{frontiers in
PSYCHOLOGY

METHODS ARTICLE
published: 06 May 2013
doi: 10.3389/fpsyg.2013.00251

=

Deep unsupervised learning on a desktop PC: a primer for
cognitive scientists

Alberto Testolin™*, lvilin Stoianov’, Michele De Filippo De Grazia’ and Marco Zorzi'?*

" Computational Cognitive Neuroscience Lab, Department of General Psychology, University of Padova, Padova, Italy
2 IRCCS San Camillo Neurorehabilitation Hospital, Venice Lido, Italy

Edited by:
Christoph T. Weidemann, Swansea
University, UK

Reviewed by:

Bradley Love, University College
London, UK

Simon Farrell, University of Bristol, UK

*Correspondence:

Alberto Testolin and Marco Zorzi,
Department of General Psychology,
University of Padova, Via Venezia 12,
Padova 35131, Italy.

e-mail: alberto.testolin@gmail.com,
marco.zorzi@unipd.it

Deep belief networks hold great promise for the simulation of human cognition because
they show how structured and abstract representations may emerge from probabilistic
unsupervised learning. These networks build a hierarchy of progressively more complex
distributed representations of the sensory data by fitting a hierarchical generative model.
However, learning in deep networks typically requires big datasets and it can involve mil-
lions of connection weights, which implies that simulations on standard computers are
unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would
therefore seem to require expertise in programing parallel-computing hardware, and this
might explain why the use of this promising approach is still largely confined to the machine
learning community. Here we show how simulations of deep unsupervised learning can
be easily performed on a desktop PC by exploiting the processors of low cost graphic
cards (graphic processor units) without any specific programing effort, thanks to the use of
high-level programming routines (available in MATLAB or Python). We also show that even
an entry-level graphic card can outperform a small high-performance computing cluster in
terms of learning time and with no loss of learning quality. We therefore conclude that
graphic card implementations pave the way for a widespread use of deep learning among
cognitive scientists for modeling cognition and behavior.

Keywords: deep neural networks, unsupervised learning, hierarchical generative models, cognitive modeling,

parallel-computing architectures, GPUs, MPI, computer cluster

INTRODUCTION
Unsupervised learning in neural network models has provided
important insights into how sensory information can be efficiently
encoded in neural systems in a way that strikingly mirrors single-
cell recoding data (Olshausen and Field, 1996; Rao and Ballard,
1999). Much recent work has tackled the issue of how sensitivity
to increasingly complex features might emerge from unsupervised
learning in a hierarchical architecture, under the assumption that
hierarchical processing is a fundamental characteristic of cortical
computation (Hinton, 2007; Clark, 2012). This approach, known
as “deep learning” (Bengio, 2009), is based on multilayer neural
networks that learn a generative model of the sensory data with-
out supervision and it is attractive both from a machine learning
(Hinton and Salakhutdinov, 2006; Bengio and Lamblin, 2007;
Larochelle et al., 2009; Lee et al., 2009; Mohamed et al., 2012;
Yu et al., 2012) and from a cognitive (neuro)science perspective
(Hinton, 2007; Honglak et al., 2008; Stoianov and Zorzi, 2012).
Probabilistic generative networks learn an internal model of the
world from sensory signals and actively use this knowledge to infer
causes and make predictions about relevant events (Hinton and
Ghahramani, 1997; Hinton, 2010b; Huang and Rao, 2011; Clark,
2012). Within this framework, perception is formulated as prob-
abilistic inference on the input data, given a set of hidden causes
learned from statistical regularities inherent in the observed world.
Deep unsupervised learning has several advantages over tra-
ditional neural network learning schemes. Hierarchical, deep

networks consist of a composition of non-linear processing stages
that transforms the incoming information into higher-level rep-
resentations at each step and allows the system to capture higher-
order structure that might be invisible at the lower levels (Hinton
and Ghahramani, 1997). Learning in a deep belief network can be
seen as fitting a hierarchical generative model to the sensory data,
where learning aims at reconstructing the input data from the
internal representations and can be performed locally at each level
in an unsupervised fashion. This represents a novelty in training
multilayer neural networks, because it demonstrates how prob-
abilistic learning can be performed using a mechanism that is
both efficient (Hinton and Osindero, 2006) and neurally plausible
(O’Reilly, 1998). Deep unsupervised learning can capture most
of the statistical structure in the input data and it represents an
efficient coding strategy. For these reasons, it holds the promise of
improving our understanding of the complexity of information
representation in neural systems as well as of capturing key aspects
of human behavior within an emergentist framework (Stoianov
and Zorzi, 2012). Moreover, deep unsupervised learning can prop-
erly exploit the huge set of unlabeled information that is available
to the learner in the environment, thereby dispensing with the psy-
chologically implausible assumption that learning must be driven
by an external teacher [note that this assumption is ill-founded
even for complex learning tasks such as reading aloud; for dis-
cussion see (Share, 1995; Zorzi, 2010)]. Importantly, building
higher-level abstractions can reveal causal features that are only

www.frontiersin.org

May 2013 | Volume 4 | Article 251 | 1

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2013.00251/abstract
http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2013.00251/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AlbertoTestolin&UID=75580
http://www.frontiersin.org/people/Ivilin_Stoianov/63509
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MicheleDe_Filippo_De_Grazia&UID=82432
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MarcoZorzi&UID=9606
mailto:alberto.testolin@gmail.com
mailto:marco.zorzi@unipd.it
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Testolin et al.

Deep unsupervised learning on a desktop PC

implicit in the sensory data [for example, the numerosity of visual
sets in the model of Stoianov and Zorzi (2012)] and which may
allow subsequent task learning (e.g., identification, categorization,
or other types of judgments) through simple linear mappings.
Finally, unsupervised pre-training of deep belief networks is also a
promising strategy to improve supervised (Hinton and Salakhut-
dinov, 2006) and transfer learning (Pan and Yang, 2010; Bengio,
2011).

Training large deep networks is computationally intensive,
because it requires huge datasets and the optimization of millions
of model parameters (i.e., synaptic weights) (Hinton and Salakhut-
dinov, 2006). Moreover, though very simple (“toy”) models can
provide important insights into the neural bases of cognition,
large-scale simulations allow researchers to investigate the emer-
gence of more complex phenomena (Le et al., 2012; Stoianov and
Zorzi, 2012). Modern computer architectures provide the compu-
tational resources required for scaling up the neural network mod-
eling of perception and cognition. For example, high-performance
parallel computing (HPC) in combination with efficient learn-
ing algorithms has been recently exploited for object classification
using a multilayer neural network with a billion connections using
a dataset of 10 million images (Le et al., 2012). Even at a somewhat
smaller scale, the use of HPC may be necessary for developing
large-scale simulations in cognitive psychology and cognitive neu-
roscience. Indeed, one approach to efficiently simulate neural
network models includes the use of multi-core clusters (Plesser
et al., 2007), usually exploiting Message Passing Interface (MPI)
communication (Margaris et al., 2007; De Filippo De Grazia et al.,
2012b). Support for HPC is also available in some neural network
simulators (e.g., Aisa et al., 2008; Mutch et al., 2010).

Since the introduction of CUDA, which is a massive parallel-
computing framework for common graphic processor units
(GPUs) presented by NVIDIA, many computational tasks can
be efficiently carried out on graphic cards (Nickolls et al., 2008).
Deep learning algorithms largely involve simple matrix manipula-
tions and are therefore well suited to be implemented on graphic
processors. Machine learning researchers are already adopting this
emerging technology for training deep networks because it yields
an impressive speed-up of training time, thereby allowing scal-
ing up the size of both network and training database (e.g., Raina
et al., 2009; Ciresan et al., 2010). In particular, GPU computing
has been recently used to train very large feed-forward neural
networks for image processing using the classic backpropagation
algorithm (Ciresan et al., 2010), also with convolutional layers
(Krizhevsky et al., 2012). Deep unsupervised learning was instead
implemented by Raina et al. (2009) on GPUs using fine-grained
CUDA programming to train one of the largest deep belief net-
works to date. Nevertheless, the fact that the use of deep neural
networks and deep unsupervised learning is still largely confined
to the machine learning community suggests that cognitive scien-
tists might have been discouraged by the lack of a user-friendly
implementation as well as the high computational demands of the
simulations.

In the present work, we present a straightforward GPU imple-
mentation of deep belief networks trained with contrastive diver-
gence learning (Hinton and Salakhutdinov, 2006) that is based
on high-level programming routines and can run on a common

desktop computer, provided that it has a recent NVIDIA graphic
card. We also performed an empirical comparison between our
GPU implementations and a multi-core CPU implementation (De
Filippo De Grazia et al., 2012b) running on a small HPC cluster
with up to 60 cores. Our open-source codes for all parallel imple-
mentations (based on MATLAB/Octave or Python) are publicly
available for download (see Appendix for details). We found that
even an entry-level GPU significantly outperforms the cluster with
respect to the computational time required for deep unsupervised
learning, with no cost on the quality of learning. We believe that
this ease of use, combined with the low cost of powerful graphic
cards, will allow non-expert users to explore deep generative net-
works and boost research on this promising approach to modeling
cognition and behavior.

UNSUPERVISED LEARNING WITH DEEP BELIEF NETWORKS
In this work we considered the same network architecture used by
Hinton and Salakhutdinov (2006), depicted in Figure 1A. The
model is composed by a stack of three Restricted Boltzmann
Machines (RBMs) (Smolensky, 1986; Hinton, 2002), which are
stochastic neural networks that consist of one layer of visible units
(input data) and one layer of hidden units (latent causes of the
data) connected by symmetric links. Boltzmann Machines are
associative neural networks in which an “energy” function defines
the probability of all configurations of visible and hidden units
(Ackley et al., 1985). RBMs can be trained to learn a genera-
tive model of the sensory data: learning is unsupervised because
the objective function is to accurately reconstruct the input pat-
terns. One efficient learning algorithm for RBMs is contrastive
divergence (Hinton, 2002), which is a form of contrastive opti-
mization that approximates the gradient of the log-likelihood of
the learning data. Essentially, it works by clamping the visible units
on a given training instance to compute hidden units activation
(positive phase) and then running a Markov Chain Monte Carlo
algorithm in order to obtain the model’s reconstruction of that
instance (negative phase). Because RBMs have no intra-layer con-
nections (unlike full Boltzmann Machines), the sampling process
can be speeded-up by performing block Gibbs sampling over vis-
ible and hidden units (i.e., all units in a layer can be sampled in a
single step). However, running a Markov chain until convergence
may still require an exponential time, hence contrastive divergence
learning approximates the gradient by performing only a fixed
number k of iterations. After computing the model’s reconstruc-
tion, weights are updated by contrasting input-output correla-
tions computed on the data vector with input-output correlations
computed on the model’s reconstruction,

AW =n(vTht —vTh7)

where 1 is the learning rate, v indicates visible activations
clamped on a training instance, h* are hidden activations com-
puted from v, while 5~ and v~ are visible and hidden activations
sampled from the model’s distribution.

A crucial feature of this learning algorithm is that it only
requires very simple matrix operations, as outlined in the
pseudocode reported in Figure 1B, where Hp and Vp represent,
respectively, hidden and visible units when the network is clamped

Frontiers in Psychology | Cognitive Science

May 2013 | Volume 4 | Article 251 | 2

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Testolin et al.

Deep unsupervised learning on a desktop PC

Higher-level
—> (abstract)

data

FIGURE 1 | Deep network used as a test bed problem for comparison of
parallel implementations. (A) Structure of the deep network composed of a
stack of three Restricted Boltzmann Machines (RBM), whereby input consists

representation

A
! Increasingly complex Hy = stochiiy)
VY Y, 1 ’ for i = 1 to k:
}\\Q‘:{i‘:{/ | hon-linear distributed V. = sigm(H, * WT)
AN | representations M g M
500 1 VM = StOCh(VM>
AT 1 Hy = sigm(Vy * W)
Za AT Hy = stoch (Hy)
| t
nput (sensory) AW = 1 (HDVDT HMVMT)

O/ 2A34S6F385

positive phase
Hp = sigm(V, * W)

negative phase

of vectorized images and is provided to the lowest layer. (B) Pseudocode of
the learning algorithm of one RBM layer, which computes contrastive
divergence with k iterations. (C) Sample digit-image reconstructions.

on input data, Hys and V' represent the model’s reconstructions
and W is the matrix of connection’s weights. The stoch operator
performs a stochastic binarization of a vector, while sigm indicates
the logistic function,

stgm(z) = m

The pseudocode in Figure 1B highlights that contrastive diver-
gence learning requires a heavy, iterative use (depending on the
parameter k) of basic mathematical operators that can be applied
in an element-wise fashion. This is exactly what is needed in order
to obtain maximum performances on graphic processors.

The recommended way to train RBMs using the contrastive
divergence algorithm is to split the entire dataset into smaller, non-
overlapping subsets, called mini-batches (Hinton, 2010a). Instead
of iteratively updating the network weights with the gradient com-
puted on each training pattern (“on-line learning”) or rather
updating with the average gradient computed across the entire
dataset (“off-line learning”), the gradient in mini-batch learning
is averaged over the patterns of the mini-batch. This improves
convergence and learning speed by both varying and smoothing
the learning gradient (Wilson and Martinez, 2003).

The Appendix provides download links and instructions for
using our open-source codes implementing unsupervised training
of deep belief networks on different parallel-computing architec-
tures. We offer a MATLAB and a Python solution for GPUs, as
well as an Octave/MPI cluster solution. The codes are fairly gen-
eral and can be easily used on any learning problem. We also
provide instructions for testing the algorithm on two different
problems: handwritten digit recognition [MNIST dataset; (LeCun
and Bottou, 1998)], a classic benchmark used in machine learning,

and visual numerosity perception (Stoianov and Zorzi, 2012) as a
sample cognitive modeling problem.

SIMULATIONS

As a benchmark for our parallel implementations of deep belief
networks we used a classic vision problem, handwritten digit
recognition. The hierarchical processing in biological vision sys-
tems suggests that successful solutions would greatly benefit from
the extraction of invariances at multiple levels, departing from the
sensory input (Hinton, 2007; Stoianov and Zorzi, 2012). Indeed,
deep neural networks can discover such processing hierarchies.
Following Hinton and Salakhutdinov (2006), we trained a deep
network to accurately generate the images of handwritten digits
presented during learning. In the original study, deep unsuper-
vised learning on the unlabeled images was followed by a super-
vised learning phase. That is, the image labels (10 classes, one for
each digit) were used to fine-tune the network weights for the
digit recognition task using error backpropagation. The super-
vised phase can be useful for better discriminative learning and
it might be necessary for achieving state-of-the-art performance
in comparison to other machine learning algorithms. However,
from a cognitive modeling perspective, fine-tuning with error
backpropagation is not necessary (Stoianov and Zorzi, 2012) and
it might be unwarranted due to the well-known implausibility of
the algorithm (for discussion, see O’Reilly, 1998). Accordingly, we
measured and compared processing times during the unsuper-
vised deep learning phase only. The fine-tuning procedure was
still carried out in order to assess the quality of the learned model,
measured in terms of classification accuracy. We also directly
tested the quality of the internal representations that emerged
from deep unsupervised learning to exclude any confound intro-
duced by the supervised fine-tuning phase. To this aim, we trained

www.frontiersin.org

May 2013 | Volume 4 | Article 251 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Testolin et al.

Deep unsupervised learning on a desktop PC

a linear classifier to recognize the digit class using the top-level
hidden layer representation as input (see De Filippo De Grazia
et al., 2012a; Stoianov and Zorzi, 2012;, for applications of this
method to cognitive neuroscience modeling). Learning was per-
formed by computing a direct solution using the pseudo-inverse
method (Hertz et al., 1991). Classification errors on a separate test
set were collected and averaged over 10 different networks for each
type of parallel implementation.

NETWORK ARCHITECTURE AND TRAINING DATASET

As in the original study (Hinton and Salakhutdinov, 2006), we
used a network with three hidden layers (500-500-2000 units,
respectively, for a total of about 1.6 million connections) trained
using one-step contrastive divergence (CD-1). As training data
we used the popular MNIST dataset (LeCun and Bottou, 1998)
that contains handwritten digits encoded as 28 x 28-pixel gray-
level images, size-normalized, mass-centered, and manually clas-
sified. The dataset contains 60,000 training images and 10,000
test images. Hinton and Salakhutdinov (2006) showed that deep
learning on these images produces rich internal representations
of the digits that can readily be exploited for recognition, yielding
state-of-the art performance in terms of classification error. As in
the original study, the models we obtained were able to accurately
reconstruct input images (see samples in Figure 1C).

PARALLELIZATION

A parallelization at the data-level implies distributed and parallel
processing of multiple training patterns across different comput-
ing units. A prerequisite for this type of parallelization is that
learning is not fully iterative, but the weight updates are calculated
across multiple patterns as in off-line or mini-batch learning. In
a cluster implementation, the patterns of the training set (or the
subset of patterns that form a mini-batch) are distributed across
the available CPU cores. Weight updates are computed at each
core with respect to the assigned data-packet and subsequently
averaged to obtain the final weight update for the network. This
strategy requires relatively little communication between nodes,
which is a critical constraint on cluster architectures. In contrast,
the implementation on GPUs can also take advantage of a layer-
level parallelization, which implies parallel processing for multiple
neurons. That is, the activation of each neuron can be carried out
by a separate graphic core. Thus, on GPUs we can combine layer-
level and data-level parallelization by manipulating 2-D matrices
that contain multiple patterns. In other words, we can perform
element-wise matrix operations in parallel, with almost no com-
munication delay if all data can be loaded into the GPU’s memory.
The enormous computing power of GPUs derives from their inter-
nal architecture that exploits a great number of simple cores that
operate in parallel. This hardware design is well suited to efficiently
process graphic information (e.g., real-time rendering of visual
scenes by mapping textures and applying lightening to geometric
shapes), which is usually represented using matrices of items that
can be manipulated element-wise. The basic idea that allowed to
exploit GPUs for scientific computing was that here too we often
have to apply simple functions to a large number of elements at
the same time (Owens and Houston, 2008).

Graphic processors

The implementation on graphic processors is straightforward. All
we need to do is to load the training dataset into the GPU’s mem-
ory and to adapt the source code to specify which operations
have to be performed on the graphic card. One possibility is to
directly use CUDA routines, which allow a fine-grained control
of the parallelization by specifying data distribution and threads
synchronization, as well as an optimized allocation of the GPU’s
memory hierarchy (e.g., Raina et al., 2009; Ciresan et al., 2010). We
instead exploited high-level wrappers of CUDA available in MAT-
LAB via the Parallel-Computing Toolbox (version 2011 or higher)
(Sharmaand Martin, 2008) and in Python via the Gnumpy module
(Tieleman, 2010). This choice was motivated by the fact that the
flow of sensory processing is almost linear and inherently parallel.
The use of such high-level wrapper functions greatly simplified
the parallelization, which only required the use of gpu array data
types instead of standard arrays and feeding the graphic processors
with mini-batches. Differently from a cluster implementation (see
below), here we did not have to explicitly control the distribution of
each mini-batch onto the graphic cores, because the parallelization
is made transparent to the user by the high-level libraries. Since
the original source code (including the fine-tuning phase) and all
the routines used for the analyses were written in MATLAB, we
only present results for that GPU implementation. Nevertheless,
we verified that the Python code for deep unsupervised learning
had similar performance!.

One bottleneck in GPU computing is the relatively slow transfer
of data between central memory and the GPU. We optimized the
algorithm by using single- instead of double-precision data types,
which allowed us to load the whole training dataset (200 MB) and
network into the GPU, and perform the entire learning there with
minimal CPU-GPU communication?.

Multi-core cluster

We used the most common parallel programing paradigm for
computer clusters, which is message passing. The messages trans-
port data and synchronize the independent calculations. In par-
ticular, we used MPI, which is a language-independent com-
munication protocol, extending the original code (Hinton and
Salakhutdinov, 2006) by adding collective MPI routines.

In our cluster implementation, a master-node distributes the
processing of each mini-batch by splitting it between the available
cores (slave-nodes). The master node also transmits to each core
the current state of the network weights. The slave-nodes indepen-
dently compute the vectors of weight updates according to their
specific data-packet. The updates proposed by each core are then
collected by the master-node and averaged in order to calculate
the new weights of the network, which are then distributed back
to all nodes for the processing of the following mini-batch (De Fil-
ippo De Grazia et al., 2012b). In the original study of Hinton and

The Python implementation actually turned out to be faster than the MATLAB
implementation. Note that all components of the Python implementation are
freeware.

2Since the cluster implementation used the standard double-precision data types,
to which the CPU is optimized, we ensured that running times on the cluster were
not affected by the choice of double vs. single-precision values.

Frontiers in Psychology | Cognitive Science

May 2013 | Volume 4 | Article 251 | 4

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Testolin et al.

Deep unsupervised learning on a desktop PC

Salakhutdinov (2006), the size of the mini-batch was fixed to 125
patterns. We chose this value as size of the data-packet processed
by a single core. As more cores are available, weight updates are
computed over many such data-packets in parallel and then aver-
aged. This corresponds to using mini-batches of size S =k x 125,
where k is the number of cores. That is, on 2, 4, 8, 16, 40, and 60
cores this leads to mini-batches of 250, 500, 1000, 2000, 5000, and
7500 patterns.

HARDWARE DETAILS

The GPU implementations were tested on two different graphic
cards. One was an NVIDIA GeForce GTX 460 (Fermi architecture)
equipped with 336 CUDA cores (1.35 GHs) and 1 GB of DDR5
dedicated memory. The other was an NVIDIA GeForce GTX 690
(Kepler architecture), for a total number of 1536 CUDA cores
(1.41 MHz) and 2 GB of DDR5 memory®.

The cluster implementation was executed on a HP distrib-
uted computing cluster composed of seven nodes, each equipped
with quad-core or hexa-core processors (2.27 GHz) and 32 GB of
RAM. Overall, there were 60 cores. The nodes were interconnected
with Infiniband technology network®. The cluster was controlled
by Linux, Octave 3.0.5, and the Open-MPI library®. Open-MPI
routines were executed from Octave through the MPITB tool-
box®. This toolbox implements all necessary point-to-point and
collective MPI communication routines needed, and it has been
shown to outperform other MPI toolboxes for Octave/MATLAB
(Fernandez et al., 2006).

As a baseline, we also collected running times on a PC work-
station equipped with an Intel Q6600 quad-core CPU (2.40 GHz),
controlled by Linux and Octave 3.2.

RESULTS

COMPUTATIONAL TIME FOR DEEP UNSUPERVISED LEARNING

A comparison between learning times for the different implemen-
tations is shown in Figure 2A (means and standard deviations are
reported in Table 1). The most impressive result is the substan-
tially lower computational time required by GPUs. On low and
medium mini-batch sizes (e.g., 125, 250, 500, and 1000, which on
the cluster correspond to using 1, 2,4, and 8 cores), even the entry-
level GTX 460 outperformed the cluster implementation by one
order of magnitude. The high-performance GTX 690 card fur-
ther improved the result (as highlighted in Figure 2B), requiring
a learning time that was half that of the cluster also on the largest
mini-batch size (i.e., 7500, which corresponds to using 60 cores).
Notably, learning times on GPUs were between 11 and 45 times
faster than on the quad-core PC.

The significant difference between the cluster and GPU imple-
mentations reflects the advantage of exploiting both data- and
layer-level parallelization on GPUs, which can optimally use the
available computational resources even when only few data pat-
terns are to be processed at once. It should be pointed out that

3The GTX 690 is a dual-graphic card with two distinct sets of graphic processors
(i.e., 1536 cores and 2 GB memory for each set). We used only one set of processors.
*http://www.infinibandta.org

Shttp://www.open-mpi.org

Ohttp://www.ugr.es/ ~jfernand/mpitb.html

these improvements were obtained using k = 1 for CD-k learning,
and it is not to be excluded that using higher values of k would
further improve the GPU’s speed-up.

Notably, all simulations exhibited exponential speed-up with
the increase of mini-batch size, as shown in Figure 2A and
Figure 2B. A power fit analysis revealed that the cluster imple-
mentation speeded-up fastest with the increase of mini-batch size
(power coefficient k= —0.82, r2 =0.99), while the GPU imple-
mentations showed less-pronounced improvements (GTX460:
k= —0.25, r* =0.90; GTX690: k = —0.22, r* = 0.86). In the clus-
ter implementation, the asymptotic behavior for large mini-batch
sizes (and hence, more computing cores) is due to increasing over-
head caused by data transport and synchronization. In order to
estimate the impact of this overhead, we profiled the code by cal-
culating the ratio of the time spent to collect and send data relative
to the overall running time. The results reported in the rightmost
column of Table 1 show that the percentage of time spent for data
transfer increased along with mini-batch size.

The results demonstrate that the parallelization on the com-
puter cluster is faster for large mini-batches, that is when more
cores are independently processing distinct subsets of training
patterns. Indeed, on very large mini-batches, the cluster perfor-
mance approaches that of GPUs. Unfortunately, this also causes a
decrease of learning quality, which is reflected by the lower classifi-
cation accuracy reached by models trained using large mini-batch
sizes, as we discuss below.

CLASSIFICATION ERROR AFTER DEEP UNSUPERVISED LEARNING

We first evaluated the quality of the internal representations
obtained after unsupervised learning only, by training a linear clas-
sifier using the top-level (2000 units) hidden layer representations
of the input data. As hinted in Section “Unsupervised Learning
with Deep Belief Networks,” the more iterative is the learning, the
less prone it is to fall into local minima despite that it is a coarser
approximation of the true gradient of the error function (Wil-
son and Martinez, 2003). We therefore expected that by increasing
mini-batch size, classification accuracy would get worse. This was
confirmed by analysis of classification error.

Results are shown in Figure 2C. Analysis of variance on
the accuracy data (within-subject factor: mini-batch size, n=7;
between-subject factor: parallel implementation type, n=2)
revealed a significant effect of mini-batch size [F(6,108) = 598.5,
p <0.001] but no effect of implementation type [F(1,18) =1.3]
or their interaction [F(6,108)=2.0]. Linear regression analysis
with mini-batch size as a predictor (on a log scale) confirmed
the prediction above that the classification error increases along
with mini-batch size (slope=0.77, r> =0.99). These results also
demonstrate that using a single-precision floating-point format
on GPUs did not affect the quality of the learning process.

CLASSIFICATION ERROR AFTER SUPERVISED FINE-TUNING

To provide a link with the machine learning literature on this
benchmark visual recognition task, we also report the classifi-
cation performance after an additional fine-tuning of the entire
network with backpropagation. To avoid potential confounds, the
fine-tuning phase was performed on a single core.

www.frontiersin.org

May 2013 | Volume 4 | Article 251 | 5

http://www.infinibandta.org
http://www.open-mpi.org
http://www.ugr.es/~jfernand/mpitb.html
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Testolin et al.

Deep unsupervised learning on a desktop PC

A 5
o e e e oo Cluster
L]

3 = o= = GTX 460
0 !
3 . GTX 690
S 4 %
2 2
= °
o =

L]
[]
L]
..
1 ®e

- o am
0 S s

cores: 1 8 60
mini-batch: 125

Cc 35
3.0

25

Test error (%)

2.0 *

1.5

1.0
cores: 1 8 60
mini-batch: 125 1000 7500

FIGURE 2 | Trade-off between learning times and learning quality as a
function of mini-batch size (abscise) on a log scale. (A) Unsupervised
leaning time on all parallel architectures decreases with mini-batch size. The
greater the number of patterns simultaneously processed, the more the
computational resources involved (e.g., processing cores). (B) Zoom-in of

0.4

0.3

Time (hours)

0.2

0.1

0.0
cores: 1 8 60
mini-batch: 125 1000 7500

D 35
~ 3.0
2
S
5 25
7]
(0}
I_
2.0
1.5
1.0
cores: 1 8 60

mini-batch: 125 1000 7500

learning times highlighting the additional speed-up of the GTX 690 card. (C)
Quality of learning on the cluster and on the GTX 690 implementations,
measured as misclassification of a linear classifier trained on the top-layer
internal representations. (D) Quality of learning after fine-tuning of the entire
deep model (see text for details).

Table 1| Unsupervised learning times for various mini-batch sizes on a
PC workstation, GPUs (MATLAB implementation), and a computer
cluster.

Learning time (s) = SD

Mini-batch Quad-core GTX 690 GTX 460 Cluster (overhead)
size

125 15191 +£3 764 +7 1337+24 16330+£430 (05%)
250 14184 +7 526+4 895+ 14 8828+ 173 (11%)
500 13679+5 393+9 665+ 27 4493 £485 (17 %)
1000 13043+3 348+16 52845 2590 £ 83 (27%)
2000 12746 £12 306+ 15 450£6 1411 £52 (28%)
5000 12832+18 29445 429+13 757 £7 (33%)
7500 12934 +21 28547 417£M 590 £ 3 (44%)

The rightmost column reports the communication overhead (in percentage) on
the computer cluster.

As shown in Figure 2D, both implementations obtained com-
parable classification performance after the fine-tuning phase,
although the same analysis of variance performed in Section
“Classification Error After Deep Unsupervised Learning” revealed
some advantage for the GPU implementation [F(1,18)=39.0,
p <0.001]. The effect of mini-batch size was also significant
[F(6,108) =177.5, p <0.001]. The two-way interaction was not
significant [F(6,108) =1.5]. Also here a linear regression analy-
sis demonstrated that the classification error after fine-tuning
increases with mini-batch size (slope =0.28, r> =0.98), though
in this case the effect of mini-batch size was less pronounced (as
shown by the smaller slope of the regression function).

DISCUSSION

Deep belief networks (Hinton and Salakhutdinov, 2006) efficiently
extract high-level internal representations of input data by learn-
ing hierarchical generative models in an unsupervised fashion.

Frontiers in Psychology | Cognitive Science

May 2013 | Volume 4 | Article 251 | 6

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Testolin et al.

Deep unsupervised learning on a desktop PC

Their layered structure is inspired by the hierarchical organization
of cortical networks and their functioning has a sound proba-
bilistic formulation (Hinton, 2007). For these reasons they are
particularly appealing for developing neural models of cognition,
as shown in a recent work on modeling numerosity perception
(Stoianov and Zorzi, 2012). However, deep unsupervised learning
is also computationally very demanding, especially if we want to
scale-up to more realistic simulations. Modern parallel-computing
architectures have been proven to be effective for training large-
scale deep networks, reaching impressive performance over vari-
ous machine learning benchmarks like visual object recognition
and speech recognition (Ciresan etal.,2010; Krizhevskyetal.,2012;
Le et al., 2012; Mohamed et al., 2012). Unfortunately, expertise
in parallelization techniques and expensive hardware may not be
available to many cognitive scientists and this might have hindered
the diffusion of deep belief networks as a tool for connectionist
modeling of cognition and behavior.

The purpose of this paper was twofold. We first presented a
ready-to-use parallel implementation of a deep belief network,
which exploits the power of modern graphic cards (GPUs) and
can therefore run on standard desktop PCs. Parallelization on
GPUs was obtained using high-level software libraries available
for two of the most popular programing languages used in scien-
tific computing, namely MATLAB and Python. We then compared
the GPU implementation with another based on a multi-core HPC
cluster. We used as a benchmark for our simulations a deep net-
work with 1.6 million connections and a popular learning task
(LeCun and Bottou, 1998) that involves the extraction of statis-
tical regularities from a large dataset of 60,000 handwritten digit
images.

Both implementations exhibited an exponential reduction of
learning times when using mini-batches of increasing size. How-
ever, learning large mini-batches comes at the cost of a lower
classification accuracy, which indexes a lower quality of the learned
models. These results highlight a trade-off between learning times
and learning quality and, accordingly, a clear advantage in using
GPUs. Indeed, on small and medium mini-batch sizes, which yield
higher learning quality, the GPUs reached a speed-up of more than
an order of magnitude with respect to the computer cluster. More-
over, with respect to a stand-alone quad-core PC, the speed-up
reached a 45-fold increase. This impressive performance confirms
the value of graphic cards for deep unsupervised learning (Raina
et al., 2009), because the underlying code involves an intensive
use of basic matrix operations and functions (Owens and Hous-
ton, 2008). Neural network learning can be parallelized at different
levels, the most intuitive of which distributes the processing of dif-
ferent neurons among different nodes (layer-level parallelization).
However, layer-level parallelization involves intensive communi-
cation between nodes, which is very time-consuming on a cluster
implementation. Data-level parallelization, which consists in dis-
tributing all training patterns or subsets of them (mini-batches)
among the available cores, is instead effective because between-
core communication is minimal (De Filippo De Grazia et al,
2012b). The appeal of a GPU implementation is that both lev-
els of parallelization can be effortlessly combined by adopting a
high-level programing platform and a parallel-computing toolbox,

which optimally distributes the calculations among the available
graphic resources.

It is well-known that iterative learning (i.e., “on-line learning”)
approximates the true gradient of the error function, but it is less
prone to fall into local optima than optimizing the error func-
tion on the entire dataset (Wilson and Martinez, 2003). However,
iterative learning requires more computations (weight updates).
Iterative learning of mini-batches is a compromise between those
two. Although there are some empirical suggestions about how to
choose mini-batch sizes for training deep belief networks (Hin-
ton, 2010a), we are unaware of a systematic investigation of the
effect of this parameter on the quality of the learned model.
We thus exploited a wide range of mini-batch sizes, expecting
that their increase would be associated with increase of classifi-
cation error, that is, worsening the obtained statistical model of
the sensory data. However, small mini-batches need more fre-
quent updates of model parameters that must be synchronized
across the processors. In the cluster implementation, the relatively
slow between-core communication would therefore cause a strong
trade-off between learning speed-up and accuracy of classifica-
tion. The results confirmed the predictions. Smaller mini-batches
systematically led to better models but required longer learning
times. These trends were found on all parallel implementations.
Cluster times were heavily penalized for small batches, which sug-
gests using medium-sized mini-batches (e.g., 1000 patterns) on
such implementation. In contrast, the substantially lower learning
times for all mini-batch sizes obtained by the GPU implementa-
tion permits using small mini-batches (i.e., 125 elements), thus
yielding the best-quality models. In other words, the GPU imple-
mentation allows one to target the highest levels of accuracy with
only a moderate loss in learning speed. Finally, it is worth noting
that the models obtained with different parallel implementations
reached almost the same classification performance when tested
either right after the unsupervised learning or after an additional
supervised fine-tuning phase (as in the original work of Hinton
and Salakhutdinov, 2006) with a slight advantage of the GPU par-
allelization. Overall, the results suggest a net advantage of the GPU
implementation.

Although the benefit of using GPUs for computational pur-
poses has been shown in several domains, it should be stressed
that their successful application heavily depends on the nature of
the computations involved in the problem of interest (Lee et al.,
2010). The possibility to load the entire dataset on the GPU mem-
ory is important to obtain high performance. In some situations
this might not be possible, with the risk of introducing signifi-
cant delays when frequently transferring data between the central
memory (RAM) and the GPU. Single GPUs, due to their some-
what limited memory, are thus not suitable for scaling up to very
large models trained on extensive datasets, and other paralleliza-
tion approaches based on large HPC clusters or supercomputers
might be necessary (Dean et al., 2012; Le et al., 2012). A promising
approach would be to combine the power of multiple GPUs in a
very large-scale distributed architecture.

It is worth noting that the aim of this study was neither to
obtain the fastest training on GPUs nor to claim that cluster
implementations are not suited to compete with GPUs. Instead,

www.frontiersin.org

May 2013 | Volume 4 | Article 251 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Testolin et al.

Deep unsupervised learning on a desktop PC

our goal was to emphasize that deep belief networks, which rep-
resent the state-of-the-art in neurocognitive modeling (Stoianov
and Zorzi, 2012) and engineering applications (Mohamed et al.,
2012) can obtain excellent performance on common graphic
hardware with little programing efforts. Adapting the learning
algorithm to run on a graphic card was straightforward and
it did not involve specific issues concerning the engineering of
the parallelization. In contrast, the implementation on a com-
puter cluster posed constraints on the level of parallelization,
which was feasible only at the data-level (De Filippo De Grazia
et al.,, 2012b) and, as we demonstrated above, was associated
with an important time-quality trade-off. Note that our results
should generalize also to more recent deep generative network
architectures (e.g., Deep Boltzmann Machines, Salakhutdinov and
Hinton, 2012). The source codes for deep unsupervised learn-
ing provided in Appendix are not tied to the specific benchmark
task and they can be easily adapted to other learning prob-
lems. We provide a variety of solutions (MATLAB/Octave on a
desktop PC; MATLAB and Python on a desktop with graphic
card; Octave/MPI on a multi-core cluster) and we leave it to

individual researchers to choose the one that best fits their
needs. Interested users can try these methods on the MNIST
database that we used here as benchmark problem as well as
on the dataset of images used by Stoianov and Zorzi (2012)
for deep learning of numerosity perception (see Appendix for
instructions).

A final aspect that deserves attention regards the economic
cost of the hardware required by our parallel implementations.
The price of an entry-level graphic card is about 100€, while the
cost of a 60-nodes computer cluster exceeds 30,000€. Moreover,
the Python solution provides a freeware implementation of deep
unsupervised learning on graphic cards. In conclusion, paralleliza-
tion of deep belief networks on GPUs using high-level languages
can bring medium-scale simulations on a desktop computer at a
very affordable cost and with no time investment on acquiring
parallel programing skills.

ACKNOWLEDGMENTS

This study was supported by the European Research Council
(grant no. 210922 to Marco Zorzi).

REFERENCES

Ackley, D., Hinton, G. E., and Sejnowski,
T.J. (1985). A learning algorithm for
Boltzmann machines. Cogn. Sci. 9,
147-169.

Aisa, B., Mingus, B., and O’Reilly,
R. (2008). The emergent neural
modeling system. Neural Netw. 21,
1146-1152.

Bengio, Y. (2009). Learning Deep Archi-
tectures for Al Foundations and
trends® in Machine Learning 2,
1-127.

Bengio, Y. (2011). Deep learning of rep-
resentations for unsupervised and
transfer learning. Proc. Int. Conf.
Mach. Learn. Appl. 7, 1-20.

Bengio, Y., and Lamblin, P. (2007).
Greedy layer-wise training of deep
networks. Adv. Neural Inf. Process
Syst. 19, 153-170.

Ciresan, D. C., Meier, U, Gam-
bardella, L. M., and Schmidhuber,
J. (2010). Deep big simple neural
nets excel on handwritten digit
recognition. Neural Comput. 22,
3207-3220.

Clark, A. (2012). Whatever next? Predic-
tive brains, situated agents, and the
future of cognitive science. Behav.
Brain Sci. 1-86.

De Filippo De Grazia, M., Cutini, S., Lisi,
M., and Zorzi, M. (2012a). Space
coding for sensorimotor transfor-
mations can emerge through unsu-
pervised learning. Cogn. Process. 13,
S141-S146.

De Filippo De Grazia, M., Stoianov, 1.,
and Zorzi, M. (2012b). “Paralleliza-
tion of deep networks,” in European
Symposium on Artificial Neural Net-

works, Computational Intelligence

and Machine Learning, Belgium:
ESANN.

Dean, J., Corrado, G. S., Monga, R,
Chen, K., Devin, M., Le, Q. V., et al.
(2012). Large scale distributed deep
networks. Adv. Neural Inf. Process
Syst. 25, 1232-1240.

Ferndndez, J., Anguita, M., Ros, E.,
and Bernier, J. L. (2006). SCE
Toolboxes for the development of
high-level parallel applications. Lect.
Notes Comput. Sci. 1, 518-525.

Hertz,]. A., Krogh, A. S., and Palmer, R.
G. (1991). Introduction to the The-
ory of Neural Computation, Redwood
City: Westview press.

Hinton, G. E. (2002). Training products
of experts by minimizing contrastive
divergence. Neural Comput. 14,
1771-1800.

Hinton, G. E. (2007). Learning multi-
ple layers of representation. Trends
Cogn. Sci. (Regul. Ed.) 11, 428-434.

Hinton, G. E. (2010a). A Practical
Guide to Training Restricted Boltz-
mann Machines. Technical Report
UTML TR 2010-003, University of
Toronto 9, 1.

Hinton, G. E. (2010b). Learning to rep-
resent visual input. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 365,
177-184.

Hinton, G. E., and Ghahramani, Z.
(1997). Generative models for
discovering sparse distributed
representations. Philos.

R. Soc. Lond. B Biol. Sci.
1177-1190.

Hinton, G. E., and Osindero, S. (2006).
A fast learning algorithm for deep
belief nets. Neural Comput. 18,
1527-1554.

Trans.
352,

Hinton, G. E., and Salakhutdinov, R.
(2006). Reducing the dimensionality
of data with neural networks. Science
313, 504-507.

Honglak, L., Ekanadham, C., and Ng,
A. Y. (2008). Sparse deep belief
net models for visual area V2.
Adv. Neural Inf. Process Syst. 20,
873-880.

Huang, Y., and Rao, R. P. N. (2011).
Predictive coding. Wiley interdis-
ciplinary reviews. Cogn. Sci. 2,
580-593.

Krizhevsky, A., Sutskever, I, and Hinton,
G. E. (2012). ImageNet classification
with deep convolutional neural net-
works. Adv. Neural Inf. Process Syst.
25,1106-1114.

Larochelle, H., Bengio, Y., Louradour, J.,
and Lamblin, P. (2009). Exploring
strategies for training deep neural
networks. J. Mach. Learn. Res. 10,
1-40.

Le, Q. V,, Ranzato, M. A., Monga, R,
Devin, M., Chen, K., Corrado, G.
S., etal. (2012). “Building high-level
features using large scale unsuper-
vised learning,” in International Con-
ference on Machine Learning, New
York.

LeCun, Y., and Bottou, L. (1998).
Gradient-based learning applied to
document recognition. Proc. IEEE
86, 2278-2324.

Lee, H., Grosse, R., Ranganath, R,
and Ng, A. Y. (2009). “Convolu-
tional deep belief networks for scal-
able unsupervised learning of hier-
archical representations,” in Interna-
tional Conference on Machine Learn-
ing (New York, NY: ACM Press),
609-616.

Lee, V., Kim, C., Chhugani, J., and
Deisher, M. (2010). Debunking
the 100X GPU vs. CPU myth:
an evaluation of throughput
computing on CPU and GPU.
Comput. Architect. ~ News 38,
451-460.

Margaris, A., Souravlas, S., Kotsialos,
E., and Roumeliotis, M. (2007).
Design and implementation of
parallel counter propagation net-
works using MPI. Informatica 18,
79-102.

Mohamed, A., Dahl, G. E., and Hin-
ton, G. E. (2012). Acoustic model-
ing using deep belief networks. IEEE
Trans. Audio Speech Lang. Processing
20, 14-22.

Mutch, J., Knoblich, U, and Pog-
gio, T. (2010). CNS: a GPU-based
framework for simulating cortically-
organized networks. Technical
Report MIT-CSAIL-TR-2010-013,
Cambridge: Massachusetts Institute
of Technology.

Nickolls, J., Buck, I., Garland, M., and
Skadron, K. (2008). Scalable parallel
programming with CUDA. Queue 6,
40.

Olshausen, B., and Field, D. (1996).
Emergence of simple-cell receptive
field properties by learning a sparse
code for natural images. Nature 381,
607-609.

O'Reilly, R. C. (1998). Six princi-
ples for biologically based compu-
tational models of cortical cogni-
tion. Trends Cogn. Sci. (Regul. Ed.) 2,
455-462.

Owens, J., and Houston, M. (2008).
GPU computing. Proc. IEEE 96,
879-899.

Frontiers in Psychology | Cognitive Science

May 2013 | Volume 4 | Article 251 | 8

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Testolin et al.

Deep unsupervised learning on a desktop PC

Pan, S. J., and Yang, Q. (2010). A sur-
vey on transfer learning. IEEE Trans.
Knowl. Data Eng. 22, 1345-1359.

Plesser, H. E., Eppler, J. M., Morrison, A.,
Diesmann, M., and Gewaltig, M. O.
(2007). Efficient parallel simulation
of large-scale neuronal networks on
clusters of multiprocessor comput-
ers. Euro-Par 2007 Parallel Process-
ing. Lect. Notes Comput. Sci. 4641,
672—681.

Raina, R., Madhavan, A, and Ng, A. Y.
(2009). “Large-scale deep unsuper-
vised learning using graphics proces-
sors,” in International Conference on
Machine Learning (New York, NY:
ACM Press), 1-8.

Rao, R. P. N, and Ballard, D. H. (1999).
Predictive coding in the visual cor-
tex: a functional interpretation of
some extra-classical receptive-field
effects. Nat. Neurosci. 2, 79-87.

Salakhutdinov, R., and Hinton, G.
(2012). A better way to pretrain deep

Boltzmann machines. Adv. Neural
Inf. Process Syst. 25, 2456—2464.

Share, D. L. (1995). Phonological recod-
ing and self-teaching: sine qua non
of reading acquisition. Cognition 55,
151-218; discussion 219-226.

Sharma, G.,and Martin, J. (2008). MAT-
LAB®: a language for parallel com-
puting. Int. J. Parallel Program. 37,
3-36.

Smolensky, P. (1986). “Information pro-
cessing in dynamical systems: foun-
dations of harmony theory,” in Par-
allel Distributed Processing. Explo-
rations in the Microstructure of Cog-
nition, Vol. 1, eds D. E. Rumelhart
and J. L. McClelland (Cambridge:
MIT Press), 1, 194-281.

Stoianov, I.,and Zorzi, M. (2012). Emer-
gence of a “visual number sense” in
hierarchical generative models. Nat.
Neurosci. 15, 194-196.

Tieleman, T. (2010). Gnumpy: an easy
way to use GPU boards in Python.

Technical Report UTML TR 2010-
002, University of Toronto, Toronto.

Wilson, D. R., and Martinez, T. R.
(2003). The general inefficiency
of batch training for gradient
descent learning. Neural Netw. 16,
1429-1451.

Yu, D., Hinton, G. E., Morgan, N., Chien,
J., and Sagayama, S. (2012). Intro-
duction to the special section on
deep learning for speech and lan-
guage processing. IEEE Trans. Audio
Speech Lang. Processing 20, 4.

Zorzi, M. (2010). The connectionist
dual process (CDP) approach to
modelling reading aloud. Eur. J.
Cogn. Psychol. 22, 836-860.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 28 February 2013; paper pend-
ing published: 25 March 2013; accepted:
15 April 2013; published online: 06 May
2013.

Citation: Testolin A, Stoianov I, De
Filippo De Grazia M and Zorzi M
(2013) Deep unsupervised learning on
a desktop PC: a primer for cognitive
scientists. Front. Psychol. 4:251. doi:
10.3389/fpsyg.2013.00251

This article was submitted to Frontiers in
Cognitive Science, a specialty of Frontiers
in Psychology.

Copyright © 2013 Testolin, Stoianov,
De Filippo De Grazia and Zorzi. This
is an open-access article distributed
under the terms of the Creative Com-
mons Attribution License, which per-
mits use, distribution and reproduc-
tion in other forums, provided the orig-
inal authors and source are credited
and subject to any copyright notices
concerning any third-party graphics
efc.

www.frontiersin.org

May 2013 | Volume 4 | Article 251 | 9

http://dx.doi.org/10.3389/fpsyg.2013.00251
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Testolin et al.

Deep unsupervised learning on a desktop PC

APPENDIX

The source codes for deep unsupervised learning provided below
are not tied to the specific benchmark task and they can be easily
adapted to other learning problems. We provide a variety of solu-
tions (MATLAB/Octave on a desktop PC; MATLAB and Python
on a desktop with a graphic card; Octave/MPI on a multi-core
cluster) and we leave it to individual researchers to choose the one
that best fits their needs.

The complete source code for each implementation can be
downloaded from the following website: http://ccnl.psy.unipd.it/
research/deeplearning

We summarize below the main steps to follow in order to use
each implementation. In order to maximize portability, all imple-
mentations assume to manipulate data stored in 3-D matrices of
size xxyxz, where x is the mini-batch size, y is the input size (i.e., the
number of visible units) and z is the total number of mini-batches.

We also provide instructions on how to run our codes on the
popular MNIST example, which we used as a benchmark task, and
on the numerosity perception problem investigated by Stoianov
and Zorzi (2012).

GRAPHIC CARDS IMPLEMENTATIONS

At present there are no high-level wrappers of CUDA available for
Octave. We therefore exploited the proprietary MATLAB Parallel-
Computing Toolbox. However, the Python implementation is
completely freeware. Note that NVIDIA drivers must be properly
installed on your system, along with a compatible CUDA graphic
card with at least 1GB of dedicated memory.

MATLAB
MATLAB Parallel-Computing Toolbox (v2011 or above) must be
properly installed in the system.

Network and learning parameters can be directly set inside the
script “deeptrain_GPU.m.” Running the script will train a deep
belief net. At the end of the learning phase, a MATLAB file con-
taining the results will be created into the source code directory.
Note that the training data must be supplied as an additional “mat”
file (e.g., “MNIST_data_n.mat” for the MNIST example).

PYTHON

Python (tested: v2.7) and CUDAMat (tested: v1.15) must be prop-
erly installed in the system, along with the Gnumpy library (avail-
able for download from http://www.cs.toronto.edu/~tijmen/
gnumpy.py) that must be present in the same folder of the source
code. Network and learning parameters can be directly set inside
the script “deeptrain_GPU.py.” Running the script will train a deep
belief net. At the end of the learning phase, a “mat” file (MAT-
LAB/Octave) containing the results will be created into the source
code directory. Note that the training data must be supplied as an

additional “mat” file (e.g., “MNIST_data_n.mat” for the MNIST
example).

CLUSTER IMPLEMENTATION

Octave and MPITB (MPI library routines for Octave environment;
download from http://www.ugr.es/~jfernand/mpitb.html) must
be properly installed on the cluster (tested: Octave 3.0.5, Open-
MPI 1.4.3). Network and learning parameters can be directly set
inside the script “deeptrain.m.” Running the script will train a deep
belief net. At the end of the learning phase, a ““mat” file containing
the results will be created into the source code directory. Note that
the training data must be supplied as an additional “mat” file (e.g.,
“MNIST_data_n.mat” for the MNIST example).

MNIST EXAMPLE
The raw MNIST dataset must be first converted into a suitable
format:

1. Download the following four files from http://yann.lecun.com/
exdb/mnist
e train-images-idx3-ubyte.gz
e train-labels-idx1-ubyte.gz
e t10k-images-idx3-ubyte.gz
e t10k-labels-idx1-ubyte.gz

2. Unzip them by executing
e gunzip train-images-idx3-ubyte.gz
e gunzip train-labels-idx1-ubyte.gz
e gunzip t10k-images-idx3-ubyte.gz
e gunzip t10k-labels-idx1-ubyte.gz
Make sure the file names have not been changed during
unzipping (in particular, it can happen that “-” is replaced
with)

3. Convert the raw images into MATLAB/Octave format by copy-
ing them into the source code directory and running the routine
“converter.m.”

4. Save the training set into a suitable 3-D matrix by run-
ning the routine “makebatches.m” (mini-batch size can be set
inside that file before running it). This will produce a file
called “MNIST data_n.mat,” where n is the chosen mini-batch
size.

VISUAL NUMEROSITY PERCEPTION EXAMPLE
The database of images created by Stoianov and Zorzi (2012)
includes 50,000 binary images containing up to 32 rectangular
objects of variable size. The “mat” file can be downloaded from
http://ccnl.psy.unipd.it/research/deeplearning

To replicate the simulations of Stoianov and Zorzi (2012), the
deep network should have two hidden layers of 80 and 400 units,
respectively (for further details, see Supplementary Materials of
Stoianov and Zorzi, 2012).

Frontiers in Psychology | Cognitive Science

May 2013 | Volume 4 | Article 251 | 10

http://ccnl.psy.unipd.it/research/deeplearning
http://ccnl.psy.unipd.it/research/deeplearning
http://www.cs.toronto.edu/~tijmen/gnumpy.py
http://www.cs.toronto.edu/~tijmen/gnumpy.py
http://www.ugr.es/~jfernand/mpitb.html
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://ccnl.psy.unipd.it/research/deeplearning
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

	Deep unsupervised learning on a desktop PC: a primer for cognitive scientists
	Introduction
	Unsupervised learning with deep belief networks
	Simulations
	Network architecture and training dataset
	Parallelization
	Graphic processors
	Multi-core cluster

	Hardware details

	Results
	Computational time for deep unsupervised learning
	Classification error after deep unsupervised learning
	Classification error after supervised fine-tuning

	Discussion
	Acknowledgments
	References
	Appendix
	Graphic cards implementations
	MATLAB
	Python
	Cluster implementation
	MNIST example
	Visual numerosity perception example

