literally identical across the two languages

(fot–fot, lank–lank, plock–plock, etc.). All of them were monosyllabic and either three,

four, five or six letters long (always 20 items per category). Furthermore, the English and

German nonwords were matched in terms of number of letters, body neighborhood

(Ziegler & Perry, 1998), letter neighborhood (Coltheart, Davelaar, Jonasson, & Besner,

1977), and consistency ratio (Ziegler et al., 1997). We did not use the Frith et al. (1998)

nonwords because they contained multisyllabic items, and their monosyllabic set was not

sufficiently matched for a variety of factors that are likely to affect model performance,

like word length and neighborhood.

The testing procedure was straightforward. After each sweep through the entire lexicon

(1293 words), the 80 nonwords were presented to the model and the number of correct
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responses was established. It is important to note that, for the English model, all phono-

logically plausible responses were considered correct, even if they did not respect the most

frequent grapheme–phoneme correspondences (e.g. voop would be considered correct if

the /u/ phoneme was either long or short). Thus, as in the human studies (e.g. Frith et al.,

1998), a lenient criterion of error coding was adopted for the English model.

2.2. Results

The first non-trivial result that is worth pointing out is that both German and English

networks were able to learn the task of word and nonword reading. The models’

performance on the critical set of nonwords is presented in Fig. 2. Initially during learning

(until about 100 cycles), the learning curves of the English and the German models are

close together, with slightly higher performance for the English model. While

performance of the English model flattens out after 100 cycles at around 70% correct

for nonword reading, performance of the German model keeps on increasing towards

asymptotic performance of around 90% after about 200 learning cycles.

When this pattern is compared with the cross-language learning rate effect illustrated in

Fig. 1, an interesting discrepancy becomes apparent. While the learning rate effect is best

characterized by big differences in early learning phases and small differences in later

learning phases, the simulations show the opposite pattern, that is, small differences in

early learning phases and big differences in later learning phases.

Fig. 2. Nonword reading performance of the German and English implementation of Plaut et al.’s (1996) triangle

model during the course of training.

F. Hutzler et al. / Cognition 91 (2004) 273–296280



2.3. Discussion

Although both implementations of the triangle model show overall good generalization

performance when reading nonwords, they fail to predict the precise direction of the cross-

language learning rate effect. That is, the models predict that the higher degree of

regularity of the more regular orthography has its main effect later in learning. However,

the empirical pattern goes in the opposite way, with an advantage of the more regular

language during early learning phases.

What might be responsible for the model’s failure to capture the cross-language

learning rate effect? One reason might be related to the three-layer architecture of the

model. That is, hidden layers in combination with non-linear activation rules are known to

pick up higher-order relationships (i.e. allow the learning of non-linear relationships;

for a comprehensive illustration see Hinton’s (1989) example of object identification).

In contrast, the learning rate effect might come about because beginning readers are able to

exploit linear orthography–phonology relationships, that is, they might exploit statistical

regularities between graphemes and phonemes directly. Moreover, in a three-layer

network, initial learning involves mapping a relatively complex set of letter patterns onto

the hidden layer (i.e. distributing the orthographic regularities amongst the hidden units)

instead of directly strengthening connections between the orthographic and phonological

units. This process does not differ much between German and English because both

languages have a very similar orthographic structure (i.e. similar orthographic

regularities). What differs between the languages is mapping the orthographic regularities

onto phonology (i.e. spelling-to-sound consistency). However, in the model, the advantage

of the regular over the irregular orthography might only be able to come out once the

hidden layer has become fairly stable, that is, during later learning phases.

3. Simulation 2: does a two-layer associative model predict the learning rate effect?

If the reason for the failure of the triangle model to simulate the cross-language learning

rate effect is indeed due to the three-layer architecture and the back-propagation learning

algorithm, then a two-layer network with a direct mapping between orthography and

phonology and a simple associative learning algorithm might do a better job of simulating

the effect. In fact, the nonlexical route of Zorzi et al.’s (1998a) dual process model uses a

two-layer network and delta-rule learning (i.e. a simple associative algorithm) to learn a

direct orthography–phonology mapping. The delta-rule learning procedure is formally

equivalent to a classical conditioning law (the Rescorla–Wagner rule; Sutton & Barto,

1981), and has been directly applied to human learning by a number of authors (see, e.g.

Gluck & Bower, 1988a,b; Shanks, 1991; Siegel & Allan, 1996, for review). Its use in the

present context can thus be supported by appeal to its much wider applicability in

predicting learning data. In effect, the model has been successfully used to simulate the

development of phonological reading (Zorzi et al., 1998b). Moreover, the same

architecture and learning algorithm have been recently used to model the sound-to-

spelling mapping in writing (Houghton & Zorzi, 2003).
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Although the dual process model of Zorzi et al. contains both a nonlexical and a lexical

route, in the present work we only focus on the nonlexical route because this is the

pathway that is relevant for nonword decoding skills (this is analogous to using the

orthography–phonology pathway of Plaut et al. (1996) as opposed to the full triangle

model). Therefore, we implemented a German and English version of the two-layer

associative model (see Zorzi et al., 1998a,b, for further details about the English model,

and Perry & Ziegler, 2002, for further details about the German model). The prediction

was straightforward: if the failure of the triangle model to simulate the cross-language

learning rate effect is indeed due to its three-layer architecture (and learning procedure),

then Zorzi et al.’s two-layer network should have a better chance of simulating the effect.

Model training and testing was done on the same word and nonword sets that were used in

Simulation 1.

3.1. Method

3.1.1. Network architecture

The input to the model is a representation of the spelling of a monosyllabic word.

Letters in words are represented using a positional code, where each node represents both a

letter and the position in the word occupied by that letter. There are no nodes representing

combinations of letters, such as graphemes (e.g. TH, EE, etc.). The letter positions are

defined with respect to orthographic onset and rime. All letters before the first vowel letter

form the onset, and all letters from the vowel onward form the rime. There are three onset

positions, and five rime positions. Each letter has a representation (node) at each position,

for a total of 208 input nodes. Within each group, successive letters occupy successive

positions (i.e. are “left-justified”). Thus, using ‘*’ to denote an empty position, milk would

be represented as M**ILK**, old as ***OLD***, and strength as STRENGTH.

The phonological representation has a similar format, with phonemes in a syllable

aligned to phonological onset and rime positions in the same way. In this case, there are

three onset positions and four rime positions (e.g. /b/ /l/ * /V/ /d/ * *). The phonemic

representation recognizes 44 different phonemes of English. All 44 phoneme nodes occur

in all seven positions giving 308 output units. The input and output layers are fully

connected.

3.1.2. Training and testing procedure

The English and German training corpora were identical to the previous simulation.

The models were trained using the delta rule (Widrow & Hoff, 1960). For each spelling–

sound pair in the training set, an appropriate orthographic input is established, setting each

activated letter-position node to a value of 1. Activations propagate to the output layer,

using the dot product net input rule to calculate the inputs to each phoneme unit. Weights

are then updated and the next word presented. Note that this is slightly different to the

Plaut et al. (1996) model, where weights are updated after all words in the training set have

been presented. Connection weights are all initialized to zero, and units have no bias term.

Phonemic activations are a sigmoidal function f of their net input, bounding phoneme

activations in the range [0,1], and with f ð0Þ ¼ 0 (no input, no output). This output

activation is compared with the target activation (nodes that should be on have a target
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activation of 1, nodes that should be off a target of 0). The error for each phoneme unit is

the difference between the target and actual activations. Where errors occur, weights to the

offending units are changed according to the delta rule.

The two-layer network model is inherently incapable of learning the whole training set

due to the fact that it can only learn linear relationships. Therefore, it cannot be correct for

the vast majority of irregular and inconsistent words (e.g. pint). This is so because it can

only capture the most frequent and consistent (i.e. linear) orthography–phonology

mappings. Therefore, the model cannot be trained until the error rate reaches zero. Instead,

it is typically trained until errors have apparently reached the global minimum. At that

point, the model produces the correct pronunciation of about 81% of the English

monosyllabic words and virtually all errors consist in regularizations of the exception

words (Zorzi et al., 1998a,b). Using our (reduced) training corpus, the English model

produces the correct pronunciation of about 66.5% of the words. The German version

produces the correct pronunciation of about 86% of the words. Note that it is explicitly not

required that the mechanism should be able to correctly read exception words. This is

assumed to be achieved through a mediated mapping, which can be based on lexical nodes

(as in traditional dual route models; e.g. Houghton & Zorzi, 2003), or on a distributed

lexicon (Zorzi et al., 1998a). The aim of the two-layer associative mechanism is simply for

it to achieve human-like performance on the phonological reading of monosyllabic words

and nonwords. In the present simulations, we trained the network for 125,000 word

presentations. Note that we use individual word presentations rather than epochs when

describing the behavior of this model, because the model learns much quicker than that of

Plaut et al. (1996). Thus, if we looked at the simulation results only after every epoch, we

would obtain very few data points.

The recall process is the same as that which generates the network’s output during

training except that a competitive process is implemented at the output layer, whereby

multiple candidates compete via lateral inhibition to be the dominant response in a given

phoneme position. That is, for a given orthographic input it is possible for more than one

phoneme to become active in a given position. Activated phonemes compete via lateral

inhibition to become the dominant response. An executable phonological specification is

considered to be achieved when all phonemes in each position are either above a response

threshold, or are under a “no-response” threshold.

Finally, the testing procedure also examined the generalization performance of the

network with the 80 nonwords. However, as mentioned, because the network learns very

quickly, we examined performance after the presentation of each 100 words. A similar

analysis, based on tracking the network’s performance at different points during learning

to match it to developmental data, was carried out by Zorzi et al. (1998b) to investigate the

development of the sensitivity to VC versus CV constituents in nonword reading (Treiman

et al., 1990).

3.2. Results

The results of the two-layer associative network on the critical nonword set are

presented in Fig. 3. Both the German and English implementations reach asymptote at

about 3000 word presentations with performance levels of about 80% correct
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nonword readings for the English model and more than 90% correct readings for the

German model. There is a consistent 10% advantage of the German network over the

English network. This advantage is present right from the beginning of training and

remains equally strong until the end of training.

3.3. Discussion

The two-layer associative model predicts a constant advantage of the more regular

German orthography over the less regular English orthography. In contrast to the triangle

model (Simulation 1), the two-layer associative network predicts an early advantage of

German over English, which is characteristic of the cross-language learning rate effect.

However, even the two-layer associative network does not fully capture the prototypical

pattern illustrated in Fig. 1, because it predicts a constant advantage of the more regular

orthography over the less regular orthography, whereas the empirical pattern is best

characterized by a large difference (typically around 40%) during early phases of learning

and smaller differences during later phases of learning.

Thus, the present simulation shows that the statistical regularity of the orthography–

phonology mapping, which is what is learnt by the network, seems to produce a

constant advantage of the regular orthography over the irregular orthography. However,

some other factor is needed to explain the boost in nonword reading that is obtained

for readers of regular orthographies during the initial phases of learning to read

(i.e. grade 1). One obvious factor is the teaching method that is used to teach children

in the different countries. The more regular languages lend themselves more easily to

Fig. 3. Nonword reading performance of the German and English implementation of Zorzi et al.’s (1998a) two-

layer associative network during the course of training.
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grapheme–phoneme teaching (i.e. phonics) than the less regular language (i.e. English).

This possibility is addressed next.

4. Simulation 3: taking into account teaching methods

Orthographic consistency does not only affect the reliability of the orthography–

phonology mapping – a property that is picked up by the two-layer associative model – it

also affects the ease with which the mapping can be taught (see Snowling, 1996, for an

overview of contemporary teaching approaches). Regular orthographies are most

efficiently taught by a pure phonics approach, which relies on teaching grapheme–

phoneme correspondences. Indeed, this is the (extremely) dominant approach in countries

with relatively regular orthographies like Germany, Italy, and Greece (see Landerl, 2000).

However, in English-speaking countries, the pure phonics approach does not work as well

because inconsistency is maximal for the small grapheme–phoneme mapping (see

Treiman et al., 1995). As an example, try to think of a way to teach the word chalk using

grapheme–phoneme relationships. Therefore, in English, one often finds mixed strategies,

where grapheme–phoneme strategies are supplemented by rhyme and whole-word

strategies (Goswami & Bryant, 1990; Goswami, Ziegler, Dalton, & Schneider, 2003).

Indeed, up to this day, some English-speaking schools still use the whole-word teaching

approach (Goodman, 1967; Smith, 1978), in which children are not trained on systematic

decoding skills but rather on guessing whole words on the basis of syntactic and semantic

redundancies.

The goal of the present simulation was to investigate whether the phonics approach in

regular orthographies can explain the large initial advantage of the regular over the

irregular orthography, as typically observed in the cross-language comparison between

English (irregular orthography) and German (regular orthography). For this purpose, we

pre-trained both the German and the English two-layer associative model on a simple set

of regular grapheme–phoneme correspondences, thus imitating what might be happening

in the course of a pure phonics teaching approach.

4.1. Method

4.1.1. Pre-training

To implement the phonics pre-training, a set of English and German spelling-to-sound

correspondences was extracted from commonly used phonics teaching programs. For

English, a total of 45 grapheme–phoneme rules were taken from a recent phonics program

(Jolly Phonics, Lloyd, 1999) and a compilation of rules that appear across eight different

phonics programs (Adams, 1990). For German, 54 grapheme–phoneme rules were taken

from the three most commonly used phonics teaching programs (Dummer-Smoch &

Hackethal, 1994; Eibl, Lampée-Baumgartner, Borries, & Tauscheck, 1996; Krenn &

Kowarik, 1988). All the rules that were use are listed in Appendix A.

In order to analyze the consistency characteristics of these rules and to spot potentially

consistent grapheme–phoneme correspondences not mentioned in these programs,

we extracted all single-letter grapheme–phoneme correspondences, the most frequent
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two-letter grapheme–phoneme correspondences, and the most frequent multi-letter

graphemes from the German and English version of the CELEX database. For all of these

correspondences, a simple consistency ratio (e.g. Treiman et al., 1995) was computed.

This analysis showed that all of the English and German single-letter phonics rules ranked

amongst the most consistent single-letter correspondences. Concerning the two-letter

graphemes, the English phonics programs included 18 rules that ranked amongst the most

consistent two-letter rules. However, an additional 11 grapheme–phoneme corres-

pondences proved to be highly consistent but were not mentioned in any of the phonics

programs. For German, 11 two-letter rules ranked amongst the most consistent two-letter

correspondences. Three additional correspondences were highly consistent but they were

not mentioned in any of the phonics programs. The phonics programs also missed three

highly consistent multi-letter rules for English and two for German. To increase the scope

of pre-training, these highly consistent correspondences were added in both languages. In

addition, seven rules for consonant doublets were added to both languages. These rules

were explicitly listed in the German phonics programs but not in the English programs. To

keep the two sets comparable across orthographies, we also added these rules for English.

Finally, four phonotactic rules had to be added to the German set in order to take care of

consonant devoicing at the ends of words.

This combined selection procedure resulted in a total of 66 pre-training rules for the

English orthography and 64 pre-training rules for the German orthography. Since in the

two-layer associative model grapheme–phoneme correspondences for consonants have to

be taught separately for all different positions in both the onset and the coda (e.g. the

occurrence of the letter “p” in the beginning or at the end of a word [e.g. pool versus stop ]

has to be taught separately), the final set of computational rules contained 105 rules for

German and 109 rules for English. Of course, it might have been possible to construct an

even larger number of rules by including low-frequency correspondences. However, rather

than providing an exhaustive list of correspondences (e.g. Coltheart, Curtis, Atkins, &

Haller, 1993), our main goal was to make rules representative of common phonics

programs.

After selecting the grapheme–phoneme relationships, the network was trained for 50

epochs. This meant that all grapheme–phoneme relationships were presented to the

network in all of the positions, in which they could occur in the input–output

representation of the network. For example, when the English network was given the

initial consonant “p” (i.e. p*******), it had to generate the output /p/ (i.e. /p/******). All

correspondences in both sets were learned correctly. Note that training the network for

different amounts of cycles (e.g. 100 epochs) made very little difference to the pattern of

performance.

4.1.2. Training and testing procedure

After the networks had already been given 50 epochs of grapheme–phoneme pre-

training, both networks were trained on the 1293 word corpus in exactly the same way as

before. One might wonder whether switching from grapheme–phoneme training to word

training would cause catastrophic interference (McCloskey & Cohen, 1989). This is not

the case, because the same associations learned during grapheme–phoneme pre-training

were also “embedded” in the word training set. For example, the association between
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grapheme “ea” and phoneme /i/ that is formed during pre-training is not “unlearned” by

later training on the word corpus because the same association will be strengthened by

spelling–sound pairs such as MEAN ! /min/. It is interesting to note that pre-training

(although in a different context) has been claimed to be important for modeling learning

and development with neural networks, as it enables resistance to catastrophic forgetting

(Altmann, 2002).

To test whether the network would exhibit the learning rate effect, the pre-trained models

were again presented with the set of 80 nonwords and accuracy was measured after each

100 word representations. Response coding was performed as in the previous simulation.

4.2. Results

The results of the pre-trained versions of the English and German two-layer

associative model are presented in Fig. 4A. Inspection of this figure shows that the pre-

trained German model exhibited an initial advantage of about 35% over the pre-trained

English model. As learning proceeded, this advantage decreased to about 10%. Thus,

simulations with the pre-trained models begin to capture the cross-language learning

rate effect.

Given what we said earlier about the difficulty of applying a pure phonics approach

in the relatively irregular English orthography, the most appropriate comparison might

be between the pre-trained German model imitating the phonics approach and the

original (not pre-trained) English model imitating the whole-word approach. This

comparison is illustrated in Fig. 4B. As can be seen in this figure, the initial advantage

of the more regular German orthography over the less regular English orthography

increased well above 40%, which is very close to the empirical pattern typically

observed (e.g. Frith et al., 1998). The present simulations make it quite clear that the

German network benefits rather dramatically from the phonics pre-training regime. One

interesting question is whether the English network benefits from pre-training at all.

This question can be addressed by comparing the normal model with the pre-trained

model within each language. This comparison allows us to estimate to what extent both

networks benefit from the phonics pre-training. This comparison is illustrated in

Fig. 5A,B.

As can be seen in Fig. 5A, the English network benefits to a small extent from pre-

training. These benefits are in the order of 10%, and they are restricted to early learning

phases. In contrast, as can be seen in Fig. 5B, the German network greatly benefits from

the phonics pre-training regime. The benefits are in the order of 40% in early learning

phases and extend in time far beyond the benefits of the English network.

4.3. Discussion

The present simulation showed that the cross-language learning rate effect can be

simulated in a two-layer associative network when teaching method is taken into

account. This was done by pre-training the model on a simple set of correspondences,

imitating what happens during intensive phonics teaching, which is typical of that given

to children in many European countries. The results present a striking qualitative fit to
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the data pattern found in a variety of studies comparing reading development in regular

orthographies, like German, with reading development in English (e.g. Frith et al.,

1998, Fig. 1).

One important question is whether English children can benefit from phonics

teaching, and if so, whether they do so to the same extent as the children in more

regular orthographies. The simulations suggest that the English network does benefit

Fig. 4. Nonword reading performance of Zorzi et al.’s (1998a) two-layer associative network when both

implementations are pre-trained using a phonics regime (A) and when the German phonics approach is compared

to the English whole-word approach (B).
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from the phonics pre-training regime. However, the benefits are smaller and more

restricted to early learning phases than those of the German network. This fits well the

empirical results reported by Landerl (2000), who found that English children receiving

phonics teaching outperformed the English children being taught using the whole-word

approach. However, the English children who received the phonics teaching did not

reach the same level of performance as children learning to read more regular

orthographies.

Fig. 5. Benefits due to phonics pre-training of the English and German versions of the two-layer associative

network (A,B, respectively).

F. Hutzler et al. / Cognition 91 (2004) 273–296 289



5. General discussion

Cross-language research over the past decade has shown that learning to read a

relatively irregular orthography is harder and takes longer than learning to read a relatively

regular orthography (Frith et al., 1998; Goswami et al., 1997, 1998, 2001, 2003). In a

recent cross-language study that compared reading acquisition in 13 European countries,

Seymour et al. (2003) have shown that English is the hardest European orthography to

acquire.

When reading acquisition of English is compared to reading acquisition of a more

regular orthography in developmental studies, it is typically observed that the biggest

advantage of the more regular orthography is during the first year of reading instruction. At

the end of grade 1, for instance, nonword reading performance is about 80% for children in

more regular orthographies compared with 40% for the English children (e.g. Frith et al.,

1998; Goswami et al., 1997; Seymour et al., 2003). Even when children in different

countries are matched on reading age according to standardized tests, as was the case in the

German–English comparison by Goswami et al. (2001), the English children with a

reading age of about 7 years read only about 30.9% of the nonwords correctly compared to

87.6% being read correctly by the German children. By the age of 12, accuracy of the

English children has come closer to that of the German children but a small advantage for

the German children remains. This is the pattern reflected in the cross-language learning

rate effect illustrated in Fig. 1.

The goal of the present study was to see to what extent current connectionist models

were able to capture this cross-language learning rate effect. The focus was on learning

models, like Plaut et al.’s (1996) influential triangle model, because only those have the

potential to capture a developmental effect. The question was whether the cross-language

learning rate effect would emerge in these learning models simply as a consequence of

being exposed to large language-specific word corpora or whether additional procedures

would be necessary to capture the effect. Because it had been demonstrated that

connectionist models are capable of picking up statistical regularities in the orthography–

phonology mapping, the prediction was that network performance should benefit when the

orthography to be learned is of relatively high consistency.

The results showed that German and English implementations of Plaut’s triangle model

displayed a better nonword reading performance for the regular German orthography

compared to the less regular English orthography. However, the network predicted no

cross-language differences during initial learning phases and increasingly larger

differences during later learning phases, which is the opposite of the empirical pattern

that characterizes the cross-language learning rate effect. We speculated that the three-

layer architecture of the model might be responsible for this problem, because in such a

network initial learning involves mapping a relatively complex set of letter patterns onto

the hidden layer (i.e. distribute the orthographic regularities amongst the hidden units).

Because orthographic structure per se does not differ much between German and English,

it might be the case that no differences between the two networks are seen in early learning

phases. One might argue that it is not until the hidden layer has become stable that

spelling-to-sound consistency can affect the mapping from the hidden-layer level to
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the phonological output level in a meaningful way (this is more generally known as the

“moving target” problem; see Ratcliff, 1990).

If the complex architecture of the triangle model is responsible for the failure, then a

network with a direct associative orthography–phonology mapping should be better

prepared to capture the effect. Indeed a cross-language implementation of a two-layer

associative network (Zorzi et al., 1998a,b) was able to predict an initial advantage of

German over English. However, even this network did not perfectly capture the learning

rate effect because it only predicted a constant advantage of the regular over the irregular

orthography, whereas the empirical pattern shows a big initial advantage that is decreasing

over the course of learning.

On the basis of these results, we suggest that the German–English difference is best

described as an interaction between regularity/consistency of the mapping and teaching

method. The constant advantage of the more regular orthography over the less regular

orthography is picked up by connectionist networks, because they are sensitive to

statistical regularities in the input–output mapping. However, the initially bigger

advantage of the more regular over the less regular orthography can only be picked up

when teaching method is taken into account. Indeed, when a teaching regime was applied

that specifically imitated the phonics approach typically found in regular orthographies

(e.g. Landerl, 2000), the two-layer associative network did a good job of predicting the

cross-language learning rate effect. We take this as a computational demonstration for the

claim that a plausible model of reading development has to be sensitive to both statistical

regularities in the input–output mapping as well as constraints imposed by the learning

environment.

In sum, we argue that it is probably too simplistic to assume that developmental reading

effects simply emerge when connectionist models are exposed to a large word corpus.

Instead, in accounting for developmental reading effects, there is a role for how things are

being learned. Thus, the present research shows that in understanding learning to read one

has to take into account both the statistical structure of what is being learned as well as the

particular learning environment.
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Appendix A. English and German rule sets used for pre-training in Simulation 3

Indices indicate inclusion in specific phonics teaching programs. Phonetic symbols are

taken from the CELEX database.
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English German

Grapheme Phoneme Grapheme Phoneme

Single-letter graphemes

a @a,b a &c,d,e

ä )c,d,e

b ba,b b bc,d,e

b pf

d da,b d dc,d,e

d tf

e ea,b e Ec,d,e

f fa,b f fc,d,e

g ga,b g gc,d,e

g kf

h ha,b h hc,d,e

i ia,b

j ja,b j jc,d,e

k ka,b k kc,d,e

l la,b l lc,d,e

m ma,b m mc,d,e

n na,b n nc,d,e

o aa,b o Oc,d,e

ö /c,d,e

p pa,b p pc,d,e

r ra,b r rc,d,e

s sa,b s sc,d,e

s zf

t ta,b t tc,d,e

u ^a,b u Uc,d,e

ü Yc,d,e

v va,b v fc,d,e

w wa,b w vc,d,e

y Ia,b

z za,b z %c,d,e

Two-letter graphemes

aa ae

ai Aa ai Wc

au oa au Bc,d,e

ay Aa

ch Ja,b ch xc,d,e

ck kb ck kc,e

dt t

(continued on next page)
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(continued)

English German

Grapheme Phoneme Grapheme Phoneme

ea Ea

ee Ea,b ee ee

ei A ei Wc,d,e

eu U eu Xc,d,e

ew Ua

ey A

gn n

ie Ia ie ic,e

kn n

ng Na ng N

oa Oa

oe O

oi Ya

oo oe

ou Wa

ow Wa

oy Ya

pf #c,e

ph f ph f

sh Sa,b

th Ta

ts %

tz %e

ue Ua

ui U

uy I

wh w

wr r

Multi-letter graphemes and rules

a*e Aa,b

ah ae

äh )e

auh Be

eh ee

i*e Ia,b

ih ie

ieh ie

o*e Oa

(continued on next page)
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(continued)

English German

Grapheme Phoneme Grapheme Phoneme

oh oe

öh |e

sch Sc,d,e

tch J tch J

u*e Ua

uh ue

üh ye

augh o

eigh A

tsch J tsch J

Doublets

ff f ff fe

ll l ll le

nn n nn ne

pp p pp pe

rr r rr re

ss s ss se

tt t tt te

aLloyd (1999); bAdams (1990); cEibl et al. (1996); dDummer-Smoch and Hackethal (1994); eKrenn and

Kowarik (1988); fphonotactic rules for final devoicing (German-specific phonotactic constraint).
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