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Neuroimaging studies of numerical cognition have pointed to the horizontal segment of the intraparietal
sulcus (hIPS) as the neural correlate of numerical representations in humans. However, the specificity of hIPS
for numbers remains controversial. For example, its activation during numerical comparison cannot be
distinguished from activation during ordinal judgments on non-numerical sequences such as letters (Fias
et al., 2007, J. Neuroscience). Based on the hypothesis that the fine-grained distinction between
representations of numerical vs. letter order in hIPS might simply be invisible to conventional fMRI data
analysis, we used support vector machines (SVM) to reanalyse the data of Fias et al. (2007). We show that
classifiers trained on hIPS voxels can discriminate between number comparison and letter comparison, even
though the two tasks produce the same metric of behaviour. Voxels discriminating between the two
conditions were consistent across subjects and contribution analysis revealed maps of distinct sets of voxels
implicated in the processing of numerical vs. alphabetical order in bilateral hIPS. These results reconcile the
neuroimaging data with the neuropsychological evidence suggesting dissociations between numbers and
other non-numerical ordered sequences, and demonstrate that multivariate analyses are fundamental to
address fine-grained theoretical issues with fMRI studies.

© 2010 Elsevier Inc. All rights reserved.

Introduction

The neural correlates of number representations in humans have
been extensively investigated using functional neuroimaging techni-
ques. The bilateral parietal cortex appears to be routinely involved in
numerical processing and the horizontal segment of the intraparietal
sulcus (hIPS) has been identified as core area for the representation of
numerical quantity (Dehaene et al., 2003, for review and meta-
analysis of neuroimaging data).

Ordering by magnitude (i.e., number comparison) is the most
widely used number processing task because it implies explicit access
to a representation of numerical quantity. Pinel et al. (2001) found
that the activation of hIPS during number comparison was modulated
by the numerical distance between the compared numbers, thereby
mirroring the behavioural signature of the distance effect in reaction
time (RT) data (e.g., Moyer and Landauer, 1967). The same
modulation was found by Piazza et al. (2004) using a fMRI adaptation
paradigm. A change in the quantity dimension during passive viewing
of sets of dots yielded a selective activation of hIPS. Moreover, hIPS
activation was found to be notation-independent in a subsequent
study (Piazza et al., 2007), suggesting an abstract coding of numerical

quantities. These results fit well with the properties of numerosity-
selective neurons recorded in the putative monkey homolog of hIPS
(Nieder and Miller, 2004).

Many studies have sought to demonstrate number selectivity in
IPS (e.g., Ansari et al., 2006; Cantlon et al., 2006; Chochon et al., 1999;
Cohen Kadosh et al., 2005, 2007; Dehaene et al., 1996; Eger et al.,
2003; Fias et al., 2003; Pinel et al., 1999; Naccache and Dehaene, 2001;
Pinel et al., 2001; Shuman and Kanwisher, 2004; Thioux et al., 2005).
Nonetheless, the specificity of IPS for numbers remains controversial.
A first concern is that number selectivity might be indistinguishable
from aspecific processes associated with RT changes in the IPS. For
example, Göbel et al. (2004) found that the main effect of response
times over three different tasks (number comparison, vertical line
judgment on numbers and vertical line judgment on non-numbers)
activated the same left IPS area as the main effect of number
comparison relative to either of the other two tasks. Similarly,
Cappelletti et al. (2010) reported that left parietal activation is not
number selective when response times are factored out, although
they observed number selectivity in the right parietal lobe (not
reported by Göbel et al.). Cappelletti et al. concluded that left parietal
activation during conceptual tasks reflects the extraction and
comparison of learnt information irrespective of stimulus type (e.g.,
whether numbers or object names).

A second issue that challenges the putative specificity of hIPS is
related to the fact that numbers, in addition to the cardinal meaning
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(quantity), can also express ordinal meaning (i.e., rank). The role of
hIPS in number processing might be to represent ordinality rather
than just quantity/cardinality (Nieder, 2005). Indeed, Fias et al. (2007)
showed that the hIPS is equally responsive during comparisons of
numerical magnitude and letter order. Participants in their study had
to judge which of two letters came later in the alphabet and the
resulting activations were compared with those obtained when the
task was to judge which of two numbers was larger (a more detailed
description of the experimental paradigm, including control tasks, is
provided in Materials and methods). Highly similar neural networks
were activated by number and letter comparisons. Crucially, the
conjunction between number and letter comparisons (each con-
trasted with a dimming detection task on the same stimuli) showed
selective activation of bilateral hIPS. Thus, hIPS activation was not
related to stimulus complexity or response selection but specifically to
order comparison. It is worth noting that Eger et al. (2003) found
stronger activation of hIPS for number processing than for letter
processing but their simple identification task did not involve
processing the ordinal dimension of letters. Further support to the
hypothesis that hIPS is involved in the representation and processing
of non-numerical ordered sequences (Fias et al., 2007) is provided by
the study of Ischebeck et al. (2008), who found no significant
difference in IPS between ordered generation of months and numbers,
compared to the generation of non-ordered names of animals.

Both number comparison and letter comparison tasks reveal a
graded distance effect in the RTs (Hamilton and Sanford, 1978; Moyer
and Landauer, 1967). The SNARC effect (Dehaene et al., 1993), which
indexes faster left-hand than right-hand responses to small numbers
and faster right-hand than left-hand responses for larger numbers (in
Western cultures), has been extended to non-numerical ordered
sequences (Gevers et al., 2003), suggesting that both numbers and the
alphabet are spatially coded. Left neglect patients, who are known to
misbisect numerical intervals to the right of the true midpoint (Zorzi
et al., 2002), show a spatial bias in the bisection of letter intervals,
although with subtle differences from number interval bisection
(Zorzi et al., 2006; also see Zamarian et al., 2007).

In summary, the fact that hIPS activation during number
comparison cannot be distinguished from activation during compar-
ison of non-numerical ordered sequences can be interpreted in two
ways: either hIPS is coding abstract order information, common to all
ordered sequences (Fias et al., 2007; Ischebeck et al., 2008), or hIPS
activation reflects a shared comparison mechanism that operates on
any type of conceptual information (Cappelletti et al., 2010).
However, there is a third possible interpretation. The results of Fias
et al. (2007) and Ischebeck et al. (2008), though suggestive, do not
necessarily imply that the same neuronal populations within hIPS are
involved in processing both numerical and non-numerical ordered
sequences (see Jacob and Nieder, 2008, for a similar argument). The
results might be an artefact due to the limited spatial resolution of
fMRI and/or the limitations imposed by the conventional univariate
fMRI data analysis (general linear model). For example, single-cell
recording studies in monkeys have shown that the representation of
discrete and continuous quantities (numerosity vs. line length) is
supported by largely distinct subpopulations of IPS neurons (Tudus-
usciuc and Nieder, 2007). Moreover, neuropsychological evidence
suggests that, even within the number domain, ordinal meaning of
numbers can dissociate from cardinal meaning in single case studies
(Delazer and Butterworth, 1997; Turconi and Seron, 2002).

Multivariate pattern recognition techniques provide a powerful tool
for investigating fine-grained theoretical issues with fMRI. For example,
multivariate analysis of fMRI data has revealed spatially distinct object
categories in ventrotemporal cortex (e.g., Haxby et al., 2001; O'Toole
et al., 2005) and it has been used for decoding line orientation from
primary visual cortex (Haynes and Rees, 2005; Kamitani and Tong,
2005). In thenumber domain,multivariate pattern recognition has been
used to test the hypothesis that cortical circuits for spatial attention

contribute to mental arithmetic (Knops et al., 2009) and to investigate
number coding in the parietal cortex (Eger et al., 2009).

The question of whether the cardinal and ordinal dimensions can
be dissociated at the level of hIPS seems an excellent test case for
multivariate analysis. In the present study we reanalysed the fMRI
data of Fias et al. (2007) using support vector machines (SVM) as
multivariate classifiers. Our aim was to i) establish whether the
parietal activation induced by number comparison and letter
comparison, indistinguishable in conventional univariate analyses,
would contain sufficient information to allow reliable classification in
a multivariate approach; ii) compare linear and nonlinear classifiers;
iii) obtain maps of the discriminating voxels to establish whether
activation related to number and letter comparison can be spatially
resolved within hIPS and, if so, whether the locations are consistent
across subjects.

Materials and methods

In this sectionwebriefly describe the fMRIdata acquired by Fias et al.
(2007). We then provide a detailed description of our multivariate
analysis of the fMRI data. In particular, we illustrate themethodological
aspects related to two pattern recognition techniques employed here
(linear SVM vs. nonlinear SVM), the statistical analyses applied to the
classifier results, and the activation maps obtained from the classifiers.

Experimental setting

Fias et al. (2007) investigatedwhether hIPS is selectively involved in
processing numerical information in its cardinal dimension (i.e.,
numerical quantity) or it is also recruited in processing the ordinal
dimension, which is typical of other non-numerical sequences like the
alphabet. In the following sectionwe summarise stimuli, procedure, and
fMRI data acquisition. Full details can be found in Fias et al. (2007).

Participants
Seventeen volunteers (9 female, 13 right-handed; age, 20–37 years)

participated in the study. All gavewritten informed consent as approved
by the ethics committee of theMedical Department of GhentUniversity.
None of the subjects had a history of neurological or psychiatric illness.

Stimuli
There were three types of stimuli: numbers and letters presented

in white, and coloured squares. In each trial, two stimuli of the same
type were presented on both sides of a central fixation cross.
Participants had to perform two different tasks: a comparison task
and a dimming detection task. Thus, the resulting experimental
conditions were: number comparison, letter comparison, or satura-
tion comparison, and dimming detection on numbers, letters, or
squares. For both tasks, the first item of the presented pair was
randomly chosen from a set of 24 letters (B–Y), or 89 numbers (10–
98), or any combination of hue and saturation values in the hue–
saturation–brightness (HSB) colour space. The second item of the pair
was chosen in a way that it differed by a certain distance from the first
one. This distance was determined, for each subject, examining the
accuracy performance of each subject during a training session
executed before the scanning sessions. In both tasks, the brightness
of one randomly selected item of the pair was reduced for a period of
75 ms. Fias et al. determined the magnitude of the luminance
reduction in the initial practice session, on the basis of the accuracy
reached by each participant in the dimming detection task.

Procedure
The experiment was structured into five sessions (runs). All the

runs were composed of 12 blocks (2 blocks per condition) of 16 trials.
In each block, before the presentation of the trials, there was a period
of fixation (5.6 s), followed by a period of 2.8 s during which the
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instructions of that block were visualised. In the number comparison
task, participants were asked to select which one of the presented
numbers was the larger. In the same task with letters, participants had
to select which letter came later in the alphabet, whereas when
stimuli were coloured squares they had to select the most saturated
one. In the dimming detection task, participants had to select the
dimmed stimulus. In all the tasks the response was performed by
pressing a key on the same side of the chosen stimulus.

fMRI data acquisition

For each participant, a T1 anatomical image (176 slices; slice
thickness, 0.90 mm; in-plane resolution, 0.9 x 0.9 mm; repetition time
(TR), 1550 ms; echo time (TE), 2.89 ms)was acquired for co-registration
with the functional images using a Siemens 3 T Trio scanner. Functional
volumes were acquired using a multiple slice T2⁎-weighted echo planar
imaging (EPI),with TR=2800ms, TE=33 ms,flip angle=90°; in-plane
resolution=3×3 mm; matrix dimension =64×64, field of
view=192×192 mm; slice thickness=2mm. For each run, 40 slices
per volume and a total of 132 volumes were acquired, resulting in 660
functional volumes.

Multivariate analysis

A number of important technical issues must be considered before
running multivariate analyses of fMRI data. First, pre-processing steps
(i.e., realignment, co-registration, normalization, spatial and temporal
smoothing) can have a considerable impact on the final results. Spatial
smoothing is themost critical step, because it introduces a certain degree
of intervoxel correlation and it also increases the normality of data,
which is a pre-requisite formany statistical tests. However, spatialfilters
can also reduce the signal to noise ratio (SNR) andmay cause the loss of
information useful for separating adjacent but functionally different
brain areas. Thus, even if it produces some advantages for voxelwise
analysis, it has little effect or is even dangerous in multivariate brain
analysis. We therefore applied our analyses on the functional images
without spatial smoothing. Second, fMRI data are affected by a problem
known as the curse of dimensionality, which refers to the fact that the
higher the dimensionality of the input space, the more data may be
needed tofindoutwhat is important andwhat is not in the classification.
Therefore, the number of samples (i.e., volumes) has to increase
exponentially with the number of variables (i.e., voxels) in order to
maintain a given level of accuracy. This problem is generally faced by
using different approaches (e.g., univariate, wrapper or embedded
methods) for feature (i.e., voxel) selection, or by performinghypothesis-
guided analyses that permit to restrict the investigation to one or more
specific regions of interest (ROIs) of the brain. On the basis of the results
obtained by Fias et al. (2007),we chose to focus our analysis on the voxel
time serieswithinbilateral hIPS and supplementarymotor area (SMA)as
regions of interest (see below). Third, the choice of classifier might be
important and the use of both linear and nonlinear classifiers must be
considered because linear ones can fail to produce satisfactory results, at
least for some participants (O'Toole et al., 2007).

In this study we used support vector machines (SVM), by using
linear and nonlinear kernels, as pattern recognition techniques for
discriminating between the experimental conditions (i.e., number vs.
letter comparison) from the fMRI data of Fias et al. (2007). The
following sections describe extraction of the ROIs from the functional
images, basic pre-processing, classifier training, analysis of classifier
performance, and analysis of classification activation maps.

ROI selection
The functional images used for ROI extraction were those pre-

processed by Fias et al. (2007) up to but excluding spatial smoothing.
We considered three ROIs (see Fig. 1):

i) Functionally defined hIPS (ROI-1). We used local maxima of
activations obtained by Fias et al. (2007) in the conjunction
analysis of number comparison and letter comparison to define
the centres of two spheres with radius r=8mm. The Talairach
coordinates of the centres were [−39, −39, 36] and [45, −36,
48] for left and right hIPS, respectively. This yielded a set of 164
voxel time series of 660 volumes each. The selection of ROI-1
on the basis of a previous analysis of the same dataset raises the
issue of non-independence (see Kriegeskorte et al., 2009, for a
thorough discussion). In the present case, three factors
moderate the (partial) non-independence. First, we did not
select active voxels and we did not use any information at the
level of individual participants (note that only the latter is
relevant for multivariate classifiers). Second, we used spatially
unsmoothed data, whereas Fias et al. employed a 6 mm (full-
width at half-maximum) Gaussian kernel for smoothing. Third,
the selected ROIs are very close to the coordinates of hIPS
reported by Dehaene et al. (2003) in their meta-analysis of
fMRI studies of numerical cognition. Nonetheless, to exclude
any bias in the classifier results, we also considered an
anatomically defined ROI, where we expected similar classifi-
cation rates, and a functionally defined control region, where
we expected chance performance.

ii) Anatomically defined IPS (ROI-2). The activations found by Fias
et al. (2007) overlap with the location of the putative homolog
of the anterior intraparietal area (Grefkes et al., 2002).
Therefore, we defined this ROI according to the anatomical
study of Choi et al. (2006) on the human IPS. We used two
different subregions of the anterior IPS to create the anatomical
ROI mask using SPM Anatomy toolbox (areas hIP1 and hIP2;
http://www.fil.ion.ucl.ac.uk/spm/ext/#Anatomy). ROI extrac-
tion yielded a set of 327 voxel time series

iii) Supplementary motor area (ROI-3). This functionally defined
ROI was used as a control region and it was selected according
to the local maxima of activations obtained by Fias et al. (2007)
in the conjunction analysis of number comparison and letter
comparison. Two spheres with radius r=8mm and centres at
[−6, 3, 53] and [12, 3, 45] were extracted for left and right SMA,
respectively, yielding a set of 161 voxel time series. Since SMA

Fig. 1. Regions of interest (ROIs) used in themultivariate classifier analyses, transparently
superimposed on top view of a standard template using MRICron software. ROI-1 (i.e.,
bilateral hIPS, in violet) and ROI-3 (i.e., bilateral SMA, in cyan) were spheres with 8 mm
radius centered on the activation foci in Fias et al.'s (2007) conjunction analysis of number
and letter comparison (Talairach coordinates: [−39, −39, 36] for left hIPS and [45,−36,
48] for right hIPS; [−6, 3, 53] for left SMA and [12, 3, 45] for right SMA). ROI-2 (in yellow)
includes two subregions in the anterior part of IPS (Choi et al., 2006).
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is typically involved in response preparation, we did not expect
it to reliably discriminate between number comparison and
letter comparison tasks.

Basic pre-processing
After ROI extraction, the voxel time series were pre-processed

through a series of commonly used steps: standardization, detrending
and temporal filtering. In particular, each of the five runs was
processed separately. The time series were first standardised to have
zero mean and standard deviation one. Then, linear trends in each
time series were removed. Finally, a temporal filter (moving average
filter, window size of 5 volumes) was applied to remove the high
frequency components in the signal. Moving average filters are
normally used as low pass filters. The resulting time series were finally
ready for the classification phase.

Classification phase
We performed two main analyses. The aim of the first one was to

investigate the involvement of the hIPS regions in number and letter
processing during the comparison tasks.We therefore trainedboth linear
and nonlinear classifiers on the voxels within bilateral hIPS regions. In a
second analysis we addressed the question of possible hemispheric
asymmetries for number vs. letter comparison tasks. We therefore
trained the SVM classifier to estimate the experimental conditions using
only the voxel time series extracted from the left or the right hIPS.

When using linear SVM for classification, the critical parameter to
tune is the regularization constant C that governs the error penalty
term in the soft margin formulation of SVM by Vapnik (1999).
Another crucial issue is the evaluation of the consistency of the
generalization ability of the classifier, oftenmeasured through a cross-
validation technique. In the nonlinear case, the only difference is that
it is necessary to choose among different kernel functions (e.g.,
polynomial, radial basis function (RBF)) and their corresponding
parameters (i.e., the polynomial degree or the width of the RBF).

We now describe the procedure we used for preparing data for
training, for assessing the impact of different learningparameters on the
generalization ability of the classifier, and for measuring the robustness
of the results. All analyses were performed for each subject separately.

The fMRI dataset for the classification was created taking into
account only the fMRI blocks referring to the two contrasted
experimental conditions (i.e., number vs. letter comparison) and
data were sampled in such a way to be considered independent for
SVM training and testing. In particular, for each block, we discarded
the first five volumes (relative to fixation, instructions and the first
four trials) to capture a more stable fMRI signal and then created one
sample averaging the remaining volume images (e.g., Pereira et al.,
2009). Consequently, the target condition (i.e., number vs. letter
comparison task) was coded in such a way as to have a vector Ti ∈
{+1, −1}N, where i refers to the block and N is the number of blocks
relative to both conditions in contrast (e.g., in this case N=20, one
block per condition for each run), in which all the blocks
corresponding to one target condition were labelled with +1,
whereas all the other blocks with −1.

A cross-validation loop was used to find the classifier parameters
yielding the best classification rate and to test generalization
performance. We defined a grid of parameter combinations that
included the value of the regularization constant C [range 1–10, with
steps of 1] and the kernel function in the set [linear, polynomial, RBF].
The parameter of the nonlinear kernel functions (i.e., the polynomial
degree and the RBF width) was fixed to 1. For each parameter
combination, the SVM classifier was trained on the dataset using a
modified version of leave-one-out cross-validation. At each step of the
cross-validation loop, four samples were excluded from the training
set. Two samples (one for each condition) served as validation set to
optimize the learning parameters, whereas the other two (again, one
per condition) were used to test generalization performance. Two

classic performance indices were used as statistical measures of
binary classification: accuracy and d′ sensitivity (both computed
across the entire cross-validation loop). The best classifier was
selected in terms of the maximum accuracy on the validation set.
All results reported below refer to the generalization performance of
the chosen classifier on the test set. We conducted a t-test on both
generalization performance indices to obtain group statistics regard-
ing the discriminability between number comparison and letter
comparison.

In the case of linear SVM, analysis of the weight vector associated
by the classifier to the training data can provide a map of the
discriminating voxels (in nonlinear SVM, however, there is no direct
way to characterise the most discriminating voxels). The discrimi-
nating maps were computed including those voxels that, during the
cross-validation loop, had a positive weight value (number compar-
ison) or a negative weight value (letter comparison) with a frequency
greater than the mean frequency+1 SD. We then averaged the
selected voxel weights across the cross-validation runs. The discrim-
inating maps were computed using the weight values of the selective
voxels to index their relative contribution towards classification into a
given condition (number vs. letter comparison).

Results

In this section we report the results obtained by training SVMs on
the selected regions of interest. For each ROI, we illustrate these
results in terms of classification performance on the test set.

ROI-1: Bilateral hIPS (Fias et al., 2007)

We trained SVMs on the voxel time series extracted from the
bilateral hIPS for discriminating between letter comparison and
number comparison tasks. The mean accuracy across all participants
was 0.59±0.03 (1 SE), which is significantly above the chance level of
0.5 (t(16)=3.13, pb0.01). Averaged across participants d′ sensitivity
was 0.52±0.18 (1 SE) which is significantly above the chance level of
0 (t(16)=2.87, p=0.01). For each participant, Table 1 reports the
selected learning parameters (i.e., regularization constant C and
kernel function) and the classifier performance expressed in terms of
accuracy. The choice of the regularization constant C did not have a
great impact on the final generalization performance. Indeed, for only
2 out of 17 participants the validation procedure selected C=2. The
selected kernel function was linear for eight of the participants. The
RBF kernel was selected for six participants and the polynomial kernel
for three participants. Fig. 2 shows the classification performance (d′)
per participant.

To investigate possible hemispheric asymmetries in the discrim-
ination between number and letter comparison tasks, we separately
trained a set of SVM classifiers on the left and the right hIPS. Themean
accuracy across all participants in left hIPS was 0.57±0.02 (1 SE),
which is significantly above the chance level of 0.5 (t(16)=2.86,
pb0.05). Averaged across participants d′ sensitivity was 0.36±0.13
(1 SE) which is significantly above the chance level of 0 (t(16)=2.7,
pb0.05). For the right hIPS, mean accuracy across all participants was
0.58±0.04 (1 SE), which is significantly above the chance level of 0.5
(t(16)=2.16, pb0.05). Averaged across participants, d′ sensitivity
was 0.45±0.22 (1 SE) which is marginally above the chance level of 0
(t(16)=2.04, p=0.058). Classifier performance was not statistically
different for left vs. right hIPS (paired t-tests: pN0.7 for both indices).

ROI-2: Bilateral anterior IPS (Choi et al., 2006)

We trained SVMs on the voxel time series extracted from the
bilateral anterior IPS for discriminating between number and letter
comparison tasks. Themean accuracy across all participants was 0.6±
0.04 (1 SE), which is significantly above the chance level of 0.5 (t
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(16)=2.69, pb0.05). Averaged across participants d′ sensitivity was
0.53±0.2 (1 SE) which is significantly above the chance level of 0 (t
(16)=2.51, pb0.05). For each participant, Table 1 reports the selected
learning parameters (i.e., regularization constant C and the kernel
function) and the classifier performance expressed in terms of
accuracy. The choice of the regularization constant C was not
influential on the classifier performance (for all participants the
selected value was C=1, which is the default value). The RBF kernel
was selected for four participants and the polynomial kernel for three
participants. Fig. 2 shows the classification performance (d′) per
participant.

Our findings on the anatomically defined ROI show that the results
obtained on the functionally defined hIPS cannot be attributed to a
bias due to (partial) non-independence in ROI selection (Kriegeskorte
et al., 2009).

ROI-3: Bilateral SMA (Fias et al., 2007)

We trained SVMs on the voxel time series extracted from the
bilateral SMA for discriminatingbetweennumber and letter comparison
tasks. Themean accuracy across all participantswas 0.55±0.009 (1 SE),
and themeand′ sensitivitywas0.27±0.05 (1SE). Both indiceswerenot

significantly different from chance level performance (t(16)=1.32,
pN0.2 for accuracyand t(16)=1.28,pN0.2 for d′ sensitivity). The results
obtained in this control ROI show that discrimination between number
and letter comparison tasks is not possible in bilateral SMA, although
these activation foci were obtained by Fias et al. (2007) in the same
conjunction analysis that yielded bilateral hIPS activation.

Discriminating maps

Fig. 3 shows the discriminating maps (i.e., number vs. letter
comparison) obtained for the two participants (participants 4 and 16)
for whom we obtained the best linear SVM classification accuracy on
bilateral hIPS. Analyses of individual discriminating maps were not
pursued because the classifier was nonlinear for more than half of the
participants. Nonetheless, to investigate whether voxels discriminat-
ing between number and letter comparison can be consistently found
across individual subjects, we trained a linear classifier on a new
dataset that was the union of the individual datasets for all
participants. Thus, the classifier was blind to individual differences
because it had to discriminate the two conditions across examples
that came from different participants. For each value of the C
parameter (varying in the range [1–10]), the SVM classifier was
trained on the dataset using a leave-one-subject-out cross-validation.
At each step of the cross-validation loop, the data of two subjects were
excluded from the training set (i.e., training was performed on the
data from 15 subjects). The data of one subject held out from training
served as validation set to optimize the C parameter, whereas the data
of the other subject was used to test generalization performance. The
generalization accuracy of the selected classifier (with C=5) was
0.58, which is significantly above the chance level (pb0.001, binomial
test). This shows that the discrimination between number compar-
ison and letter comparison is possible across a set of voxels that is
shared across participants. The discriminating maps obtained from
the classifier are shown in Fig. 4. The number of selected voxels was
similar across hemispheres (left hIPS: 22 for numbers, 19 for letters;
right hIPS: 18 for numbers, 26 for letters).

Discussion

We demonstrated that hIPS activations for number comparison
and letter comparison, which were found to be indistinguishable in
conventional univariate analyses (Fias et al., 2007), can be reliably
separated by multivariate classifiers. This clearly shows that the
complete overlap between number and letter processing in hIPS was
an artefact due to the limitations imposed by the conventional fMRI
data analysis (i.e., spatial smoothing and univariate statistics).

From a theoretical perspective, our results rule out the hypothesis
that IPS activation during number processing is associated with RT
changes or with the comparison process per se (Cappelletti et al.,
2010; Göbel et al., 2004), because number and letter comparison
where indistinguishable in terms of RT and error rate (Fias et al.,
2007). Moreover, classifiers trained on bilateral SMA did not reliably
distinguish number comparison from letter comparison, even though
this region was found to be jointly activated by the two tasks in the
conjunction analysis performed by Fias et al. (2007).

In termsof the issueofpossiblehemisphericdifferences, the separate
analyses performed on left and right hIPS ruled out any hemispheric
asymmetry in terms of number vs. letter processing, which counters the
claim that left parietal activation is not number selective (Cappelletti
et al., 2010).Asnoted in the Introduction, number comparison and letter
comparison produce very similar patterns of RTs, with the distance
effect as main determinant of response latencies. This implies that the
separability between number-selective and letter-selective neural
patterns must be related to a more fundamental distinction between
number comparison and letter comparison. Indeed, our results can be
interpreted in terms of a dissociation between cardinal and ordinal

Table 1
Accuracy and learning parameters selected for each participant in the SVM
discrimination between letter and number comparison tasks in bilateral IPS (functional
hIPS from Fias et al., 2007; anatomical IPS from Choi et al., 2006). Note: Rbf = radial
basis function; Poly = polynomial.

SVM classifier trained on bilateral hIPS regions

Participant Functional hIPS Anatomical IPS

Accuracy C Kernel Accuracy C Kernel

1 0.7 2 Rbf 0.7 1 Linear
2 0.5 1 Rbf 0.6 1 Linear
3 0.7 1 Poly 0.55 1 Poly
4 0.8 1 Linear 0.85 1 Linear
5 0.5 1 Linear 0.4 1 Rbf
6 0.65 1 Linear 0.55 1 Linear
7 0.4 1 Linear 0.25 1 Linear
8 0.55 1 Poly 0.55 1 Linear
9 0.45 1 Rbf 0.6 1 Linear
10 0.65 1 Linear 0.75 1 Poly
11 0.45 1 Rbf 0.5 1 Rbf
12 0.55 1 Linear 0.55 1 Poly
13 0.5 1 Linear 0.5 1 Linear
14 0.6 1 Rbf 0.6 1 Rbf
15 0.75 1 Poly 0.75 1 Linear
16 0.75 2 Linear 0.85 1 Linear
17 0.55 1 Rbf 0.65 1 Rbf

Fig. 2. SVM classification performance for each participant on functional (blue) and
anatomical (red) hIPS. The classifier performance is expressed in terms of d′ sensitivity.
Participants are sorted according to the d‘ obtained for the discrimination between
number and letter comparison tasks.
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meanings. Such a dissociation has been reported in neuropsychological
single case studies (Delazer and Butterworth, 1997; Turconi and Seron,
2002). Numbers and letters share the ordinal dimensions, but for
numbers the cardinal dimension (i.e., numerical magnitude) is most
prominent in awide range of numerical tasks (and especially in number
comparison). The results of our analyses show that distinct sets of voxels
and/or distinct patterns of activity across voxels are involved in number

and letter processing. The discriminatingmaps displayed in Figs. 3 and 4
indeed suggest that different voxels are involved. This wouldmean that
ordinal judgments on non-numerical sequences and ordering numbers
by magnitude are supported by different neuron populations within
hIPS, as it is the case for discrete vs. continuous quantities (Tudusciuc
and Nieder, 2007). One outstanding question is whether there is any
systematicity in the topography of number and letter sequences in the
IPS. Event-related designs would be better suited for this goal (see, e.g.,
Eger et al., 2009). A second question is whether processing of order
information in hIPS is common to all non-numerical ordered sequences
(e.g., letters vs. months), which would imply abstract coding of order
irrespective of stimulus type. However, we predict that multivariate
classifiers would separate ordered generation of months and numbers,
which were found to elicit identical IPS activations using conventional
analyses (Ischebeck et al., 2008).

In conclusion, the present study illustrates the value of multivar-
iate pattern recognition techniques for investigating fine-grained
theoretical issues with fMRI. Moreover, our results show that
multivariate analyses are mandatory to tackle subtle but important
distinctions (for cognitive theory) such as cardinal vs. ordinal
information or numerical vs. non-numerical ordered sequences.
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