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ABSTRACT
In this paper we describe a method based on Support Vector machines for Regression
(SVR) to decode cognitive states from functional Magnetic Resonance Imaging (fMRI) data.
In the context of the Pittsburgh Brain Activity Interpretation Competition (PBAIC, 2007), three
participants were scanned during three runs of 20-minute immersion in a Virtual Reality
Environment (VRE) where they played a game that engaged them in various search tasks. A
set of objective feature ratings was automatically extracted from the VRE during the
scanning session, whereas a set of subjective features was then derived from each
individual experience. The aim of the present study was to explore the feasibility of the SVR
approach in the case of an extremely complex regression problem, in which subjective
experience of participants immersed in a VRE had to be predicted from their fMRI data. The
proposed methodology was modeled as a multiphase process: a pre-processing phase,
based on a filter approach, for fMRI image voxel selection, and a prediction phase,
implemented by nonlinear SVR, for decoding subjective cognitive states from the selected
voxel time series. Results highlight the generalization ability of nonlinear SVR, making this
approach particularly interesting for real world application of Brain Computer Interface (BCI).
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1. Introduction

Recent advances in brain imaging and machine learning provide the foundations for

the development of Brain-Computer Interfaces (BCI) based on functional Magnetic

Resonance Imaging (fMRI) (Weiskopf et al., 2004). In the last decade, fMRI has
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become the most widely used non-invasive technique for investigating human brain

functions.

The main problem addressed by fMRI studies is to correlate neural signals temporally

changing in different cortical areas to certain events (task conditions) opportunely

encoded in the experimental paradigm. A BCI based on fMRI needs to interpret the

relationships between neural signals from fMRI data and the subjective experience of

scanned participants, in order to perform a sort of mind reading and to translate the

predicted mental states into actions.

Conventional fMRI data analysis techniques are based on the statistical Parametric

Approaches (e.g. General Linear Model ─ GLM) which correlate external regressors

(task conditions) with the activity in specific brain regions, generating brain maps of

localised activity (Friston et al., 1995). Traditional statistical methods measure the

activity from many thousands of voxels in the brain images, analysing each voxel time

series separately and comparing two or more task conditions at each voxel location.

Recent methods, belonging to the class of Multivariate Analysis (Non Parametric

Approaches), have the potential to improve our understanding of the complex pattern

of brain activity measured by fMRI. These approaches are based on boosting the weak

information available at each voxel location by a simultaneous analysis of hundreds or

thousands of voxels to predict specific cognitive states.

Many pattern recognition methods have been employed as multivariate techniques for

fMRI data analysis. Machine learning techniques based on artificial neural networks

(Chuang, Chiu, Lin, & Chen, 1999; Voultsidou, Dodel, & Herrmann, 2005) or different

clustering algorithms (Meyer & Chinrungrueng, 2003; Liao, 2005; Heller, Stanley,

Yekutieli, Rubin, & Beniamini 2006; Chen, Bouman, & Lowe, 2004; Chen, H., Yuan,

Yao, Chen, L., & Chen, W., 2006) have been employed for time series data analysis in

different domain applications, among which fMRI data analysis. Other methodologies,

such as independent component analysis (ICA), have also been used for processing

fMRI data (Hu et al., 2005; Meyer-Baese, Wismueller, & Lange, 2004). One of the most

widely used Machine Learning techniques for fMRI data analysis are Support Vector

Machines (SVM), which are kernel-based methods designed to find functions of the

input data that enable both classification and regression (Vapnik, 1995). In particular,

SVMs classify data with different class labels by determining a set of support vectors,

which are members of the training set, outlining a hyperplane in the feature space.

SVM provides a mechanism to fit the hyperplane surface to the training data using a

specific kernel function. SMV classifiers are well known for their very good
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generalization ability and have been used in recent studies of fMRI data analysis (Cox

& Savoy, 2003; Mitchell et al., 2004; Kamitani & Tong, 2005; Haynes & Rees, 2005; La

Conte et al., 2005, Mourão-Miranda, Friston, & Brammer, 2007). However, most of the

previous studies have focused on classification problems. In the case of regression

problems, the goal is to find a functional shape for the function that can correctly

predict new cases that the SVM has not been presented with before. This latter method

is usually referred to as Support Vector Regression (SVR; see Smola & Schölkopf,

2004, for a review). Thus, our goal was to explore different techniques of feature

selection and the feasibility of SVR in the case of an extremely complex regression

problem whereby the subjective experience of participants immersed in a virtual reality

environment (VRE) must be predicted from a set of fMRI data.

2. Materials and Methods

The VRE experiment was organized in the context of the Pittsburgh Brain Activity

Interpretation Competition (PBAIC, 2007). The purpose of this competition was to infer

subjective experience of the participants experiencing an immersion in a virtual reality

environment, from a contextually gathered set of fMRI data.

The VRE experiment, the gathered fMRI data and the proposed fMRI decoding

method are described in the next sections.

2.1 Participants

Fifteen subjects participated in this study. In particular, after a selection procedure

made by the PBAIC staff (see PBAIC, 2007 for details), the only data available for the

competition were relative to three subjects (age range: 20-26 years).

2.2 Procedure

Participants were instructed to play a game in a virtual world during three runs of fMRI

data acquisition. In the game they were paid by an anthropology department grant to

gather information about urban people. In particular, they were visiting several times

the virtual reality environment, outside and inside some specified places, and were

instructed to collect as much as possible samples of toy weapons and fruits, in a

predefined order; moreover, they had to take pictures of people with piercings and



M. G. Di Bono, M. Zorzi

192

avoid an aggressive dog. Participants were also informed and asked to keep in mind

that any money obtained in the game corresponded to an earning in real life.

The study was completed over a period of four days. During the first day, participants

watched a 13-minute video for a first phase of familiarization with the VRE and

completed a battery of questionnaires, implicit association tests for assessing the

ingroup/outgroup and canines perception, the level of anxiety and sickness, the sense

of direction, the computer familiarity scale (see PBAIC, 2007 for details). During the

second day, participants played the virtual reality game outside the scanner and every

2 minutes they were asked to rate their level of sickness. At the end of the session they

completed three questionnaires for assessing the level of simulator sickness and the

level of presence and comfort during the navigation. In the third day, subjects were

asked to perform search tasks during three 20 minute runs of the game inside the

scanner. As in the previous day, participants were asked to rate every 2 minutes their

level of sickness.

During the navigation of the virtual world, a set of target feature ratings was gathered

for a total of 13 required and 10 optional features. In particular, some features were

obtained through software loggings of subject actions in the virtual world, soundtrack

analysis and eye-tracking based analysis of video from each run, and were referred to

as objective features (e.g., Hits: whenever subjects correctly picked up fruit or weapon

or took pictures of persons with piercings; Instructions: whenever task instructions were

presented; Search people; Search weapons; Search fruit; Faces: whenever subjects

looked at faces of pierced or unpierced people).

The other features were referred to as subjective features, such as the level of

arousal or valence (how positive or negative is the environment), and they were

assigned by each participant on the last day of the study while watching a playback of

the own actions in the virtual world.

Figure 1 shows a screenshot of the virtual world and the behavioural time vector

ratings of multiple categories representing what participants perceived/experienced

during the navigation of the virtual world. For the first two runs, videos of the subject’s

path through the virtual reality environment along with 20 minutes of continuous fMRI

data and target feature ratings were provided, whereas for the third run the ratings

were not provided.
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Figure 1. Screenshot of the virtual world (a); illustration of behavioral time vector ratings
of multiple categories (b).

The purpose of the competition was to predict feature rating vectors for the third

segment.

2.3 fMRI Dataset

3T EPI fMRI data from three subjects in three runs were downloadable from the

Pittsburgh Brain Activity Interpretation Competition web site (PBAIC 2007). Twenty

minutes of continuous functional data, consisting of 704 of 64x64x34 image volumes,

were available for each participant in each run. The acquired images were motion

corrected, slice time corrected, detrended and spatially normalized.

The fMRI data of the first two runs were used for the learning phase, whereas the last

run was used as test set for the prediction of the related ratings.

2.4 fMRI Decoding Method

The proposed fMRI decoding method is modelled as a multiphase process (pre-

processing phase, prediction phase) as shown in Figure 2.

In the pre-processing phase we first extracted only those voxels belonging to the

brain cortex, by using the respective masks available for each subject. Then, for each

subject, all brain voxel time series were normalized to the same mean intensity and

temporally filtered. We then performed the voxel subset selection based on a filter

approach. For each feature rating, convolved with the canonical Hemodynamic

Response Function (HRF), we computed the correlation with each voxel time series in

the image volumes, separately for each subject and run. Then we selected only those

voxels showing a correlation that was significant at the 0.05 level (r > 0.45, p< 0.05).

The subsets extracted for the first two runs, used as training set, were merged to form

the final set of voxel time series.
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Figure 2. Architecture of the system.

In order to validate the methodology, we initially used only the first run for training and

the second one for testing the method. In particular we developed two different

approaches for the pre-processing phase. In the first approach we used the subset of

voxels extracted by the correlation filter directly as input to SVM. In the second

approach we clustered the selected voxels using hierarchical clustering and k-means

algorithms into 100 clusters, then we extracted the centroid of each defined cluster and

used it like a super-voxel as input to SVM for the prediction phase.

After this initial step, dedicated to the validation of the methodology, we selected the

pre-processing approach that provided the best results with the first two runs. Thus, in

the prediction phase, we used run 1 and run 2 of the same subject as training data to

predict, in the test phase, the feature ratings for the third run. For each subject each

feature was predicted separately.

2.5 SVM Regression (SVR)

Support Vector Machines (SVM) were developed by Vapnik (1995) to solve

classification problems, but recently SVM have been successfully extended to

regression and density estimation problems (Smola & Schölkopf, 2004, for a review).

Suppose we have training data ( ) ( ) ( ){ }NN yxyxyx ,,...,,,, 2211 ℜ×ℜ⊂ M , in the ε-

insensitive Support Vector Regression (SVR) technique (Vapnik, 1995) the goal is to

find the function ( )xf that has at most ε deviation from the actually obtained target iy

for all the vectors of observation ix in the training data, and at the same time is as flat

as possible. In nonlinear SVR, the input vector x is first mapped onto a high



Decoding Cognitive States from fMRI Data Using Support Vector Regression

195

dimensional feature space using some fixed nonlinear mapping, and then a linear

model is constructed in this feature space as:

( ) ( ) bxwxf +Φ= , , ℜ∈ℜ∈ bw M , (1)

where ⋅⋅, denotes the dot product in Mℜ , w is the weight vector, ( )xΦ is the

nonlinear mapping function, and b is the bias.

However, one also want to allow for some errors, thus, analogously to the soft margin

loss function adopted by Vapnik (1995), one can introduce (non-negative) slack

variables Niii ,...,1,, * =ξξ to measure the deviation of training samples outside the ε -

insensitive zone. Thus the problem can be modelled as a convex optimization problem

that, in the nonlinear case, can be formulated as:
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In most cases, problem (2) can be easily solved in its dual formulation, that provides

the key to extend SVR to nonlinear cases. The solution of the dual convex problem can

be expressed as:

( ) ( ) ( ) bxxKxf i

N

i ii +−= ∑ =
,

1

*αα (3)

where *, ii αα are the so called Lagrange multipliers and ( )', xxK is the kernel

function. SVM algorithm only depends on dot products between patterns ix , hence it is

sufficient to know the kernel function ( ) ( ) ( )'' ,, xxxxK ΦΦ= rather then Φ explicitly.

From the optimality constraints that are behind the dual problem definition, it is

possible to derive w as a linear combination of the training patterns:

( ) ( )i

N

i
ii xw Φ−= ∑

=1

*αα (4)

The difference from the linear case is that w can no longer given explicitly, whereas

the flattest function ( )xf , that has to be found in the feature space (not in the input

space), can be expressed through the trick of the kernel function.

Several functions, such as polynomial functions, radial basis functions (RBF), splines,

hyperbolic tangent functions, can be used as kernel in SVR (Burges, 1998; Smola &

Schölkopf, 2004). These functions have to satisfy the conditions of the Mercer’s

theorem (Mercer, 1909), that is the conditions under which it is possible to write ( )', xxk
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as a dot product in some feature space. In particular, translation invariant kernels

( ) ( )'', xxkxxk −= , that are proved be admissible kernels, are widespread, among

which one of the most widely used is the RBF kernel that can be written as:

( ) 2

2

2

'

', σ
xx

exxk
−

−
= (5)

It is well known that SVM generalization performance (estimation accuracy) depends

on a good setting of meta-parameters C, ε and the kernel parameters (Burges, 1998;

Smola & Schölkopf, 2004). The parameter C determines the trade off between the

model complexity and the degree to which deviations larger than ε are tolerated in

optimization formulation. Parameter ε controls the width of the ε -insensitive zone,

used to fit the training data. The value of ε can affect the number of support vectors

used to construct the regression function. The biggerε , the fewer support vectors are

selected. Hence, both C and ε -values affect model complexity, but in a different way.

3. Results and Discussion

In developing the decoding method, we tested and tuned the SVR using run 1 for all

subjects as training and run 2 as test set. We then applied our method for predicting

the feature ratings of the third run after training on the voxels and ratings of the first two

runs. All the algorithms used here were developed in Matlab 7.0.1 (R14), by using the

SVM toolbox (Gunn, 2007) for developing regression algorithms and the tools of NIfTI

(ANALYZE) MR image (Shen, 2005) for fMRI volume visualization.

In the pre-processing phase, all brain voxel time series were normalized to the same

mean intensity (subtracting their mean and dividing by their standard deviation) and

temporally filtered, by using a running average filter with window size = 7 (Figure 3).

As mentioned in section 2.4, we tested two different approaches of SVR input

preparation, one based on a correlation filter for voxel selection and the other based on

voxel selection followed by feature extraction. In particular, in the first approach we

extracted for each subject the set of voxels showing a correlation with each feature

rating (convolved with the canonical HRF) of run 1 that was significant at the 0.05 level

(r > 0.45, p< 0.05) and merged them to obtain the final set. We then used the

coordinates of the extracted voxels for selecting the same set of voxels from run 2.

SVR was finally employed for predicting the feature ratings of the second run using the

voxel time series and the target ratings of the first run as training set. In the second



Decoding Cognitive States from fMRI Data Using Support Vector Regression

197

approach, we applied a clustering step in the pre-processing phase based on

hierarchical clustering and k-means algorithm, but we did not find any improvement in

run 2 feature rating prediction. In contrast, we observed a general degradation of the

prediction performance. We suggest that this deterioration could be due to a loss of the

original distributed information which was compressed in the clustering phase. Thus,

for the prediction of the target feature ratings of the third run we did not apply any

clustering procedure or feature extraction.

Figure 3. Example of voxel time series after normalization (in blue) and temporal filtering
(in red).

Figure 4. Selected voxels (subject 14) after computing the correlation
with the convolved feature ratings (all features) on run 1 and run 2

and selecting the intersection between the two runs.
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After the validation of the method, we used it for predicting target feature ratings of

the third run. We therefore extracted two different subset of voxel time series, applying

the correlation filter for both run 1 and run 2 with their respective feature ratings, and

considered only the intersection between them as the final set to be used for selecting

the voxels in the third run (Figure 4).

SVR was then employed to predict the feature ratings for run 3, using voxels and

ratings of the first and second run as training set. As explained in section 2.4.1, in the

prediction phase the choice of the regularization constant C, the kernel function and its

parameters was a fundamental key for obtaining good generalization performance. We

explored different sets of critical parameters, empirically obtaining the best results

using C=2 and the Exponential Radial Basis function (with σ =6) as nonlinear kernel.

Table 1 shows the results obtained with the first pre-processing approach for the

prediction of the target feature ratings relative to the third run. The prediction scores

are expressed in terms of standardised correlation coefficients, and, at least for the

third run, were computed directly by the Experience Based Cognition (EBC) Project

staff that had the relative target feature ratings. In particular, the scoring algorithm

adopted by the EBC team was based on two steps. In the first step, the Pearson

correlation coefficient r between the predicted feature and the observed subject rating

was computed for each feature. In the second step, the Fisher transformation, that

makes the scores normally distributed, was applied to each correlation calculated in the

previous step, according to:









−
+=

r

r
z

1

1
log

2

1
' (12)

The obtained predictions, at least for a subset of features, reached a good correlation

with the target ones. A consistency across subjects can be noted with respect to the

features that are more reliably predicted.

Subject
1

Subject
13

Subject
14

Body 0.2421 0.4178 0.3438

Velocity 0.4554 0.5197 0.7126

Hits 0.3035 0.4339 0.3959

Instruction 0.5453 0.7957 0.7842

Faces 0.2611 0.3595 0.5871

Table 1: The best feature rating predictions, expressed in terms of correlations, achieved on
run 3 for all subjects. The best three correlations for each subject are shown in bold font.
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In conclusion, the aim of this study was to explore the feasibility of SVR in the case of

an extremely complex regression problem, in which subjective experience of

participants immersed in a VRE had to be predicted from their fMRI data. We used a

decoding method modeled as a multiphase process: a pre-processing phase, based on

a filter approach, for fMRI image voxel selection, and a prediction phase, implemented

by nonlinear SVR, for decoding subjective cognitive states from the selected voxel time

series. Results are quite good, at least for a subset of feature ratings. The emphasis of

SVM/SVR on generalization ability makes this approach particularly interesting for real-

world applications of BCI (Weiskopf et al., 2004; Piccione et al, 2006; Sitaram et al.,

2007; Piccione et al., 2008), in particular when the amount of training data is limited

and the input space has a high dimension (as in the case of fMRI data).

Planned extensions to this work include the evaluation of different feature extraction

techniques to combine with SVM/SVR or the use of embedded methods, in the context

of nonlinear kernels, for voxel selection and ranking, in order to extract a more compact

and informative set of voxels and to further increase the prediction accuracy.
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