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Most words in English have more than one syllable, yet the most
influential computational models of reading aloud are restricted
to processing monosyllabic words. Here, we present CDP++, a
new version of the Connectionist Dual Process model (Perry, Zie-
gler, & Zorzi, 2007). CDP++ is able to simulate the reading aloud
of mono- and disyllabic words and nonwords, and learns to assign
stress in exactly the same way as it learns to associate graphemes
with phonemes. CDP++ is able to simulate the monosyllabic bench-
mark effects its predecessor could, and therefore shows full back-
wards compatibility. CDP++ also accounts for a number of novel
effects specific to disyllabic words, including the effects of stress
regularity and syllable number. In terms of database performance,
CDP++ accounts for over 49% of the reaction time variance on items
selected from the English Lexicon Project, a very large database of
several thousand of words. With its lexicon of over 32,000 words,
CDP++ is therefore a notable example of the successful scaling-up
of a connectionist model to a size that more realistically approxi-
mates the human lexical system.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Most words in English have more than one syllable (e.g., Baayen, Piepenbrock, & van Rijn, 1993),
yet the most influential computational models of reading aloud have been developed for monosyllabic
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words (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Perry, Ziegler, & Zorzi, 2007; Plaut,
McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989; Zorzi, Houghton, &
Butterworth, 1998a). Jared and Seidenberg (1990) noted this imbalance almost two decades ago, stat-
ing: ‘‘Although a great deal is known about the naming process, a serious limitation of previous work
is that it has been largely concerned with the processing of monosyllabic words” (p. 92). This situation
has not changed much since.

It is possible to identify at least three reasons why the modeling of multisyllabic word reading has
lagged behind. First, many modelers would argue that a sensible modeling strategy is to ‘‘start small”,
thus reducing the complexity of the models and allowing an in-depth understanding of their funda-
mental properties (see e.g., Becker, Behrmann, Moscovitch, & Joordens, 1997; Kawamoto & Zemblidge,
1992; Perry, 1999). Second, the empirical database of English has been strongly biased towards mono-
syllabic words. That is, many landmark investigations of the classic benchmark effects were initially
done using monosyllabic words (e.g., Glushko, 1979; Jared, 2002; Taraban & McClelland, 1987; Wee-
kes, 1997). Similarly, the highly influential work based on regression analyses of large-scale databases
was initially focused on monosyllables (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Spieler
& Balota, 1997; Treiman, Mullennix, Bijeljac-Babic, & Richmond-Welty, 1995). Finally, and most
importantly, modeling the reading aloud of multisyllabic words is simply a more difficult enterprise
because a number of additional issues have to be addressed, such as syllabification strategies and
stress assignment.

To give an example of the kind of problems that have to be dealt with when reading multisyllabic
words, consider the words cancer and canal. With these words, any model of disyllabic reading not
only needs to know where to put the syllable boundary (can.cer versus ca.nal), but also that cancer
is stressed on the first syllable and canal is stressed on the second. Even assuming that it is possible
to look up this information in a phonological lexicon, one still faces the problem that people can read
nonwords, such as commoke or zortess (see Rastle & Coltheart, 2000), for which stress is consistently
assigned on the first syllable in zortess and on the second in commoke. This means that in the absence
of lexical phonology, people are able to assign stress nonlexically. Any new model of disyllabic reading
aloud should be able to predict such patterns.

In the present paper, we present a new computational model of disyllabic word reading. In the spir-
it of the nested incremental modeling strategy advocated in our previous work, this model is an exten-
sion of the Connectionist Dual Process (CDP) model (Perry et al., 2007; Perry, Ziegler, Braun, & Zorzi,
2010; Zorzi et al., 1998a; see Zorzi (2010) for a review). At present, the most recent version (CDP+) has
been shown to be the most successful model of reading aloud, at least in terms of its quantitative per-
formance on monosyllabic words. We refer to the new model as CDP++ because it includes its own
precursor (CDP+) as a special case. We start with an overview of the benchmark effects that any com-
putational model of reading aloud that deals with disyllabic words should be able to address and then
briefly discuss the two existing computational models that can simulate the reading aloud of multi-
syllabic words. Finally, we give a full description of CDP++ and present a thorough evaluation of its
performance against a number of benchmark effects described below.
1.1. Benchmarks for a model of disyllabic word reading

1.1.1. Monosyllabic word reading
Any model of disyllabic word reading should be able to simulate the critical empirical phenomena

identified for monosyllabic word reading – that is, it should be backwards compatible. Backwards com-
patibility is a key element in incremental nested modeling (Jacobs & Grainger, 1994). A list of mono-
syllabic benchmark effects has been proposed by Perry et al. (2007, Table 4). This list includes the
effects of word frequency (e.g., Weekes, 1997), spelling–sound consistency (e.g., Jared, 2002), and
word length (e.g., Ziegler, Perry, Jacobs, & Braun, 2001), as well as various interactions between these
factors. Moreover, the model needs to be able to read nonwords with a high level of accuracy (e.g.,
Besner, Twilley, McCann, & Seergobin, 1990) and give pronunciations that are similar to those given
by skilled readers (e.g., Andrews & Scarratt, 1998; Seidenberg, Plaut, Petersen, McClelland, & McCrae,
1994).
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1.1.2. Large-scale database performance
In contrast to the thousands of experiments on monosyllabic word reading, the number of exper-

iments examining the reading aloud of disyllabic words is very limited (see below). Fortunately, how-
ever, the English Lexicon Project (ELP; Balota et al., 2007) includes data from 1200 skilled adult readers
on more than 40,000 words, many of which are disyllabic, and thus provides a rich and very large
database of reading performance. This database has been used to evaluate model performance at
the item-level by regressing model latencies onto the human ones (Yap & Balota, 2009). This provides
an overall goodness-of-fit measure in terms of the percentage of variance accounted for, which is a
sensitive measure for adjudicating between existing models (Coltheart et al., 2001; Perry et al., 2007).

A second way the ELP database has been used is by examining theoretically important factors that
models are sensitive to (e.g., frequency, length, consistency, etc.), rather than just overall fit. This was
done by Yap and Balota (2009) who used a hierarchical regression approach in which different vari-
ables of theoretical interest were entered as predictors of both human and model naming latencies.
This approach allowed them to investigate the extent to which a model is sensitive to the same vari-
ables that influence human performance both in terms of the strength and the direction of the effects.
In particular, Yap and Balota first examined a group of variables that was designed to account for var-
iance in the onsets of words, they then added the effect of word stress, followed by a set of standard
lexical variables, and finally a number of more intricate variables such as those to do with sublexical
orthography–phonology mappings.

Apart from the effects of single variables, there are also a number of interactions that show system-
atic effects in the reading aloud of disyllabic words. In particular, Yap and Balota (2009) examined how
frequency interacts with a number of theoretically interesting variables, including syllable number,
letter length, orthographic neighborhood, and spelling–sound consistency. In small-scale experiments,
the effect of these variables has often been found to greatly diminish when examined with high-fre-
quency words (e.g., Andrews, 1989; Ferrand, 2000; Ferrand & New, 2003; Jared & Seidenberg, 1990;
Weekes, 1997) although there are some exceptions to this pattern, such as additive effects of fre-
quency and consistency (Jared, 1997, 2002; Ziegler, Perry, & Coltheart, 2003). Yap and Balota found
that all of the interactions were significant and all were in the expected direction (i.e., the effects
diminished at higher frequencies). These interactions provide a highly constraining test for computa-
tional models since to simulate them, models need to capture the covariation between different vari-
ables rather than just the behavior of single variables by themselves.
1.1.3. Syllable number
One effect that is specific to reading aloud multisyllabic words is the effect of syllable number (i.e.,

the more syllables a word has, the longer it takes to read aloud, everything else being equal). Jared and
Seidenberg (1990, Experiment 3) reported a significant effect of syllable number (see also Butler &
Hains, 1979) and a significant interaction between syllable number and word frequency. Ferrand
(2000) replicated the syllable number by frequency interaction in French. Recently, Yap and Balota
(2009) also observed such an interaction in their ELP analyses, even after controlling for letter length,
number of phonemes, frequency, and orthographic (e.g., Coltheart, Davelaar, Jonasson, & Besner, 1977)
and phonological (e.g., Yates, 2005) neighborhood. Interestingly, effects of syllable number but not let-
ter length were also present in their analyses of lexical decision latencies. This finding suggests that
the effect of syllable number may not simply reflect phonological output processes, which gives some
support to the claim of Álvarez, Carreiras, and Taft (2001) that ‘‘any model of lexical access has to
incorporate a syllable level of representation or include the syllable as a sublexical unit in processing”
(p. 553).
1.1.4. Consistency effects
The issue of how the consistency of the spelling-to-sound mapping affects reading aloud has been

one of the primary areas of research not only for monosyllables but also for disyllables (Chateau &
Jared, 2003; Jared & Seidenberg, 1990). Unlike frequency, length, and many other variables, consis-
tency measures need to be redefined in the context of disyllabic words. In particular, consistency
needs to be calculated for both the first and the second syllable.
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Actually how consistency should be defined is not necessarily straightforward. One of the first
studies to examine this question with disyllabic words was by Jared and Seidenberg (1990). In their
study, they used a regularity metric based on whether a word contained a syllable with a
spelling–sound correspondence that would be atypical when compared to the same syllable read
aloud in isolation. They also used an all-or-nothing consistency measure, whereby inconsistent sylla-
bles were defined based on there being other words with the same orthographic syllable, but where
the syllable in at least one of the other words had an exceptional correspondence in it. Their results
showed effects of both of these measures in both the first and last syllables of words, with the effect
being mainly evident in low-frequency words.

In more recent studies, consistency has been defined as a continuous measure for various spelling–
sound relationships (e.g., Chateau & Jared, 2003; Treiman et al., 1995; Yap & Balota, 2009). Chateau
and Jared (2003) evaluated a large number of these different types of relationships on a database of
six letter words. These included both within-syllable and across-syllable mappings.

The within-syllable relationships examined by Chateau and Jared (2003) included consonants by
themselves, the vowel by itself, the onset-vowel and vowel-coda (body–rime) relationship. Whilst
the results they found were quite complex, they did find that the consistency of the second vowel
was generally a good predictor of naming latencies. Yap and Balota (2009) also examined consistency
with both onset and body–rime measures, and included both feedforward and feedback consistency,
the second of which measures how consistently a word’s pronunciation maps to its spelling (e.g.,
Ziegler, Stone, & Jacobs, 1997). All of their measures predicted some variance in the naming latencies
of a large database of items they used, although, unlike the Chateau and Jared study, their results did
not take into account the effect of vowel consistency alone.

Apart from within-syllable measures, both Chateau and Jared (2003) and Yap and Balota (2009)
examined across-syllable measures too. The across-syllable measure Chateau and Jared examined
was based on Taft’s (1979) Basic-Orthographic-Syllable-Structure (BOSS). This metric splits disyllables
into two representational parts (orthographic syllables) based on the maximization of consonant let-
ters. The first part of the word that occurs before the split, excluding onset consonants, is known as
the Body of the BOSS (i.e., the BOB). In its simplest definition (Taft, 1979), consonant maximization
works by including all of the consonants that could legitimately occur at the end of a word in the first
syllable as long as they do not break a morphological boundary (e.g., the BOB of cradle would be -ad,
since –dl never occurs at the end of a word, but –d does). This can lead to cases where a grapheme1

that corresponds to a phoneme in the second syllable is placed in the first orthographic syllable. Chateau
and Jared found that BOB consistency was a comparatively strong predictor of naming latencies com-
pared to the other metrics they examined, such as body–rime consistency.

Another measure of across-syllable consistency was examined by Yap and Balota (2009). This met-
ric was based on Yarkoni, Balota, and Yap’s (2008) idea that Levenshtein distance, a measure that al-
lows for the graded inclusion of insertions and deletions of letters and phonemes into a similarity
calculation, could be used to determine the similarity that orthographic and phonological patterns
have with each other. Thus, unlike a simple positionally constrained metric, which predicts, for exam-
ple, that flog and log are entirely different because there is no letter-letter overlap (i.e., the first letter in
flog is different to the first letter in log, the second letter in flog is different to the second letter in log,
etc.), this measure predicts that they have some similarity. Yap and Balota showed that a consistency
measure based on a Levenshtein distance metric predicted a small amount of unique variance over
and above just within-syllable measures, as did more simple measures that simply took the average
value of within-syllable consistency metrics across syllables.

A number of studies have investigated the effects of consistency with disyllables in small-scale
experiments (e.g., Chateau & Jared, 2003; Chen & Vaid, 2007; Jared & Seidenberg, 1990; Taft, 1979,
1 The term grapheme can be used in multiple ways. Here, we use it to mean a single letter or a group of letters that is associated
with a phoneme, but whose orthographic representation can be used independently from that association. For example, the
graphemes in a word like folk might be f-o-l-k, even though –l is not commonly associated with any of the phonemes in the word
folk (-l only sporadically occurs with words with /k/ in them). At present, the graphemes used in CDP++ represent a hypothesis
about those people use and were selected by hand.
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2001). In general, these studies have found that the consistency of various units facilitates reading
aloud, although the results have typically been less reliable than those found with monosyllables in
comparable manipulations, where extremely strong effects have often been found (e.g., Jared, 2002;
Rastle & Coltheart, 1999).

1.1.5. Stress regularity2

A major challenge for models of multisyllabic word reading is the assignment of word stress. For
some languages, such as French, this is not a problem, because French simply does not have lexically
assigned word-level stress (e.g., Dupoux, Pallier, Sebastian-Galles, & Mehler, 1997). For English, how-
ever, word-level stress assignment is quite variable, and stress can fall on different syllables in differ-
ent words. Despite this, there is a tendency to assign stress to the first syllable of disyllabic words,
with 78% of such words being stressed on the first syllable (Ševa, Monaghan, & Arciuli, 2009). Because
of this pattern, it has been suggested that disyllabic words in English can be considered stress regular if
they are stressed on the first syllable and stress irregular if they are stressed on the final syllable (e.g.,
Brown, Lupker, & Colombo, 1994; Colombo, 1992; Monsell, Doyle, & Haggard, 1989).

Monsell et al. (1989) were the first to investigate the effect of stress regularity and its possible
interaction with word frequency in disyllabic English words. They found that although stress irregular
low-frequency words were named more slowly than stress regular low-frequency words, neither the
main effect of stress regularity nor the interaction between stress regularity and frequency reached
significance (for a re-analysis of their data, see Rastle & Coltheart, 2000). Brown et al. (1994) repeated
their experiment and found a main effect of stress regularity and an interaction between frequency
and regularity that was close to significance. However, Rastle and Coltheart raised doubts about the
validity of those results because neither item analyses nor item data were provided.

Because of the problems identified in the Brown et al. (1994) study, Rastle and Coltheart (2000,
Experiment 1) attempted to produce a frequency by regularity interaction with a new set of English
disyllabic words. As before, stress regularity was simply defined by default, that is, words with first
syllable stress were considered regular and words with second syllable stress were considered irreg-
ular. The results, for both latency and error data, showed neither an effect of stress regularity nor an
interaction between stress regularity and frequency. Because of these results, Rastle and Coltheart
developed a more complex definition of stress regularity that was based on a rule-based system for
stress assignment. This rule-based system was largely inspired by linguistic analyses of stress patterns
in English by Fudge (1984) and Garde (1968), which suggested that 51 word beginnings and 101 word
endings (most of which were morphemes) could predict the placement of stress. This system was
implemented in the form of an algorithm that used the correspondences between these morphemes
and the stress pattern typically associated with them to predict stress (see Fig. 1).

When stress regularity was defined on the basis of this algorithm (Fig. 1), Rastle and Coltheart
(2000, Experiment 3) reported an interaction between frequency and stress regularity both in the la-
tency and error data. The interaction was, however, only marginal in the latency analysis. Two addi-
tional studies that also used more complex definitions of stress regularity than a simple first syllable
default also reported stress-regularity effects for words, but in both studies the effects were limited to
errors and no reliable stress-regularity effect was obtained on RTs (Arciuli & Cupples, 2006; Kelly,
Morris, & Verrekia, 1998).

Apart from small-scale experiments, the effect of simple stress position has also been examined in
two large databases (Chateau & Jared, 2003; Yap & Balota, 2009). A similar result was found in both
databases. In terms of RTs, there was either no significant effect (Chateau & Jared, 2003) or a very weak
effect that was potentially caused by intercorrelated variables rather than by stress itself (Yap &
Balota, 2009). Alternatively, in terms of errors, unlike the results of Rastle and Coltheart’s (2000) first
experiment, there appeared to be a small but significant effect, with words with first syllable stress
being named more accurately than words with second syllable stress.
2 Some studies use typicality and some studies use regularity to describe when a word is stressed in a way that is not as predicted
for some reason. Here we use the term regularity even when the other studies have used typicality.
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Fig. 1. Nonlexical stress assignment algorithm proposed by Rastle and Coltheart (2000).
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Overall, the findings of both small-scale experiments (e.g., Arciuli & Cupples, 2006; Kelly et al.,
1998) and large-scale database analyses (Chateau & Jared, 2003; Yap & Balota, 2009) converge to sug-
gest that when stress is defined as a simple first syllable default, an effect of stress irregularity can only
be found on errors. In contrast, stress effects on RTs were limited to a single experiment (Rastle &
Coltheart, 2000, Experiment 3) that used a complex definition of stress regularity. We therefore sug-
gest that stress-regularity effects on errors are the critical benchmark effect for models of reading
aloud disyllabic words. To what extent stress effects can be obtained on RTs needs further
investigation.
1.1.6. Nonword reading
While stress assignment for real words could potentially be solved via a lexical lookup procedure

(which of course would not predict the existence of a stress-regularity effect), people typically assign
stress when reading nonwords such as zortess and commoke. Thus, a model must be able to assign
stress nonlexically. This problem has been tackled by Rastle and Coltheart (2000), who developed
the algorithm for stress assignment presented in Fig. 1. This algorithm can be applied to both words
and nonwords. Rastle and Coltheart (Experiment 2) actually tested whether their algorithm would
predict human stress assignment on a set of 210 disyllabic nonwords that were predicted by their
algorithm to have either first syllable or second syllable stress. They showed that the algorithm agreed
with the dominant stress pattern given by participants around 84% of the time. However, as noted by
Ševa et al. (2009), their set of nonwords was somewhat biased towards good performance of the algo-
rithm due to the majority containing affixes that were present in the morpheme list used by the algo-
rithm to help predict stress. They therefore examined the performance of the algorithm on the more
unbiased set of nonwords that was used by Kelly (2004) in a stress judgment task,3 where stress was
3 Whilst the study is not technically a naming task, it is likely to give very similar results.



112 C. Perry et al. / Cognitive Psychology 61 (2010) 106–151
found to be attracted by onset cluster complexity, a factor unrelated to the information specified in Ras-
tle and Coltheart’s algorithm. On those nonwords, the algorithm did not perform as well.

The complexity of consonant clusters in disyllabic nonwords has also been found to influence pro-
nunciation. In particular, Waese and Jared (2006) examined how, in disyllabic nonwords, the length of
the first vowel is influenced by the number of following consonants that occur before the second vo-
wel. Waese and Jared compared three groups of nonwords. In one of the groups, a single consonant
followed a single letter vowel (e.g., bafest), whereas in the other two groups two consonants followed.
Of the groups with two consonants, one had consonant sequences that formed a legal second syllable
onset (e.g., baflet) whereas the other had consonant sequences that did not form a legal second syllable
onset (e.g., bafnor). The results showed that in the single consonant group, people were less likely to
give short vowel responses (Single: 73%; Legal: 87%; Illegal: 93%) than the other two groups. Clearly
then, the number of consonants that come after a vowel affects whether people are likely to produce
the vowel long or short.

1.2. Previous models

1.2.1. Multi-trace memory model
The most well known model of reading aloud that deals with multisyllabic words is the connec-

tionist multiple-trace memory model (MTMM) of Ans, Carbonnel, and Valdois (1998), which is cur-
rently set up to read French. In that model, all words are learnt in a connectionist network, and the
same network is also used to read aloud nonwords. The network is structured such that there is an
orthographic layer, where letters are input, and a phonological layer, where phonemes are output. In-
puts into the orthographic layer use letter specific coding where the rightmost letter of the first vowel
grapheme is centered at a ‘‘focal” point, and the rest of the letters occur in a contiguous sequence to
the right or left of that letter. Representations in the phonological layer are centered on the vowel,
with the other phonemes clustered around it in the same way letters are clustered around the focal
point. When the model processes multiple syllables at the same time, the phonological layer is orga-
nized such that each syllable is coded separately around a vowel, unlike the orthographic layer, where
letters are only ever clustered around a single focal point.

The MTMM has two ways of reading aloud, a global mode and an analytical mode. In global mode,
all letters of the word or nonword are processed in parallel. In analytical mode, the word or nonword is
decomposed into orthographic segments (generally syllables) and each syllable is read-out one-by-
one by the model. The entire pronunciation is then built up based on multiple presentations.

Currently, the MTMM has no English implementation, which makes it impossible to test the model
on the ELP database and the various benchmark effects described above. In addition, the model has no
procedure to deal with stress assignment. This is not a problem for the original French implementation
of the MTMM, because French has no word-level stress (Dupoux et al., 1997). However, it is a problem
for implementing the model in English because it is not simply possible to change the database from
French to English because how the model deals with stress would need to be specified. Therefore, a
complete evaluation of the model has to be postponed until an English version of the model is made
available.

1.2.2. The junction model
A second model of reading aloud that can deal with multiple syllables is that of Kello (2006), the

Junction model. The Junction model uses simple recurrent networks (SRNs) that are trained to convert
variable-length sequences into fixed-width representations and vice versa. For reading, an input SRN
is used to encode letter sequences and phonemes into a fixed width representation, and another SRN is
used to decode the fixed-width representations back. These representations and semantic ones are
then bound together via a set of intermediate nodes, which allows the model to produce outputs (pho-
nemes) from inputs (letters).

This ‘‘junction” at the intermediate layer, apart from being necessary to learn the input–output
mapping, is theoretically important because it means that the model departs from the idea that there
are two separate ways to get to phonology from print. This differs from most models, which converge
on the assumption that phonology can be generated through a spelling–sound mapping process as
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well as retrieved through a pathway that involves lexical (e.g., Coltheart et al., 2001; Zorzi et al.,
1998a) or semantic (e.g., Harm & Seidenberg, 2004; Plaut et al., 1996) representations. Instead, in
the Junction model, semantics, orthography and phonology are linked through a single, shared level
of representation. In this sense, whilst it is still a connectionist model and still uses similar learning
principles (i.e., backpropagation and its variants), it is theoretically very different from the Triangle
framework initially proposed by Seidenberg and McClelland (1989). It is also very different from
the two-layer network of CDP+ (Perry et al., 2007). CDP+ assumes that the relationship between
orthography and phonology is generally very simple, and that the mapping is direct rather than med-
iated (Houghton & Zorzi, 2003; Perry et al., 2007; Zorzi et al., 1998a).

At present, the Junction model is in preliminary development. It was mainly tested on the ELP data-
base (Kello, 2006; Yap & Balota, 2009), where it accounted for around 30% of the variance on the RTs of
the words (Yap & Balota, 2009). A major problem it has, however, is poor nonword reading, where it
produced errors on around 70% of the tested items (Kello, 2006).

A model similar to the Junction model has been recently proposed by Sibley, Kello, and Seidenberg
(2010). This model includes stress nodes such that stress-regularity effects can be simulated. The
model was also specifically designed to improve nonword reading, which was done by changing
the input coding. Despite this, its error rate (15% with monosyllabic and 35% with disyllabic non-
words) remains very high in comparison to skilled readers. Moreover, nonword stress assignment
(i.e., generalization performance) has not yet been tested.
1.2.3. Ševa et al.’s model of stress assignment
Within the connectionist framework, Ševa et al. (2009) developed a connectionist model of stress

assignment for English to show that stress assignment is possible without using explicit linguistic
rules (see also Gupta & Touretzky, 1994; Zevin & Joanisse, 2000). The model is a simple feedforward
network that learns to map the orthography of words into stress position. The orthographic input
layer is composed of 14 letter slots (364 input units). The input layer is fully connected to a layer
of 100 hidden units, which in turn is fully connected to one output unit, which is used to represent
which syllable is stressed.

On the CELEX database, the model of Ševa et al. (2009) learned to assign stress correctly for 97.0% of
the words with first syllable stress and for 77.0% of the words with second syllable stress. In this re-
spect, the model was slightly superior to the algorithm proposed by Rastle and Coltheart (2000),
which obtained 92.5% and 75.6% correct classifications, respectively. The model was also tested on
two nonword datasets (Kelly, 2004; Rastle & Coltheart, 2000) by examining how well it would predict
each item, where each item was dichotomized into a correct and incorrect category based on which
syllable the majority of participants assigned stress to. On the Rastle and Coltheart (Experiment 2)
nonword data, the model correctly assigned stress on 87.7% of the items with first syllable stress
and 49.5% of the items with second syllable stress. The algorithm of Rastle and Coltheart was superior
on this dataset, yielding 93.0% and 74.7% correct classifications, respectively. On the Kelly set, the
model produced 88.6% and 42.2% correct classifications for nonwords with first syllable and nonwords
with second syllable stress, respectively. On this nonword set, Ševa et al.’s model outperformed the
Rastle and Coltheart algorithm, which produced 78.2% and 43.8% correct classifications, respectively.
Ševa et al. suggested that these results showed that a model that learns simple statistical relationships
between orthography and stress may provide a simpler and more parsimonious account of stress
assignment than the algorithm of Rastle and Coltheart.
2. Beyond single syllables: CDP++

In this section, we describe the basic architecture and processing assumptions of CDP++. Because
CDP++ is built based on its direct precursor, we start with a short description of CDP+ (Perry et al.,
2007).

CDP+ contains a number of independent representational levels (see Fig. 2). They can be broken
down into two main parts: (1) the sublexical part, which contains the graphemic buffer and the
two-layer network of phonological assembly (TLA network); and (2) the lexical part, which contains
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the orthographic and phonological lexicons. The two parts are connected at the letter level and the
phonological output buffer. The sublexical part of the model generates pronunciations for letter
strings regardless of their lexical status and it is crucial for decoding novel stimuli (i.e., nonwords),
with the graphemic buffer being used to organize single letters into the limited set of graphemes that
are used by the model. The lexical part of the model is used to retrieve word pronunciations based on
whole-word representations (i.e., access ‘‘the mental lexicon”).

The distinguishing – and most crucial – component of CDP+ is the TLA network (Zorzi et al., 1998a;
Zorzi, Houghton, & Butterworth, 1998b). This network learns the most reliable mappings between
orthography and phonology through its exposure to words that are encoded as sequences of graph-
emes and phonemes. The use of graphemes rather than individual letters is based on the hypothesis
that the reading system uses a graphemic buffer where orthographic information is structured into a
graphosyllabic template, with the most frequent graphemes used as representational units (Houghton
& Zorzi, 2003).

To encode graphemes and phonemes, the TLA network uses a CCCVCCCC structure in both its input
(graphosyllabic) and output (phonological) representations. At the phonological level, the Cs and Vs
represent phonemes. Thus, phonological representations are not a linear string of phonemes as they
are in some models (e.g., Coltheart et al., 2001), but rather, are structured into their syllabic constit-
uents. At the orthographic level, the Cs and Vs represent consonant and vowel graphemes, rather than
just the single letters that were used in CDP. This means that multi-letter graphemes (e.g., TH, EA, etc.)
are encoded by a single unit. Thus, whenever a letter string is presented to the model, graphemes are
first identified by a graphemic parser (with complex graphemes being preferred over simpler ones
whenever there is potential ambiguity) and then placed in their appropriate slot in the buffer. Onset
graphemes are assigned to the first three slots of the template (from left to right), the vowel grapheme
to the vowel slot, and the remaining coda graphemes to the four remaining slots. In training, pho-
nemes are assigned to the phonological template in exactly the same way.

Orthographic and phonological representations in the TLA network make direct contact with each
other through the network connections (i.e., there are no intermediate layers of hidden units) and
the relationship between graphemes and phonemes is learnt via a simple learning algorithm known
as the delta rule (Widrow & Hoff, 1960). This rule is formally equivalent to a classical conditioning
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law (the Rescorla–Wagner rule; Sutton & Barto, 1981) and has been directly applied to human learn-
ing (see Siegel and Allan (1996) for review). After training, when a stimulus is processed by CDP+, the
graphemic parser computes grapheme representations from the letters available at the level of the let-
ter detectors and inserts them into the graphosyllabic template. Activation spreads to the phoneme
units of the TLA network, generating a plausible sublexical phonological representation.
2.1. Overview of CDP++

Extending CDP+ computationally to disyllabic words requires a number of modifications. These
are: (1) The number of slots for coding letter features, letters, and phonemes was extended from 8
to 164; (2) The set of graphemes was extended and the schwa phoneme, which was not used in CDP+,
was added (for the full list of graphemes, see Appendix A); (3) The original graphosyllabic and phonolog-
ical templates used by the TLA network were duplicated so that a second syllable could be processed.
Thus, instead of using a single syllable CCCVCCCC graphemic and phonemic template for learning the
relationship between spelling and sound, a disyllabic CCCVCCCC.CCCVCCCC template is used. Within
each of the 16 possible grapheme and phoneme slots, all possible graphemes and phonemes may occur,
although only onset graphemes are put in the onset slots of the first syllable and only coda graphemes
are put in the coda slots of the second syllable; (4) The size of the lexicons were increased; and finally (5)
the model was augmented with two sets of stress nodes that represent the position of stress, one set for
sublexical stress assignment and one set for stress output. The complete architecture of CDP++ is pre-
sented in Fig. 3.
2.1.1. Learning spelling–sound relationships
As with CDP+, there is a distinction between training and running mode. The training phase is

instrumental to learning the spelling–sound mappings in the TLA network. In training, lexical phonol-
ogy is always available during learning (as is typical of connectionist models of reading aloud) and is
organized based on an onset-rime distinction, as it was in CDP, except that it can be organized into two
syllables rather than just one. This idea that the phonology used when reading might be organized into
onsets and rimes represents a relatively uncontroversial assumption (e.g., Goswami, 2002; Treiman &
Zukowski, 1996; Ziegler & Goswami, 2005). In training, phonology can be used in a top-down fashion –
that is, the input representation can be changed depending on the phonology of the word the model is
trained on. Phonological information is therefore used both as a teaching signal (i.e., to compute the
error term in supervised learning) and to align graphemes to the positions that best represent the
phonemes in a word. Finding a reasonable alignment ensures an efficient learning of spelling–sound
relationships, avoiding the ‘‘dispersion problem” (Plaut et al., 1996) that is an intrinsic problem of
slot-based coding.

The idea that representations should be aligned to help reduce dispersion is not unique to CDP++.
The model of Bullinaria (1997) also used an alignment procedure, but the alignment occurs in the
opposite direction as CDP++. In the model of Bullinaria, the output is aligned based on the input,
whereas in CDP++, it is the input that is aligned based on the output.

A second unique feature of CDP++ is that both the orthographic and phonological representations
are organized into syllabic groupings, rather than just phonological ones, as is the case with the
MTMM. This is especially important for reducing the dispersion problem with long words. For exam-
ple, consider the word talking with graphemes t-a-l-k-i-ng and phonemes /tO:kIN/. If there was no syl-
labic organization and the graphemes and phonemes were aligned in simple linear order, then the
simple one-to-one correspondences, which are generally the most commonly occurring, would be
t ? /t/, a ? /O:/, l ? /k/, k ? /I/, i ? /N/, with –ng not mapping to anything. Alternatively, with syllabic
4 There are in fact no disyllabic words used in the database with 16 letters (there are two words of 13 letters), although it is
technically possible to create nonwords, albeit strange looking ones, with 16 letters and only two syllables (e.g., chrautchdroosted).
Sixteen letter slots were used for the sake of simplicity as duplicating the other representations in the model (i.e., the
graphosyllabic and phonological templates) meant they also had 16 slots. We consider this an implementational detail, rather than
something that makes any strong predictions about the number of letters people can process in parallel.
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boundaries, -k would be identified to map to the first onset (/k/) of the second syllable. This means
that the second syllable would have only simple one-to-one mappings, and thus only phonemes in
the first syllable would have relationships more complicated than a simple one-to-one mapping in
them.

To work out the best alignment for CDP++, graphemes identified from the letter string are moved
into their most optimal positions. These positions represent a hypothesis about those that children
would use when learning. In addition, we assume that the lexical phonology of a word is externally
supplied or it can be guessed via phonology generated sublexically and via other contextual cues.
Share (1995) provides strong arguments for the theoretical position that the generation of phonology
is important, and we consider that CDP++ falls into this theoretical framework. Note that even if the
phonology of every new word cannot be generated, this is not necessarily a problem for sublexical
learning in CDP++, because all it means is that a small number of exemplars would not contribute
to the learning of the orthography–phonology relationship, and this would make very little difference
to the overall performance of the sublexical route.

At present, the positions for graphemes are determined computationally. This is done before train-
ing begins, and the positions remain the same throughout training (i.e., all of the input and output pat-
terns are pre-coded before being submitted to the model). What needs to be determined in training is
the position of graphemes that occur before the second vowel but after the first. All other graphemes
are simply placed in a contiguous sequence in their respective onset and coda positions. This means
that if there is only one vowel, the placement of graphemes is identical to CDP+.

Graphemes that occur between vowels are placed by using knowledge of the number of graphemes
and phonemes that are in a word and grapheme–phoneme frequency. The number of graphemes in a
word is calculated by simply selecting the longest graphemes possible, starting from the first letter of
a word (see the Supporting on-line materials), and grapheme–phoneme frequency is calculated by
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taking all words where the number of graphemes is equal to the number of phonemes, and, for each
correspondence in those words, summing the logs of the word frequencies that they occur in.5

In the simplest case, where the number of graphemes and phonemes in a word is identical, the
grapheme structure is simply the same as the phonological structure. For other cases, where the num-
ber of graphemes and phonemes that occur between the two vowels differs, the graphemes are
aligned simply by identifying the most common grapheme that maps to the phoneme in the first onset
position of the second syllable, and graphemes are aligned into an onset-vowel-coda structure based
on that, as they were in CDP+. For example, when a word like chalking is encountered (which has the
two graphemes –l and –k between the two vowels, but only one phoneme /k/), identifying which
sound corresponds to the start of the second syllable (/k/) and which grapheme most frequently maps
to it (i.e., -k ? /k/ and not –l ? /k/) provides the minimal knowledge required to effectively align all
graphemes. In a broader theoretical perspective, this means that, during learning, phonology con-
strains the organization of graphemes into a syllabically-structured orthographic representation. From
a developmental perspective, the idea that orthography has some organization is more plausible than
a purely visual code (Goswami & Ziegler, 2006; see also Taft (1979, 2001) for an alternative possible
orthographic organization).

It is important to realize that moving graphemes into positions based on phonology reduces disper-
sion at the grapheme–phoneme level. This is because without such an internal organization, the same
graphemes would map onto different phonemes depending on the syllable structure of the word. For
example, the –p in ripe corresponds to a phoneme in the coda of the first syllable. Alternatively, the –p
in ripen correspondences to the first phoneme in the onset of the second syllable. With graphemic
organization, only one-to-one relationships are learnt, because the grapheme –p in ripe and ripen is
put in a different position in the input, since it is aligned with the /p/ phoneme. Without such orga-
nization, mappings would be learnt from –p to phonemes in two different positions, even though,
for individual words, this pattern does not occur.
2.1.2. Running mode
When the model is run to perform a naming task, graphemes need to be selected and aligned in the

graphemic buffer in a purely bottom-up fashion. It is therefore assumed that the graphemic parser at-
tempts to align graphemes in the sublexical route so that they approximate where graphemes would
go if phonological information were available. Under some conditions (e.g., heterophonic homo-
graphs) this approximation will be incorrect. This means that CDP++ is clearly different to models
where the input for both learning and running mode is always presented in the same order and mod-
els that make no assumptions about graphemes or slots at all (e.g., Kello, 2006).

Parsing begins as soon as letters become available to the parser from the letter level (i.e., the first
letter reaches an activation level above a predefined level). These letters are presented to the model in
absolute position, and the letters input to the parser consist of the most active letter in each absolute
position (note that processing is thresholded, like in CDP+; see Ziegler, Perry, and Zorzi (2009) for dis-
cussion). One of the main assumptions of CDP++ is that this parsing process is carried out from left to
right on the letter string, with the letters parsed on-line into graphemes, and the graphemes put into
the graphemic buffer. Therefore, the system must try and approximate not only what the graphemes
are but the places in the template they go into.

The alignment of graphemes in the graphemic buffer is straightforward in the case of monosyllabic
words (and virtually identical to CDP+), but it is more complex in the case of disyllabic words. It is
more complex with disyllabic words because there is ambiguity in assigning graphemes to the differ-
ent slots, in particular with regard to whether consonant graphemes after the first vowel should be
5 Because the graphemes are selected independently and based on being the longest possible grapheme that is selectable, it
means that some graphemes are occasionally selected whose letters might more appropriately be split. For example, with the word
hothead, a –th grapheme is used (i.e., h-o-th-ea-d). However, based on phonological information that is available in training only, it
may be more sensible to split this into –t and –h, because in the word hothead, -t appears to map to /t/ and –h appears to map to /h/
, and these are very common relationships that are simple to identify. Adding more complicated strategies to deal with these cases
would certainly be possible. However, for the sake of simplicity, splitting graphemes based on phonological information was not
done.
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segmented into the first or the second syllable. For example, a word like rapid could potentially be seg-
mented as ra.pid or rap.id. In the first case, the grapheme -p would go in the onset of the second syl-
lable, whereas in the second case, it would go into the coda of the first syllable.

One way the parser could work out how to assign potentially ambiguous graphemes would be to
use phonological linguistic constraints (e.g., Hall, 2006) and apply them at the orthographic level. The
idea of using orthographic constraints to approximate phonological ones has been suggested by Taft
(2001), who assumed that they can be used to help delineate orthographic segments, and Rastle and
Coltheart (2000), who used them to help determine where stress in words should be placed. Such con-
straints could be implemented in the graphemic parser of CDP++.

An alternative view, and the view implemented in CDP++, is that many of the linguistic constraints
that can be used to segment words do not have to be explicitly represented. This means that, at pres-
ent, of the numerous possible linguistic constraints, the only one used in CDP++ is onset maximization,
which is a well known and well accepted constraint in phonology (e.g., Hall, 2006). This means that
consonant graphemes occurring between two vowels are assigned to the onset positions of the second
syllable (i.e., from the 9th grapheme slot onwards), whenever possible. Thus, with the word rapid, the
model would maximize the –p, and hence use the syllabification ra.pid, which is the same segmenta-
tion as the speech representation. This also means that words which include the same set of graph-
emes as another word may have identical graphemes assigned to different places – that is, the
places graphemes are put may differ in different words, even if some of the orthographic sequences
are shared. For example, with a word like ripe, the orthographic coding would be r-�-�-i-p-e-�-�-�-
�-�-�-�-�-�-�, and with a word like ripen, the orthographic coding would be r-�-�-i-�-�-�-�-p-�-�-e-
n-�-�-�.

A second principle used in graphemic parsing comes from internal network dynamics (i.e., what
has been learnt in the TLA network). The idea here is that the statistical information captured by
the network during training provides implicit constraints that can affect the operations of the graphe-
mic parser (see also Ans et al. (1998), who use this as their main constraint for segmenting orthogra-
phy). In particular, the parser is prevented from inserting graphemes into a slot where nothing has
been learnt (note that this information is readily available from the strength of the connection weights
in the TLA network).

2.1.3. The phonology used in CDP++
A number of assumptions are made about the phonology of words that CDP++ uses. Basically, it is

assumed that the phonology given in CELEX is largely correct. The assumption of CDP++ is therefore
that the phonology of a word that is used in the reading system is essentially the same as that which
one hears. Whilst this assumption has been used by all of the main models of reading aloud, it is cer-
tainly not the only one that has been argued for, and many people claim that the underlying phonol-
ogy of a word can be different in some way to the surface phonology that people produce and hear,
and sometimes radically so (e.g., Burzio, 1994; Harris, 1994).

CDP++ also makes the assumption that there is no ambisyllabicity at the phonological level – that
is, a phoneme cannot be shared across syllables. Thus, words like banner keep their CELEX coding (/
bæ.nE/) versus the ambisyllabic one (/bæn.nE/). Whilst there has been a reasonable amount of debate
over this topic, some more modern accounts of English syllables go against the idea that ambisyllab-
icity is needed in their description (Hall, 2002; Hammond, 1997; Jensen, 2000).

One major case where the use of surface rather than underlying phonology is important is with the
schwa phoneme (for reviews see, e.g., Heselwood, 2007; van Oostendorp, 1998). Schwa in English is
temporally the most shortened vowel (Heselwood, 2007) and also the most frequently occurring
(Roach, 2000). In CELEX, it is only ever transcribed as a single sound, although it has been argued that
more complex distinctions between different types of shwa might exist in at least some English dia-
lects (e.g., Flemming & Johnson, 2007; Ladefoged, 2001).

In general, it seems fair to say that schwas occur in words for qualitatively different reasons,
although the exact nature of these reasons is extensively debated. For instance, schwa may be used
instead of another phoneme when the typical pronunciation is not given for various reasons.
Heselwood (2009), for example, argues that this occurs with some words with word final schwas in
them in Received Pronunciation (e.g., father), and that the schwa is actually a vocalized allophone
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of /r/. Schwa may also occur as a vowel in its own right when inserted between phonemes that cannot
occur together (e.g., Halle & Idsardi, 1997). Some versions of this idea use an extreme approach, and do
not even represent schwas in words when the position they occur in can be predicted by phonemes
that cannot co-occur together (e.g., Heselwood, 2007). In this case, they are simply inserted into
speech late in the speech output process based on the detection of various sonority violations and pat-
terns amongst phonemes. Thus, for example, the phonology of a word like command would be /
kmænd/ and the schwa inserted between /k/ and /m/ when the word is output after the illegal with-
in-syllable /km/ sequence was detected. Finally, it has been argued that schwa may exist in the rep-
resentations of some words but that it gets deleted in some cases at the speech output level (see e.g.,
van Oostendorp, 1998). In this case, whilst one might not be able to hear a schwa, it does not preclude
its possible existence in the representation of a word.

Given the complexity of how schwa is represented and used in English and the continuing debate
over it, at present, CDP++ simply assumes that the reading system treats schwa as a separate phoneme
its own right.

2.2. Implementation of CDP++

2.2.1. Database and words used
There are two main sets of words used by CDP++, one for training and one in the lexicon of the mod-

el. In terms of the lexicon, there are 32,270 orthography–phonology word pairs, of which 8228 are
monosyllabic and 24,042 are disyllabic. The training database contains 30,516 orthography–phonology
word pairs, of which 7920 are monosyllabic and 22,596 are disyllabic. These items and their frequen-
cies were extracted from the CELEX phonological word form database (Baayen et al., 1993). The exact
procedure used to extract the disyllabic words is presented in the Supporting on-line materials. Across
both the training words and those used in the lexicon of the model, some initial pre-processing on the
phonology of the words was done, which is also described in the Supporting on-line materials.

2.2.2. Lexical route
The lexical route was identical to that of CDP+ except that the number of letter slots was increased

from 8 to 16 and the phonemes were changed to all of those used with disyllabic words (including the
schwa phoneme). A single orthographic entry was used for heterophonic homographs, and the fre-
quency of the orthographic entry was set to the summed frequency of the different words that the en-
try represented. Word frequencies of homophones in the phonological lexicon were also added
together. After collapsing homophones and heterophonic homographs into single lexical items, the
orthographic lexicon contained 31,873 and the phonological lexicon contained 29,841 unique entries.

2.2.3. Sublexical route
As in CDP+, the core component of the sublexical route is the TLA network that maps graphemes

onto phonemes. As described above and as shown in Fig. 3, the template simply duplicated the gra-
phemic buffer and phoneme nodes so that two syllables could be represented. Details on how the
graphemes are assigned to the appropriate positions in the graphosyllabic template are provided be-
low. Moreover, two sublexical stress nodes were added to the output layer of the TLA network (see
‘‘Stress system” below). The network is fully connected in the sense that all graphemes can potentially
activate all phonemes and both stress nodes.

After training, some nodes in the network were assumed to be ‘‘dead”, and unavailable to the gra-
phemic parser. A grapheme node was considered dead if the sum of all its weights (in absolute values)
projecting to the phoneme layer was below a given constant (7.5 in the current parameters6), which
6 Whilst it would have been convenient simply to set this value to zero, some graphemes occur very infrequently, and we
wanted to stop the graphemic parser from using these, since they often contain very little information about spelling–sound
correspondences because of their frequency and the strange spellings of the words they are generated from. For example, the word
isle is coded using the graphemes i-s-l-e. This means there is in fact some learning between the letter –l and phonemes in the
second coda slot of the first syllable. However, because this pattern occurs very rarely, the weights are not changed enough such
that the sum of them is over the dead node level.
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represents a value that almost all grapheme–phoneme relationships the model was trained on surpass.
This means that most dead nodes occur when the connections originating from a grapheme node in a
given position are not strengthened during training because the grapheme never appears in that position
(e.g., a ‘j’ in the second coda position of the first syllable). When hitting a dead-note, the parser will be
forced into a back-up strategy. Thus, nonwords like jinje, where the second –j would be in a dead-node
position, are simple to identify (no learning would have taken place at the –j position) and readable by
the model (see below for one example of such a strategy).

2.2.4. Stress system
Stress is represented in CDP++ at two different levels. First, two sublexical stress nodes (see Fig. 3)

represent predictions of the sublexical network about whether stress should fall on the first or second
syllable (Fig. 3). These nodes are independent from the phoneme nodes although otherwise identical.
The graphemes in the sublexical network and the sublexical stress nodes are fully connected. This
means that when learning occurs, the model not only learns relationships between graphemes and
phonemes, but also between graphemes and the stress nodes. Thus, in terms of learning, there is no
difference between the way stress is learned and the way grapheme–phoneme mappings are learned.
Indeed, identical training parameters are used for both. Information about stress is provided to the
network during training by turning the appropriate stress node on or off, as determined by informa-
tion from the database.

The sublexical stress nodes send activation to two stress output nodes that are placed at the level of
the phonological output buffer. The stress output nodes also receive activation from the phonological
lexicon, which provides information about lexical stress. Thus, the stress output nodes pool lexical and
sublexical sources of stress information in much the same way that nodes in the phoneme output buf-
fer combine phonological activation from sublexical and lexical routes.

The influence of stress on the naming process is governed by a parameter called the stress node
naming criterion. Words are not read-out unless the activation of one of the stress output nodes has
reached the criterion, even if the phonology is otherwise ready. This may therefore affect naming
latencies in cases where the phonology of a word is ready to be read-out but neither of the stress
nodes has reached the level of activation specified by the stress node naming criterion. Unless other-
wise stated, the stress node naming criterion is set to 0.1 by default (see General Discussion for argu-
ments as to why such a criterion is necessary).

In addition to the stress node naming criterion, the stress system uses four parameters: (1 and 2) an
excitation and an inhibition parameter from the lexical route to the stress output nodes; (3) an exci-
tation parameter from the sublexical network, which is the same parameter as the one which specifies
the amount of activation that flows from the sublexical network to the phoneme output buffer; and
(4) a lateral inhibition parameter, where activation from one stress output node may laterally inhibit
the other. The parameter values appear in Appendix B. The stress output nodes use the standard inter-
active-activation dynamics that the rest of the network uses. However, the activation from the sublex-
ical network does not begin to activate the stress output nodes until the last letter in a word is
processed by the graphemic parser. Thus, it is assumed that once the parser has processed the last let-
ter, and hence when parsing comes to an end, the processing of sublexical stress information is trig-
gered and begins. This choice is motivated by the fact that graphemes in the first syllable invariably
tend to activate the first but not the second syllable sublexical stress node. It is not until the second
syllable graphemes become available that the sublexical route can accurately assign stress.

2.2.5. Training
The TLA network first received a phonics pre-training as in CDP+ (see Hutzler, Ziegler, Perry,

Wimmer, and Zorzi (2004) for an extensive discussion of this approach, and the Supplementary
materials for the list of pre-training exemplars). The phonics pre-training set consists of simple
spelling–sound phoneme correspondences that are presented to the model (the complete list of cor-
respondences is presented in the Supporting on-line materials). All of the correspondences occur in
the first syllable, and represent less information than that which is given in many phonics training
programs (e.g., Lloyd & Wenham, 2000). After the initial pre-training for 100 epochs, the network
was trained on the training corpus for 40 epochs. This means that across 40 training cycles,
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1220,640 (40 � 30,516) words are presented to the network. The order of the words in the training
corpus was randomized. Training parameters used were identical to those in CDP+ and the learning
rate (0.05) was scaled by the normalized log frequency of the trained word (i.e., log(word fre-
quency + 2)/log(maximum word frequency + 2); note that plus 2 is necessary because some words
are of zero frequency. All weights start at zero and are updated after the presentation of each individ-
ual word.

Graphemes used. Graphemes used by CDP++ are identified by parsing the letter string from left to
right. This is done based on the graphemes that CDP++ uses, which represent a hypothesis about those
that people use, and lexical phonology does not influence this. When ambiguities about which graph-
emes to use occur, the longest grapheme in CDP++’s graphemic buffer is simply chosen. For example,
with the word might, there is potential ambiguity in the –ght coda. It could be a single grapheme (–
ght) or it could be two graphemes (-gh and –t). However, since –ght is not a part of CDP++’s grapheme
set, this means that –gh and –t will be used. If -ght existed as a grapheme, then because it is has more
letters than –gh, it would have been used instead.

2.2.6. Graphemes alignment in training model
The alignment between graphemes and phonemes is important to optimize learning of the spell-

ing–sound correspondences and maximize generalization performance (Perry et al., 2007; Plaut
et al., 1996). Graphemes are assigned to the various positions in the graphosyllabic template according
to what we call the 1-to-1 principle. The idea of this is that if there is a phoneme in a given position in
the phonosyllabic template, there should be a grapheme in an identical position in the graphosyllabic
template. A more complex alignment procedure is used when the 1-to-1 principle is violated and there
is therefore ambiguity as to which graphemes belong to the first and second syllable of the template.
This is solved by choosing the grapheme that co-occurs most commonly with the onset phoneme of
the second syllable to start the new syllable. See the Supporting on-line materials for further details.

2.2.7. Grapheme parsing in running mode
Grapheme parsing in CDP++, like its predecessor CDP+, takes place using an attentional window

which spans across three adjacent letters and moves from left to right over the string. Larger (i.e., mul-
ti-letter) graphemes are simply selected over smaller ones when there is a conflict. Graphemes are
identified purely on the basis of orthographic information available from the letter level. Once the
graphemes are identified, they are assigned to the appropriate slots in the graphemic buffer. At pres-
ent, graphemes are identified from any letters that happen to be in the attention window. Thus, for
example, if a single letter grapheme is identified and two letters are therefore left in the window,
the parser will also try and identify what grapheme the two letters correspond to. If, as more letters
become available, a longer grapheme can be used than those identified in the two letters that are left,
the old grapheme will be replaced with the new one.

One crucial piece of information used in grapheme parsing is the number of vowel graphemes in
the letter string (see e.g., Lupker, Perea, and Davis (2008) and Perea and Lupker (2004) for evidence
that consonant–vowel identity is available very early in processing). If two vowel graphemes have
been identified, then CDP++ assumes that it is processing a disyllable. There is one exception to this,
which is the letter -e. In some cases, the purpose of the letter -e is similar to the other vowel graph-
emes – that is, it is generally used to signify that a vowel phoneme should be produced. However, the
letter -e also has the purpose of making a short vowel long (cf. bit vs. bite). In this case, it needs to be
recognized as something that should occur in the coda (as in CDP+ and also Plaut et al., 1996), rather
than create a syllable in its own right. We assume that the decision on whether the -e is processed in
the first or second syllable is a probabilistic judgment based on letter level information.

At present, differing forms of the letter –e are chosen by using a simple two-layer network that pre-
dicts whether the –e should be a coda –e or a vowel –e. Predictions are learnt by training the network
on all words that contain -e as the second vowel grapheme. Appendix C illustrates how this is done
with CDP++. Note that there are number of possible ways that this judgment could actually be made
(e.g., purely graphemic information, a combination of both letters and graphemes, or purely letter
information), and there is no data suggesting which way people might actually use, and so we consider
this aspect of the model as tentative, and simply assume that people can make a probabilistic
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judgment about the letter –e, with this being a demonstration that the information to do this exists
within the database.

When the model is processing a monosyllable (i.e., if only one vowel grapheme has been encoun-
tered), CDP++ generally behaves as CDP+ does. However, when a grapheme cannot be assigned to a
certain slot because the corresponding node does not exist (due to a dead node), it is simply inserted
in the first onset position of the second syllable. For example, with the nonword fanj, the -j cannot be
processed in the second coda slot, because no relationship is learnt in that position. Thus, the graph-
eme is moved to the onset of the second syllable, where this relationship is learnt (e.g., banjo). This is
only done with coda consonants of the first syllable, although, in principle, a similar scheme could be
done with vowels and onset consonants. Note that this is considered a simple ‘‘back-up” strategy for
when the model encounters letter strings with extremely rare correspondences.

When the model is processing a disyllable (i.e., the second vowel grapheme forms a second sylla-
ble), the core constraint used in graphemic parsing is to maximize the onset graphemes. This is done by
placing consonant graphemes after the first vowel in all available onset positions of the second sylla-
ble. There are two cases in which maximization of onsets will not occur for every grapheme. First, if
there are more than three consonant graphemes; second, if a consonant grapheme cannot be assigned
to the onset positions because a grapheme node is not available (i.e., there is a dead node). In these
cases the assignment is revised by (a) shifting the leftmost consonant back into the coda of the first
syllable and (b) shifting all of the graphemes to the right of the leftmost consonant one place back
in the onset positions. This revision can be repeated, if necessary, until all graphemes occupy positions
where nodes are available or there are no graphemes left in the onset positions.

An example of how onset consonants are maximized in disyllabic words can be seen with a non-
word like banvil. With this nonword, there are two consonant graphemes between two vowel graph-
emes, and they could potentially be inserted into the onset positions. However, the –v grapheme
cannot go into the second onset position of the second syllable – this relationship is simply not learned
well enough by the model in that position and therefore the node cannot be accessed by the parser
(i.e., there is dead node in that position). Therefore, the first –n grapheme is inserted into the coda
of the first syllable, and the –v grapheme is assigned to the first slot of the second syllable. As can
be seen, in this case, the intervocalic consonants are put in the places that will cause the correct seg-
mentation, since the graphemic parser is sensitive to what is learnt by the TLA network, and generally
it will not have learnt grapheme sequences that cause illegal segmentations. The efficiency of this
method across a number of different word types is evaluated in the Supporting on-line materials.

Finally, it is worth noting that grapheme parsing might fail in the case of orthographically illegal
strings (e.g., xskdol), and more complicated backup strategies would need to be used. Such words
could be identified because they violate orthographic constraints, and they could also be identified
when the parser tries to assign a grapheme to a node where no learning has ever occurred (i.e., a dead
node). It is important to note that whilst people can generate a response for these strings, Ziegler,
Besson, Jacobs, Nazir, and Carr (1997) showed that such illegal letter strings are processed in a qual-
itatively different way than legal nonwords. As discussed in Perry et al. (2007), one way the model
could handle these stimuli would be to use a grapheme-by-grapheme read-out strategy, where graph-
emes are placed in positions where information between them and phonology has been learnt.

2.2.8. Parameters and parameter setting
The full list of parameters is reported in Appendix B. The parameters were chosen in the same way

as for CDP+ (Perry et al., 2007). The main difference between the parameter set of the two models is
that the grapheme parsing speed in the sublexical route was increased in CDP++ from 15 to 10 cycles
per letter. Increasing the speed much beyond this causes the quantitative performance of the model to
decline on datasets where length effects are very important, such as Weekes (1997).

In CDP+, a vowel phoneme in the phoneme output buffer was always selected regardless of the
activation level when the word was named. Accordingly, we used the same criterion in CDP++ for
the first syllable. For the second syllable, the most active vowel was always chosen even if it was
not above the naming threshold if a coda consonant was active in the second syllable. This was done
because if a coda consonant is activated in the second syllable, it means the syllable must always also
contain a vowel.
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2.2.9. Running the model
The model was always run with the full lexicon and with identical parameters, unless stated in the

text.

3. Results

3.1. Overall performance

When all of the 32,270 words in the lexicon of the model were run with the standard parameter set,
all but 285 (.88%) were given the correct phonology, and 264 had stress errors (.82%). The errors made
by the model were not random, but rather fell into certain categories. Of the major categories, (a) 68%
were pronunciations in which the model missed the final phoneme (e.g., saying transcribe for tran-
scribed), and almost all of these were on long morphologically complex words. Inspection of the acti-
vation dynamics of these erroneous responses showed that the correct orthographic and phonological
lexical entry typically reached ceiling (i.e., an activation of 1) and that the final phoneme was inhibited
by the morphologically simpler neighbor being activated later in processing; (b) 14% were missing a
phoneme. Inspection of the activation dynamics of these words showed that this was normally caused
by two different phonemes of heterophonic homographs competing with each other, meaning that
neither reached the phoneme naming activation criterion; (c) 2% were given monosyllabic responses
even though the correct answer was disyllabic; and (d) 15% represented alternative pronunciations
that could occur if the words were read like nonwords.

3.2. Monosyllabic word reading

The first critical test for a new model of disyllabic word reading is to check whether it can still ac-
count for the monosyllabic benchmark effects (e.g., consistency, regularity, length, etc.). In other
words, whether the new model is backwards compatible needs to be checked. This is a nontrivial issue
because the first syllable of the model is trained on both disyllabic and monosyllabic words. We there-
fore examined its performance on the list of monosyllabic benchmark effects proposed in Perry et al.
(2007). These effects are summarized in Table 1. The results of the simulations as presented in Appen-
dix D, and, as shown there, CDP++ was able to simulate all benchmark effects as well as CDP+ except
for body neighborhood.

3.3. Database performance

To examine whether CDP++ performs as well as its predecessor (CDP+) on the influential monosyl-
labic databases, we examined the performance of CDP++ on the four main databases used in previous
model tests (Balota & Spieler, 1998; Seidenberg & Waters, 1989; Spieler & Balota, 1997; Treiman et al.,
1995). Note that Balota and Spieler used a population of older adults, which is not typical of all of the
other studies examined. As can be seen from Table 2, CDP++ performs slightly better than CDP+ on all
of these and hence at a higher level than the other models.7

Of course, the most critical test for the new model is how well it can deal with a disyllabic database.
The best database available to examine this is the ELP database of Balota et al. (2007). That database
has RTs to 22,144 monosyllabic and disyllabic items. Of these, 18,126 are in CDP++’s lexicon. All of
these words were therefore run through CDP++. After the exclusion of 133 phonological errors (includ-
ing three words that did not complete processing within a 300 cycle limit) and 152 RT outliers that
were outside a three standard deviation (3SD) cutoff calculated from all words that were not phono-
logical errors, there were 17,841 CDP++ responses. The model was also tested on two additional large-
7 In Perry et al. (2007) we did not use a three standard deviation cutoff on the large databases. However, it was used here and
was calculated from the reaction times of all phonologically correct responses that were given. This was done because a very small
number of outlier items in some of the databases caused quite large changes in the R2 values. For example, leaving in the 28
outliers in the Spieler and Balota (1997) and Balota and Spieler (1998) database causes the amount of explained variance to drop
from 19.5% and 24.0% to 12.3% and 16.0%. Of the outliers, 17 were heterophonic homographs and 10 were highly inconsistent.



Table 2
Percentage of variance accounted for (R2) by CDP++, CDP+ (Perry et al., 2007), CDP (Zorzi et al., 1998a), the Triangle model (Plaut
et al., 1996), and the DRC (Coltheart et al., 2001) on the Spieler and Balota (SB, 1997), Balota and Spieler (BS, 1998), Treiman et al.
(1995), and Seidenberg and Waters (SW, 1989) databases.

Database Models

CDP++ CDP+ CDP Triangle DRC

SB (1997) 19.5 17.3 5.9 3.3 3.7
BS (1998) 24.0 21.6 6.7 2.9 5.5
Treiman 18.1 15.9 6.5 3.3 4.8
SW 10.9 9.6 2.7 3.0 6.1

Table 1
List of monosyllabic benchmark effects (from Perry et al. (2007)). Tick marks indicate successful simulations (for details, see
Appendix D).

Name of effect Description CDP+ CDP++

Frequency High-frequency words are faster/more accurate than low-frequency words U U

Lexicality Words are faster/more accurate than pseudowords U U

Length � lexicality Nonword naming latencies increase linearly with each additional letter U U

Frequency � regularity Irregular words are slower/less accurate than regular words. This effect is
typically larger for low-frequency words (Paap and Noel, 1991) but has also
been reported for high-frequency words (Jared, 2002)

U U

Word consistency Inconsistent words are slower/less accurate than consistent words. The size of
the effect depends on the friend–enemy ratio

U U

Nonword consistency Nonword pronunciations show graded consistency effects; that is, people do
not always use the most common grapheme–phoneme correspondences

U U

Position of irregularity The size of the regularity effect is bigger for words with first position
irregularities (e.g., chef) than for words with second or third position
irregularities

U U

Body neighborhood Words with many body neighbors are faster/more accurate than words with
few body neighbors

U –

Pseudohomophone
advantage

Nonwords that sound like real words (e.g., bloo) are faster/more accurate than
orthographic controls

U U

Surface dyslexia Patient MP showed a specific irregular word reading impairment that was
modulated by the consistency ratio of the words as well as their frequency

U U

Phonological dyslexia Patient LB showed a specific nonword reading impairment which was reduced
with pseudohomophones orthographically similar to their base words

U U

Masked priming Words preceded by a masked onset prime are faster/more accurate than words
preceded by unrelated primes

U U
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scale item sets. These were the monomorphemic items selected from the ELP database by Yap and
Balota (2009), for which it produced 6500 correct and usable responses (79 outliers, 13 phonological
errors, 132 items not in CDP++’s lexicon, and three items that did not finish processing by 300 cycles,
were excluded) and the database of Chateau and Jared (2003), for which it produced 866 correct and
usable responses (8 outliers, 4 phonological errors, and 23 items not in CDP++’s lexicon were ex-
cluded). The model also made 91, 35, and 6 stress errors on the ELP, Yap and Balota, and Chateau
and Jared items.8 Of these, the vast majority were words with second syllable stress that were assigned
first syllable stress (85%, 89%, and 100% for the three databases, respectively) despite words with second
syllable stress being the minority in all of the databases. The model therefore tends to make most of its
stress errors on stress irregular words (i.e., words with second syllable stress).

To examine the performance of CDP++ on these databases, we used a hierarchical regression anal-
ysis with two steps. In the first step, we included Yap and Balota’s (2009) onset coding (i.e., surface
8 Unlike the errors, time-outs, and outliers, the RTs of these words were left in the following database analyses.
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level coding) in order to take into account systematic variation due to different phonetic onsets (see
e.g., Kessler, Treiman, & Mullenix, 2002), which CDP++ does not capture. That scheme consists of 13
features used to describe the initial phoneme of words (affricative, alveolar, bilabial, dental, fricative,
glottal, labiodentals, liquid, nasal, stop, velar, and voiced) which are coded as ‘‘on” if they exist in the
onsets of the words. In the second step, the RTs of CDP++ were added. With these two steps, the
regression provides an estimate of the overall performance of the model, taking into account onsets
characteristics of the words.

Apart from simply using an overall measure of how well CDP++ predicts the data to evaluate the
model, the percentage of variance explained by CDP++ can also be compared with the percentage of
variance explained by the major word recognition variables, such as frequency, length, consistency
etc. To examine this, we used the same type of analysis as Yap and Balota (2009), where variables
of interest were examined using a multi-step hierarchal regression. In the first step, surface variables
(onsets) were added. In the second step, frequency was added as it is the strongest correlating factor in
the databases (Spieler & Balota, 1997) and is thus worthwhile examining by itself. In the third step,
other common lexical variables were entered (orthographic neighbors, phonological neighbors, sylla-
ble number, orthographic length). These variables were the same as those used in Yap and Balota
(2009). In the fourth and final step, different spelling–sound consistency measures were added.

Since different database analyses have used different variables and there is a vast number of pos-
sible variables that could potentially be examined, for the sake of simplicity we took variables that
have been commonly used across a variety of studies. In particular, we used the onset coding of
Yap and Balota (2009) in all analyses. Furthermore, we used log-transformed frequency rather than
using rank-transformed frequency as Yap and Balota (2009) did because this is the most common
way frequency has been examined in other databases. Finally, we used only two higher level mea-
sures, both of which were designed to examine spelling–sound consistency. One was composite con-
sistency, which was either the average body–rime type consistency of both syllables in disyllabic
words or the type consistency of the first and only syllable in monosyllabic words. Body–rime consis-
tency was used as it has been used numerous times in both monosyllabic and disyllabic studies (e.g.,
Chateau & Jared, 2003; Spieler & Balota, 1997; Yap & Balota, 2009). Yap and Balota also found that this
measure produced the standard Consistency by Frequency interaction in their data. The second pho-
nological measure we used was BOB consistency. Whilst this measure is less commonly used than
body–rime consistency, it was very important in the study of Chateau and Jared (2003), in which it
predicted vowel pronunciations better than first syllable body–rime consistency.

All of the consistency metrics were calculated based on the words selected from the CELEX data-
base that CDP++ was trained on. These were used rather than the full CELEX database because it is
not always obvious in the full database how letter strings should be segmented. BOB consistency
was calculated based on Taft’s (2001) definition that the BOB division occurs at the end of a sequence
of letters once a letter occurs that does not exist in an extant coda in extant monosyllables. We did not
consider final letter –e as a special case (unlike Taft, 1979) and morphological structure was ignored.
The actual BOB divisions of words were found using an automatic learning procedure and a small
number of segmentations were entered by hand.

The results are presented in Table 3. On the Yap and Balota (2009) items, CDP++ performed very
similarly to all of the predictors entered in the final step, that is, it accounted for 45.4% of the variance
while all variables together explained 45.7%. On the ELP and Chateau and Jared (2003) items, it ac-
counted for 36.9% and 33.8% of the variance, respectively. This performance is slightly below the var-
iance accounted for by all variables together (i.e., 39.6% and 38.5%). Because reading aloud latencies
are influenced by many factors outside the scope of the model, some of which may cause the distri-
bution of results to differ to that which the model produces, we repeated the same analysis using
ranked ordered human and model RTs. This caused the amount of variance explained by CDP++ to in-
crease in all cases (see Table 3).

Although the quantitative performance of CDP++ appears quite high on the databases, the variance
accounted for is still far from 100%. However, given the inherent noise and variability in these large-
scale data sets, it is not clear what the maximum amount of variance that CDP++ should be able to
account for is. One possible way to investigate this is to examine how well different databases corre-
late with each other and compare that to CDP++. This is possible because there is a large amount of



Table 3
Percentage of variance (R2) explained in different steps of the hierarchical regression analysis on the ELP (Balota et al., 2007), Yap
and Balota (2009), and Chateau and Jared (2003) items and by CDP++ (including onset coding).

Predictor variables ELP Yap & Balota Chateau & Jared
n = 17,960 n = 6552 n = 875

Step1: surface variables (onsets) 9.0 10.1 9.9
Step 2: log word frequency 29.8 32.2 29.8
Step 3: standard lexical predictors 36.7 43.0 33.4
Step 4: consistency variables 39.6 45.7 38.5

CDP++ and onset coding 36.9 45.4 33.8
CDP++ and onset coding (rank ordered) 40.8 49.4 40.3

CDP++ n 17,841 6500 861

Note: n values are slightly different between CDP++ and the databases as errors were excluded from the CDP++ items.
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overlap in the items that were used across some of the databases. Correlations between shared items
in the databases may therefore give some idea of how much variance can potentially be explained.
One technical problem with examining the data with simple correlations is that the actual triggering
of the voice keys may have differed across studies (see e.g., Kessler et al., 2002). This could have caused
differences in results based on factors that are not due to cognitive process involved in reading that we
are interested in. Therefore, rather than examine plain correlations, we examined r values where item
RTs from one database plus the onset coding scheme used by Yap and Balota (2009) were used to pre-
dict the item RTs from another database. We also added onset coding to the responses from CDP++
when examining its performance on predicting results from the databases.

As can be seen in Table 4, the identical items across the four different databases correlated mod-
erately, with r values ranging between .42 and .68 (i.e., 17.6% and 46.2% of the variance), with the per-
centage of variance accounted for by CDP++ being generally similar to the percentage that that was
obtained when using one database to predict another. A similar analysis examining the relationship
between shared disyllabic words in the ELP (2007) and Chateau and Jared (2003) databases showed
r values of .71 and .70 (i.e., around 50% and 49% of the variance when the ELP items plus onset coding
were used to predict the Chateau and Jared items and vice versa). On these databases, CDP++ plus on-
set coding showed r values of .55 and .58 (30.3% and 33.8% of the variance). This difference shows that
there is still some room for improvement in accounting for variance in disyllabic databases.
3.4. Syllable number effect

As noted in the Introduction, syllable number is an effect that is specific to the reading aloud of
multisyllabic words. We examined whether CDP++ would show a syllable number effect over and
Table 4
R values from regression analyses using onset coding plus item means shared across a number of databases (Spieler & Balota (SB),
1997; Balota & Spieler (BS), 1998, Treiman et al. (TR), 1995; Seidenberg and Waters (SW), 1989, and the ELP (2007)) and CDP++ to
predict item means across the same databases.

Predicted item means Onset coding + database of predictor items means

CDP++ SB BS TR SW ELP

SB .54 .64 .47 .44 .56
BS .59 .68 .52 .55 .64
TR .44 .46 .44 .42 .47
SW .66 .65 .67 .64 .68
ELP .62 .63 .66 .58 .58

n = 1100. Note: r values differ above and below the diagonal because using onset coding plus the items from one database to
predict the items in a second does not lead to an r value which is identical to using onset coding plus items from the second
database to predict items in the first.
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above the effect of letter length. The ELP dataset was therefore split into categories based on letter
length (3–8 letters) and number of syllables (one or two). Because of the phonetic bias effects men-
tioned above, we first computed response time residuals, in which the effects of phonetic bias due
to the onsets were removed via regression, and these were examined rather than raw scores. The re-
sults from the human data showed that disyllabic words were slower to process than monosyllabic
ones, and that longer words were slower to read aloud than shorter ones. However, there was an inter-
action, where the difference between monosyllabic and disyllabic words decreased across word
length. As can be seen in Fig. 4, CDP++ produces a very similar pattern as the human data. Note that
the groups are inherently confounded on a number of different variables that differ across the catego-
ries, such as frequency. Reasons for this interaction are discussed in the General Discussion.

3.5. Consistency effects

As can be seen in Appendix D, CDP++ generally displays a pattern of consistency and regularity ef-
fects that is similar to that of people with monosyllables. Apart from monosyllables, there are two
important studies examining consistency and regularity effects in disyllabic words: Jared and
Seidenberg (1990) and Chateau and Jared (2003).

The Jared and Seidenberg (1990) study provides the simplest test of CDP++, as they examined both
consistency (using regular-inconsistent words and controls) and regularity (using ‘‘exception” words
and controls) in the first and second syllable positions of words. To examine how well CDP++ predicted
the data, the by-items results were recalculated after the removal of 32 out of 160 of the words be-
cause they were either trisyllabic or not in CDP++’s lexicon (between 4 and 6 items in each group).
One word was also removed from the controls because it was highly irregular with respect to CDP++’s
database (enlist, which begins with an /I/). The removal of the items did not affect the frequency
matching across groups, as there were no significant differences between the regular-inconsistent/
exception words and their controls, all ps > .16. Note, however, that the means did change somewhat
from the initial study and thus the present results need to be taken with some caution. The new means
appear in Table 5.

A re-analysis of the Jared and Seidenberg (1990) data with an ANOVA using consistency (inconsis-
tent vs. consistent), consistency type (consistency vs. regularity) and place of inconsistency (first vs.
second syllable) showed that words with some form of inconsistency (i.e., exception or inconsistent)
were slower to name than their controls, F(1, 120) = 9.19, MSE = 33,315, p < .005. CDP++ showed a sim-
ilar result, F(1, 116) = 5.01, MSE = 400, p < .05. No interactions were significant in either the human or
model data. CDP++ also explained 22.0% of the individual item variance. Due to the item set being
changed from that of Jared and Seidenberg, further comparisons were not pursued.

The study of Chateau and Jared (2003) further explored consistency effects in disyllables using
more sophisticated continuous metrics of consistency rather than the dichotomous classifications of
Jared and Seidenberg (1990). Across a number of experiments, they examined BOB consistency, VC
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Fig. 4. Mean human and CDP++ reaction times (RTs) of monosyllabic and disyllabic words on the full ELP (2007) database.



Table 5
Effects of consistency and regularity in disyllabic reading aloud. Results are from a re-analysis of the human data (in milliseconds)
of Jared and Seidenberg (J&S, 1990). CDP++ simulations are in cycles.

Consistency Regularity

Incon. Con. Effect size Irreg. Con. Effect size

J&S (1990) re-analysis
Item means
First syllable 592 577 15 639 587 52
Last syllable 623 589 34 622 593 29

CDP++
First syllable 85.8 83.7 2.1 93.1 85.2 7.9
Last syllable 88.5 85.4 3.1 89.1 87.7 1.4

Note: Incon. = inconsistent; con. = control; irreg. = irregular.
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(i.e., body–rime) consistency in the first syllable and vowel consistency in the second syllable. The two
experiments where BOB consistency was examined (Experiments 2 and 3), were marginally significant
in the Chateau and Jared data, but not significant at all with CDP++, ts < 1. With first syllable VC con-
sistency, Chateau and Jared found no significant effect in the first syllable. With second syllable vowel
consistency, a marginally significant difference was found. CDP++ displayed a similar pattern of VC
and V consistency, with no significant effect of VC consistency found in the first syllable (High VC con-
sistency: 86.1, Low VC consistency: 89.8, t < 1), and a significant (and hence slightly too strong) effect
of vowel consistency in the second, t(44) = 2.44, SE = 2.70, p < .05 (High Consistency: 85.7; Low Con-
sistency: 92.4).

3.6. The Yap and Balota test

Until now, most modelers have looked at quantitative fits between the models and human data by
simply regressing the model latencies onto human latencies. More recently, however, Yap and Balota
(2009) proposed a new test, henceforth referred to as the Yap and Balota test, which consists of
regressing model and human latencies onto key word recognition and naming variables (frequency,
consistency, length, etc.). This analysis allows one to test whether a model’s latencies are influenced
to the same extent by the variables that affect the human latencies, thus providing a much more fine-
grained test for the quantitative fit of a model than the percentage of variance accounted for.

To examine CDP++ at this more fine-grained level, we computed regressions between model and
human latencies and various common lexical variables on the full ELP database, the monomorphemic
items used by Yap and Balota (2009), and the items from Chateau and Jared (2003). Whilst there are a
large number of variables that could potentially be used in the regressions, we used the surface (onset
descriptors) and the standard lexical variables of Yap and Balota, although some were calculated with
slightly different metrics. These metrics and the steps used to examine the data were the same as
those used above (see Table 3), except that instead of entering frequency alone in Step 1, it was en-
tered together with other common lexical variables. The results are presented in Table 6.

As can be seen from Table 6, all of the variables examined were significant, and the directions of the
b-coefficients with CDP++ were the same as the directions of the b-coefficients with the human data,
excluding some of the neighborhood comparisons. The magnitudes of the effects were comparable
apart from some systematic differences. First, almost no variance was explained by the surface vari-
ables with CDP++, whereas surface variables explained some variance in the human data. This is of
course exactly what is expected, because these effects reflect the differential triggering of voice keys
in response to different phonetic onsets, a process that is not implemented in CDP++. Second, the fre-
quency effect was much stronger with CDP++ than the human data. This is probably due to the fact
that the frequency counts in CDP++’s lexicons are exactly the same as those used in the regression
(both use CELEX counts), thus potentially inflating the correlation. It is possible to examine this
hypothesis by changing from CELEX frequency counts to another frequency count, such as the log
Hyperspace Analog to Language (HAL) frequencies (Lund & Burgess, 1996). When this is done, the



Table 6
Standardized b-coefficients from hierarchical regression analyses predicting human and CDP++ data on items from the ELP (Balota
et al., 2007), Yap and Balota (2009), and Chateau and Jared (2003).

Predictor variable Item set

ELPa Yap and Balotab Chateau and Jaredc

CDP++ RTs CDP++ RTs CDP++ RTs

Step1: surface variables (R2) .009 .090 .016 .101 .015 .099

Step 2: standard lexical variables
Log frequency �.60** �.37** �.62** �.38** �.77** �.44**

Number of syllables .11** .073** .17** .14**

Letter length .33** .13** .26** .22**

Orthographic neighborhood �.072** �.16** �.039** �.070** .005 �.11*

Phonological neighborhood �.035** �.044** �.050** .050** �.19** �.11*

R2 .770 .367 .755 .430 .656 .334
DR2 .761 .277 .739 .329 .641 .235

Step3: consistency variables
Average rime consistency �.12** �.11** �.17** �.12** �.18** �.18**

BOB consistency �.032** �.098** �.050** �.087** �.066* �.11**

R2 .785 .396 .787 .457 .696 .385
DR2 .015 .029 .032 .026 .040 .051

Note: N values represent all words where metrics and responses exist on all measures.
** p < .001.
* p < .01.

a N = 17,960 (human)/17,580 (CDP+).
b N = 6552 (human)/6470 (CDP+).
c N = 875 (human)/863(CDP+).
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frequency betas for the model are much closer to those of the human data, although still slightly high-
er than the human ones (CDP++/Human: ELP: �.51/�.42; Yap and Balota: �.53/�.41; Chateau and
Jared �.65/�.41).

There are two additional discrepancies between the human data and CDP++. First, the model al-
ways produced a smaller beta coefficient for BOB consistency than the human data. Thus, it is likely
that the model is not as sensitive to this variable as people are. Second, the model produced facilita-
tory neighborhood effects for phonological neighbors on the Yap and Balota (2009) items, whereas the
human data showed an inhibitory effect. Note, however, all other data sets showed facilitatory effects
of phonological neighbors, which is also more consistent with other literature (e.g., Mulatti, Reynolds,
& Besner, 2006; Yates, 2005). The model also missed the facilitatory effect of orthographic neighbors in
the Chateau and Jared (2003) data. Apart from these small discrepancies, the model correctly simu-
lated all other neighborhood effects. Together then, although the model was not perfect in simulating
all neighborhood effects, it correctly simulated the major pattern, which seems to be a facilitatory ef-
fect of orthographic and phonological neighbors.

Whilst the previous analysis examined the effect of various variables by themselves, Yap and Balota
(2009) also suggested that there are theoretical reasons to believe that some interactions are also
important. We therefore investigated the four two-way interactions they did, the Frequency by
Length, Frequency by Orthographic Neighborhood, Frequency by Syllable Number, and Frequency
by Consistency (both composite rime and BOB consistency) interactions. This was done in the same
way as Yap and Balota, where surface and standard lexical variables were entered into a regression
as well as the interaction term. Standard lexical variables were centered if they were part of the inter-
action term to reduce collinearity (Aiken & West, 1991) and consistency variables were only entered if
they were also part of the interaction. The results appear in Table 7.

As can be seen, all of the interactions were significant, excluding the Frequency by BOB interaction
in the real data on the Chateau and Jared (2003) item set. This result, however, is probably due to a
lack of power, because the beta value for the non-significant interaction was the same as the two other
data sets which had many more items, thus allowing significance to be found even though the effect
size was tiny.



Table 7
Standardized b-coefficients of critical two-way interactions predicting human and model data on items from the ELP (2007), Yap
and Balota (2009), and Chateau and Jared (2003).

Interaction Item set

ELP (2007) Yap and Balota (2009) Chateau and Jared (2003)

CDP++ Human CDP++ Human CDP++ Human

F � syllable number �.084** �.097** �.049** �.068**

F � length �.054** �.086** �.057** �.076**

F � consistency .054** .068** .075** .079** .12** .087*

F � BOB .037** .045** .044** .045** .071** .045
F � orthographic neighborhood .086** .12** .095** .17** .066** .12**

Note: F = frequency.
** p < .001.
* p < .01.
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Overall, the regression results largely confirm what others have found in various small-scale exper-
iments, namely that length, syllable number, orthographic neighborhood and consistency (BOB and
rime) effects tend to be larger in low- than in high-frequency words (e.g., Andrews, 1989; Chen & Vaid,
2007; Taraban & McClelland, 1987; Weekes, 1997). By and large, this pattern is correctly captured by
CDP++.

3.7. Stress regularity

In the first experiment of Rastle and Coltheart (2000), disyllabic words were defined as being reg-
ular if they had first compared to second syllable stress. Rastle and Coltheart reported no effect of
stress regularity either in error rates or RTs. Simulations with CDP++ mirrored the human data. There
were no effects on errors because CDP++ made no errors. On RTs, CDP++ showed no effect of stress
regularity, F < 1, a significant effect of Frequency, F(1, 109) = 148.31, MSE = 8153, p < .001, and no sig-
nificant interaction between Stress Regularity and Frequency, F(1, 109) = 2.39, MSE = 131, p = .12. In
terms of a quantitative comparison with the items data, the model accounted for 10.9% of the variance.

Because Rastle and Coltheart (2000) did not find a stress-regularity effect based on a first vs. second
syllable stress distinction, they investigated whether there would be an effect when stress regularity
was defined according to their complex algorithm (see Fig. 1). With stimuli categorized based on their
algorithm, they found a significant effect of stress regularity both in errors and RTs, although this was
mainly confined to low-frequency words. This latter result needs to be taken with some caution, how-
ever, as the high-frequency groups they used had only 10 items per group, and one of those high fre-
quency items (anode) was removed because it produced a very high error rate and should have been
classified as a low-frequency word according to CELEX.

The results showed that CDP++ produced a higher error rate for irregular than regular words (14%
versus 8%). This is very similar to what Rastle and Coltheart found with irregular words, although
CDP++ had a higher error rate on regular words. On inspection of the errors in the regular category,
all 4 were words with second syllable stress that were assigned first syllable stress, and hence would
be considered errors on irregular words using a simple definition of stress regularity. Unlike the data,
CDP++ produced no effect of stress regularity on RTs, F < 1, even on low-frequency words. CDP++ also
showed a very high correlation with the items data, explaining 31.3% of the variance. The results ap-
pear in Table 8.

To examine whether CDP++ could predict a stress RT effect on the low frequency items under any
parameter set, the stress node naming criterion was increased to .44. This represents a strategic
parameter manipulation designed to reduce the error rate of the model (see e.g., Lupker, Brown,
and Colombo (1997) and Perry et al. (2007) for a discussion about strategic manipulation of response
strategies). The results from this manipulation caused the low-frequency words to display a significant
effect of stress irregularity, t(96) = 2.04, SE = 5.57, p < .05.



Table 8
Mean reaction times and error rates of humans (milliseconds) and CDP++ (cycles) to stress irregular and stress regular words from
Experiment 3 of Rastle and Coltheart (2000).

Stress type Rastle and Coltheart (2000) CDP++ CDP++ (0.44 stress node naming criterion)

Frequency Frequency Frequency

HF LF HF LF HF LF

Reaction times
Irregular 480 543 79.9 91.5 87.8 112.0
Regular 479 515 76.7 92.4 82.5 100.6
Effect size 1 28 3.2 �0.9 5.3 11.4

Error rate %
Irregular 1.71 15.46 0 14 0 0
Regular 0 1.15 0 8 0 0
Effect size 1.71 14.31 0 6 0 0

Note: HF = high frequency; LF = low frequency.

C. Perry et al. / Cognitive Psychology 61 (2010) 106–151 131
There are two other studies that investigated stress-regularity effects in words (Arciuli & Cupples,
2006; Kelly et al., 1998). Arciuli and Cupples (2006) suggested that word stress in English varies as a
function of grammatical class, with nouns being irregular if they have second syllable stress and verbs
being irregular if they have first syllable stress. In a single reading aloud experiment, they indeed
showed a stress-regularity effect on errors (but not RTs), but the effect was much stronger for nouns
(5.2% vs. 16.2% errors, for regular vs. irregular nouns) than for verbs (3.8% vs. 5.2% errors, for regular vs.
irregular verbs). CDP++ showed a very similar pattern, with a stress-regularity effect on errors with
irregular nouns compared to their controls (10.5% vs. 0%) but no such effect for verbs, where the model
made no errors. As in the human data, CDP++ did not show a stress-regularity effect on RTs, F < 1. Thus,
CDP++ was able to simulate the main pattern despite the fact that grammatical class information was
not available to the network. Note, however, that there were only 20 items per cell, and since this re-
sult relies on the model making just two errors, further exploration of this phenomenon is warranted
before any strong conclusions can be drawn.

Finally, we could not simulate the results from the study of Kelly et al. (1998) because their stimuli
were unfortunately in Hoosier English and hence many of the items had a different stress pattern to
those in CDP++’s database, which is based on Received Pronunciation, and there were also a number of
proper nouns not in CDP++’s lexicon (e.g., Corvette). However, a superficial analysis of the remaining
items showed that CDP++ made one error (4.17%) with the stress regular and five errors (25%) with the
stress irregular words, thus displaying a stress-regularity effect on error rates.

3.8. Nonword reading and nonword stress

Using a lenient error scoring criterion, according to which a nonword response was considered cor-
rect if the phonology given by the model corresponded to any grapheme–phoneme or body–rime rela-
tionship that exists in real words, the model made 30 errors (5.1%) on Seidenberg et al.’s (1994)
nonword database. A number of these errors were unlikely to be similar to those that people produce
(e.g., /smu:/ for smuice). Some of them should therefore be considered model errors, rather than errors
similar to those people produce. However, it is possible that the reading system of a person may gen-
erate something strange or phonotactically illegal that might resemble some of these atypical errors,
but that their speech output system corrects or stops the output of these because they simply cannot
be articulated. Thus, it is not currently possible to specify which errors should be considered model
errors that are not related to those people produce and which should be considered similar to atypical
responses produced but not articulated by people. For example, consider the case where the model
and someone generated /fAtt/, where there is a double /t/. This would have been considered an error
produced by the model since people never produce it. However, whether people never generate the
phonology /fAtt/ is not clear. This is because, in English, /fAtt/ cannot be articulated because people
cannot pronounce /t/ twice without a break in the middle. Therefore, with this phonology, the speech
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output system of the person would either have to repair the pronunciation by, for example, adding a
shwa or simply not producing the second /t/ at all. If it failed to do that, it would be left with some-
thing that cannot be articulated and instead it may cause the person to stutter or produce an incom-
plete pronunciation which would therefore obscure the phonology that was initially generated.

To examine how CDP++ assigns stress to nonwords, the model was tested on the nonword data of
Rastle and Coltheart (2000). In the study of Rastle and Coltheart, two groups were used, one where
stress was predicted to fall on the first syllable and the other where stress was predicted to fall on
the second syllable. Predictions were made on the basis of their complex algorithm.

When these nonwords were run through CDP++, a very similar pattern to the human data was
found. CDP++ predicted that stress should fall on the first syllable 89.3% and 42.9% of the time in
the two groups. Although this slightly overestimates the number of first syllable stress responses com-
pared to people, who gave 76.7% and 23.2% of responses with first syllable stress, the results are clearly
in the correct direction. In addition, the results are also closer than the predictions of Rastle and Colt-
heart’s algorithm, which gives values of 100% and 0% for the two categories. The fits can be assessed
via root-mean-square-error (RMSE) values, which show smaller errors for CDP++ than for the Rastle
and Coltheart algorithm (11.68 vs. 16.44, respectively). In terms of the quality of nonword pronunci-
ations, the model also showed reasonable generalization performance, having an error rate of only
6.3%. Nonword pronunciations were considered correct if phonemes that were given existed in other
words with the same graphemes in them and were also in the linear order that would be likely to oc-
cur from their letters. Of the 54 nonwords which had a schwa in them, 2 (�:zEm, InrEnt) were assigned
stress on the syllable with the schwa.

A second, and perhaps more interesting way to compare nonword stress assignment is to re-group
the items based on whether first or second syllable stress was most commonly assigned to each non-
word by the participants. Whether CDP++ predicts the right stress for these categorical groups can
then be examined. This analysis is identical to what Ševa et al. (2009) did, and it is therefore possible
to compare CDP++ with Ševa et al.’s model of stress assignment and the predictions of Rastle and
Coltheart’s (2000) algorithm. As can be seen in Fig. 5, CDP++ was slightly more accurate than Ševa
et al.’s model even though both models used essentially the same training database. Similar to Ševa
et al., CDP++ also underestimated the number of nonwords that should have had second syllable
stress. On this data set, Rastle and Coltheart’s algorithm had the lowest RMSE value (CDP++: 16.53;
Rastle & Coltheart: 8.75; Ševa et al.: 17.32).

As Ševa et al. (2009) noted, the data set of Rastle and Coltheart (2000) may be somewhat biased by
the way the items were selected. We therefore also examined the performance of CDP++ on the items
in Study 2 of Kelly (2004), where the effect of the number of onset consonants on stress assignment
(cf., bedop vs. bledop) was examined.
Fig. 5. Correct stress agreement (percentage) for CDP++, the model of Ševa et al. (2009), and the Rastle and Coltheart (2000)
algorithm on the Rastle and Coltheart nonwords.
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The results of CDP++ on Kelly’s (2004) nonwords in terms of the percentage of first versus second
syllable stress responses that were given was similar to the human data. In particular, Kelly’s partic-
ipants used first syllable stress 69.8% of the time and CDP++ used first syllable stress 79.8% of the time.
CDP++ also predicted that words with complex onsets should be given first syllable stress more often
than words with simple onsets (88.7% vs. 68.1%), which is similar to what Kelly found (78.2% vs.
62.5%). Moreover, when Kelly’s nonwords were divided into two groups of items based on whether
the majority of participants chose first or second syllable stress (see Fig. 6), CDP++ performed better
than the model of Ševa et al. (2009) and the algorithm of Rastle and Coltheart (2000), showing the
lowest RMSE value (CDP++: 12.87; Rastle & Coltheart: 20.09; Ševa: 19.63).
3.8.1. Modulation of vowel length
One type of pattern that is specific to disyllabic words in terms of nonword generalization is

whether the first vowel in a syllable is pronounced short or long, and how consonants that occur after
the vowel may affect vowel length. Waese and Jared (2006) examined this issue with three groups of
nonwords that had single letter vowels in their first syllable. In one of the groups, a single consonant
followed the vowel, whereas in the other two groups, two consonants followed the vowel. Of the
groups with two consonants, one had consonant sequences that formed a legal onset (e.g., gustig)
whereas the other did not (e.g., gupdig). The main result was that in the single consonant group, people
were less likely to give short vowel responses than the other two groups (Single: 72.8%; Legal: 87.0%;
Illegal: 93.8%). This is similar to what CDP++ predicts (Single: 58.2%; Legal: 81.4%; Illegal: 82.6%),
although CDP++ underestimates the number of short vowels across the groups. CDP++ also made only
4.4% errors, which is a similar rate to what it made on the Rastle and Coltheart (2000) nonword set
reported above. One potential reason that CDP++ may underestimate the number of short vowels is
that it is only trained on monosyllabic and disyllabic words. If the model was trained on all words,
it would be exposed to more short vowels, since the proportion of short compared to long vowels
in multisyllabic words, at least in the first syllable of words, is more than that which the model
was exposed too (62.7% vs. 53.0% according to statistics calculated from CELEX). This would be likely
to cause an increase in the number of short vowels CDP++ gives given that it is sensitive to frequency.
4. General discussion

In the present article, we presented a full-blown model of reading aloud that deals with monosyl-
labic and disyllabic English words. In the spirit of the nested incremental modeling approach (e.g.,
Jacobs & Grainger, 1994; Perry et al., 2007), we respected the basic architecture and modeling princi-
Fig. 6. Correct stress agreement (percentage) for CDP++, the model of Ševa et al. (2009), and the Rastle and Coltheart (2000)
algorithm on Kelly’s (2004) nonwords.
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ples of its precursors, CDP and CDP+ (Perry et al., 2007; Zorzi et al., 1998a). As dictated by the nested
incremental modeling approach, the new model was tested against the old benchmark effects that
motivated the development of the previous models as well as novel benchmark effects specific to
disyllabic reading aloud, including the effects of syllable number, stress regularity, and nonlexical
stress assignment. Before going into a detailed discussion of the novel effects, the main results can
be summarized as follows:

1. CDP++ has been successfully scaled up, and, using its standard parameter set, it reads aloud more
than 32,000 words in its lexicon with a mispronunciation rate of less than one percent. While per-
formance of some connectionist models might deteriorate when being up-scaled to a real-size cor-
pus (e.g., Feldman-Stewart & Mewhort, 1994), CDP++ accounts for as much variance as its
monosyllabic precursor (CDP+) on the four critical large-scale databases of monosyllabic words
(i.e., Balota & Spieler, 1998; Spieler & Balota, 1997; Treiman et al., 1995; Seidenberg & Waters,
1989).

2. CDP++ is fully backwards compatible with its predecessors as it is still able to simulate all major
monosyllabic benchmark effects that motivated the development of the earlier models. The only
slight difference was that the model failed to show a significant body neighborhood effect, unlike
CDP+.

3. CDP++ accounts for more item-specific variance in naming latencies on the ELP database of Balota
et al. (2007) than any other model has, explaining over 49% of the variance on a restricted selection
of monomorphemic monosyllabic and disyllabic words (Yap & Balota, 2009) when onset coding is
included. Given that the reproducible variance in a large-scale database is probably no more than
40% (see Rey, Courrieu, Schmidt-Weigand, & Jacobs, 2009) the present result can be taken as a
major achievement.

4. CDP++ is sensitive to many of the same variables that affect human latencies, that is, when vari-
ables such as frequency, syllable number, letter length, neighborhood, and consistency are
regressed onto the model’s latencies, the obtained correlations are strikingly similar to those of
humans (see also Yap & Balota, 2009). This is a new model test that is more fine-grained than
the simple percentage of variance accounted for. CDP++ passed this test rather well and it also suc-
cessfully simulated interactions between all of these variables and frequency.
Table 9
Disyllabic benchmark effects.

Name of effect Benchmark data set Description

Large-scale databases Balota et al. (2007), Yap and
Balota (2009), and Chateau
and Jared (2003)

Models should account for a large portion of item-
specific variance on large-scale databases

The Yap and Balota test Balota et al. (2007), Yap and
Balota (2009), and Chateau
and Jared (2003)

b-coefficients for important lexical variables and
theoretically meaningful interactions should be
similar in the human and model data

Syllable number Balota et al. (2007) and Yap
and Balota (2009)

Disyllabic words are slower to read aloud than
monosyllabic words, even when matched on other
characteristics

Syllable number by frequency
interaction

Balota et al. (2007) and Yap
and Balota (2009)

The effect of syllable number is larger for low-
frequency than for high-frequency words

Consistency/regularity Jared and Seidenberg (1990) Inconsistent or irregular words take longer to read
aloud than regular/consistent controls

Stress regularity Yap and Balota (2009) and
Chateau and Jared (2003)

Words with second syllable stress yield a higher
error rate than words with first syllable stress

Stress by onset complexity
interaction

Kelly (2004) Nonwords with complex onsets are more likely to
be given first syllable stress than nonwords with
simple onsets

Modulation of vowel length Waese and Jared (2006) Nonwords with single letter vowels in their first
syllable are less likely to be given short vowel
answers if only a single consonant follows the
vowel
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5. CDP++ is a full-blown model of reading aloud that incorporates a mechanism for stress assignment
in its regular processing dynamics. This makes it possible to investigate how stress information
interacts with lexical and nonlexical processing in reading aloud.

4.1. Novel benchmark effects for disyllabic reading aloud

There are far fewer studies on the reading aloud of disyllabic words than there are on monosyllabic
words. A list of these benchmark effects can be found in Table 9 (a file with items and item data can be
downloaded at http://ccnl.psy.unipd.it/CDP.html). CDP++ was confronted with all of these different
item sets and the results were globally satisfactory. In particular, CDP++ was able to capture the effect
of syllable number, even when all other likely confounding variables were controlled for. This is an
important finding given that the model does not contain a mental syllabary. This finding clearly coun-
ters the claim that ‘‘any model of lexical access has to incorporate a syllable level of representation or
include the syllable as a sublexical unit in processing” (Álvarez et al., 2001, p. 553). However, it should
be noted that whilst CDP++ may have no explicit syllable representations, the way that both the train-
ing and running of the model occur means that information is available that allows both graphemic
and phonemic representations to be aligned based on where syllable breaks either do occur (training
mode) or are likely to occur (running mode). Thus, knowledge about syllable breaks which guides the
placement of graphemes is used by the model, although this does not amount to explicit syllabic rep-
resentations that are retrieved at some stage of processing by the model.

4.2. Consistency and regularity

CDP++ was also able to account for consistency and regularity effects both in small-scale experi-
ments as well as large-scale studies. Note, however, that a lack of item significance (which is critical
for computational models) affects several studies of consistency examining multisyllabic words (with
the notable exception of those based on the ELP database). This may reflect the more general issue of
how to compute consistency measures when more than one syllable is involved (e.g., Jared &
Seidenberg, 1990; Taft, 2001). In particular, as can be seen in both the database analyses of Chateau
and Jared (2003) and Yap and Balota (2009), consistency effects can be found at many different levels
and trying to investigate effects of consistency at one level whilst trying to balance stimuli on all other
level in small-scale experiments may be very difficult.

An important result that differentiates CDP++ from DRC is that it displayed a consistency effect on
the second vowel in disyllabic words, whereas DRC predicts that sublexical phonology only affects the
first few phonemes (Rastle & Coltheart, 1999). This was not simply due to some unknown confound in
the items it was tested on (i.e., Experiment 4 of Chateau & Jared, 2003), because if the model is run
without sublexical phonology, then no significant difference between groups is found (Irregular vs.
Regular: 97.5 vs. 99.5 cycles, t < 1). This difference therefore reflects differences in the parameteriza-
tion of the models and the efficiency and functioning of the sublexical route. In this respect, the speed
at which CDP++ processes letters is much faster than DRC (10 cycles vs. 17) and the response threshold
is such that it also takes a longer amount of time for words to be named. As a consequence, the num-
ber of letters that the sublexical route processes before the word is read aloud is larger in CDP++ than
DRC and therefore a greater amount of sublexical phonology is activated. Such a difference in param-
eterization is also part of the reason that CDP+ displays length effects on words, also unlike DRC.

One aspect of the results where the model differed was that it generally under-predicted the
strength of the BOB effect. The model therefore behaves more like Taft’s (2001) average readers,
who show stronger syllable than BOB effects, compared to his good readers, who display the opposite
pattern. However, there is no principled reason for why some version of CDP++ could not simulate BOB
effects even when using syllabically aligned graphemes. This is because graphemes do not necessarily
have to be contiguous for CDP++ to learn relationships between them. Thus, if there are cases where
the disambiguation of a grapheme (generally the vowel) can benefit from graphemes in a different syl-
lable, then it may be possible for the model to use those graphemes in different syllables to help in this
process. If, for example, the consonant graphemes of a word that would form a BOB division occur as
the onset of another syllable, they can still help in differentiating the vowel. Indeed, as long graphemes

http://ccnl.psy.unipd.it/CDP.html
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consistently co-occur in the same place and consistently map to the same phonology, CDP++ should be
able to learn relationships between those graphemes and phonology, no matter what position in the
template they have been given.

4.3. Stress

One of the main extensions that allowed CDP++ to capture new disyllabic data was the addition of
sublexical stress and stress output nodes. Sublexical stress nodes were added to the sublexical net-
work to allow it to predict which of the two syllables should be stressed when presented with a disyl-
labic stimulus. During training, these nodes were activated on the basis of lexical phonology, and the
relationship between the graphemes and the sublexical stress nodes was learnt in exactly the same
way as the relationship between graphemes and phonemes. Later, in running mode, the activation
of these nodes represents a prediction made by the sublexical network about which syllable should
be stressed, irrespective of the lexical status of the input (i.e., word or nonword). The final stress
assignment, however, is determined by the activation of the two stress output nodes that were added
to the output level of the model. These nodes receive input both from the sublexical stress nodes and
phonological lexical nodes where the stress pattern of each word is stored. Competition between these
two sources of information was modeled using the standard interactive-activation equations. Apart
from determining which syllable should be given stress, the stress output nodes can also affect when
the model finishes running, with processing only being terminated once the amount of activation in at
least one of the nodes has risen above a predetermined threshold.

With these straightforward extensions, CDP++ was able to simulate a number of quite complex
stress effects in reading aloud. These included error effects found mainly with words with second syl-
lable stress on the large databases, error effects on a number of small-scale experiments, and the non-
word stress data of Kelly (2004) and Rastle and Coltheart (2000). These simulations were all done with
a default stress node naming criterion of 0.1. This value was chosen so that stress typically does not
affect RTs. This choice was made because most small-scale experiments showed no reliable effects of
stress on RTs. In addition, in large-scale databases, stress regularity has a reliable effect on errors but
not RTs (Chateau & Jared, 2003; Yap & Balota, 2009). It thus appears reasonable to hypothesize that
stress regularity does not typically affect response latencies.

To simulate stress effects on RTs, the stress node naming criterion had to be increased, which
means that additional time is given to the system before read-out occurs. A strategic change of the
naming criterion to 0.44 allowed CDP++ to simulate the RT effect of Rastle and Coltheart’s (2000)
Experiment 3, which was the only experiment reviewed that showed such an effect. Such a strategic
adaptation is based on the idea that the response criterion may be increased when especially hard
items are used. This was the case with Rastle and Coltheart’s items, where both the model and human
data had a very high error rate (over 15% in the low frequency irregular category in humans and 14%
with the model).

An interesting aspect of CDP++ is that it often predicted the correct stress patterns despite not hav-
ing any explicit information about the particular stress regularity metric being used (e.g., grammatical
class, morphological principles). This highlights the importance of understanding how a number of
highly intercorrelated variables determine how stress is assigned and how this may cause some vari-
ables to appear to have a causal effect even when they do not (see Arciuli & Cupples, 2006). For exam-
ple, effects that seem to be caused by one particular variable, such as grammatical class, might be due
to other highly intercorrelated variables. Having an implemented model without many linguistic
assumptions built into it can certainly help in this area of research by providing a null model against
which more linguistically-motivated stress effects can be tested.

The results also suggest that CDP++ offers a far simpler and hence parsimonious explanation for
stress assignment than that of Rastle and Coltheart (2000), who needed to include morphology and
a number of complex decision processes into their algorithm. This is theoretically very important as
both Arciuli and Cupples (2006) and even Rastle and Coltheart have noted that using morphology
as a source of information in the sublexical stress assignment process is potentially very problematic.

One discrepancy between the stress simulations of CDP++ and the human data was that CDP++ as-
signed first syllable stress to nonwords more commonly than did people. The modeling work by Ševa
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et al. (2009) showed exactly the same problem. We do not think that this divergence from the human
data reveals a serious flaw with the model, however, because words with first syllable stress are over-
represented in disyllabic words (Ševa et al., 2009). If CDP++ were trained on a full multisyllabic data-
base, it is likely that this bias would disappear. A simple way to improve the results could also be to
weight the evidence from the two stress nodes differently. If, for example, the weighting of the second
stress node is increased compared to the first, it is possible to increase the performance of the model
on Experiment 2 of Rastle and Coltheart (2000) from 51.2% to 73.5% on nonwords typically given sec-
ond syllable stress, with a much smaller decrease in performance on nonwords typically given first
syllable stress (from 91.3% to 82.3%).

An interesting aspect of the simulations was that CDP++ did better than the model of Ševa et al.
(2009), even though both use a similar assumption that a lot of information about stress can be
learnt from simple spelling–sound correspondences. The most likely reason that CDP++ performs
better is that CDP++ uses graphemes as sublexical input, whereas the model of Ševa et al. (2009)
uses letters. Graphemes are likely to have two advantages over letters. One is that they allow better
generalization since the relationships between graphemes and phonemes are less dispersed than
those between letters and phonemes. This is one of the reasons why nonword reading was so much
better in CDP+ than in CDP (Perry et al., 2007). A second reason is that English syllables are
‘‘weight-sensitive” (e.g., Gordon, 2006). This means that one factor influencing whether a syllable
is likely to be assigned stress is the number of phonemes in its coda. With CDP++, this can be learnt
simply from the position graphemes occur in syllables because, if a consonant grapheme occurs in a
coda position after other consonant graphemes (i.e., latter coda positions), the syllable is very likely
to have more than one coda phoneme and hence is more likely to attract stress than a syllable that
does not. Alternatively, when letters are used, this information is much less reliable because there
are many sequences of letters that map onto only one phoneme. This means that even if a conso-
nant occurs after others in the coda, it does not always mean that the syllable is likely to have
many phonemes. For example, if graphemes are used as input, then when a ‘k’ occurs as the second
grapheme of a coda, it generally maps to the second phoneme of a word (e.g., silk, frisk, mink). Its
position therefore gives some idea about the likely number of coda phonemes in a word (i.e., at
least 2). Alternatively, if letters are used as input, then this information is much less reliable, be-
cause the ‘k’ not only commonly maps to words with two phonemes, but words with one also
(e.g., pick, flock).

Despite the overall success of the stress simulations, it is important to note that many cognitive
components related to stress at a prosodic level are not integrated into the model (see e.g., Hayes
(1995) for a cross-language discussion of metrical systems). Such components may well affect the
way stress is assigned in some circumstances via feedback, such as when stress patterns become pre-
dictable in the context of sentences (e.g., Arciuli & Cupples, 2003) or word lists (e.g., Roelofs & Meyer,
1998). The extent to which such feedback from other cognitive systems affects stress assignment, and
hence knowing what the balance between orthography and phonology in the assignment of stress is,
remains to be determined. However, it is clear that words can be assigned stress phonologically, even
in the silent reading process (Ashby & Clifton, 2005), and thus the interaction between orthography
and phonology is likely to be important.

Finally, the stress mechanisms of CDP++ are also compatible with neuropsychological data from pa-
tients with acquired dyslexia that make stress errors. For example, Miceli and Caramazza (1993) re-
ported the case of an Italian speaker, CLB, who read words aloud with nonword-like stress
assignment, thereby producing many suprasegmentally incorrect responses to irregularly stressed
words (i.e., a stress-regularity effect). In contrast, CLB was able to read nonwords and assign stress
to them in a way similar to that of normal participants. Miceli and Caramazza interpreted this pattern
of results as evidence that CLB was able to generate syllabic phonology via the use of a sublexical
mechanism, and then generate the correct stress pattern from the syllabic structure of the phonology.
CDP++ offers an additional possibility to this, which is that CLB’s stress assignment was based simply
on orthographic patterns, rather than syllabic structure. Thus, rather than assuming that stress is al-
ways generated based on syllabified phonology, stress may be generated simply by examining the
stress nodes that are activated from orthographic information (see also Arciuli & Cupples, 2006; Kelly
et al., 1998).
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4.4. Syllable number

One of the important effects that CDP++ captures is the effect of syllable number. As can be seen
from the results section, CDP++ closely matches the human data. There are two different ways that
this effect arises with CDP++, one is due to the graphemic parsing processes whereas the second is
due to vowel consistency.

In terms of the parsing process, words with two syllables are more difficult to process than words
with one because when the parser has only processed a single vowel in disyllabic words, it still places
graphemes in the first syllable of a word, which is generally incorrect. It is not until the parser pro-
cesses the second vowel that these graphemes can be correctly placed. Such behavior slows the pro-
cessing of graphemes in the second syllable down due to this delay.

The second factor is that the vowel of the second syllable is highly inconsistent (Chateau & Jared,
2003). This implies that words that have two vowels are more likely to be slower to process than
words that have one because both have the potential of slowing the naming process down. This effect
can still occur with CDP++ even though the parsing process works from left to right because the speed
at which letters are processed in CDP++ is fast enough to allow sublexical phonology to be processed in
the second syllable, although the extent that this happens is dependent on the speed that lexical pho-
nology arrives, and hence an interaction with frequency is found.

4.5. CDP++ versus other models

As discussed in the introduction, CDP++ can be compared to two implemented models of multisyl-
labic word reading: the MTMM of Ans et al. (1998) and the Junction model of Kello (2006). Unfortu-
nately, the comparison with the MTMM is rather limited because the model is only implemented in
French. Although Ans et al. provided simulations of some English benchmark effects using French
stimuli, it is questionable whether this strategy is appropriate. For example, Ans et al. showed that
the MTMM produced a frequency by regularity interaction that was meant to mirror the English data.
However, it is unclear whether the model should show such an interaction in French because previous
empirical work showed no interaction between frequency and regularity in French (Content, 1991;
Ziegler et al., 2003). Thus, the model is simulating ‘‘English” effects with French words, without ever
questioning whether the French data are really the same as the English data for a given set of words.
Leaving this issue aside, at least for current model comparisons, the main problem is that the perfor-
mance of the MTMM cannot be assessed on large-scale English databases and English nonword read-
ing performance, both of which present key benchmarks for model comparisons.

Another difficulty with evaluating the MTMM is that it has no mechanism to deal with stress.
While this might not be a problem for French, stress is certainly relevant for English. This is especially
problematic with nonwords, as the MTMM assumes that some nonwords may be read aloud in ‘‘ana-
lytical mode”, in which single syllables are presented to the model one at a time. It is therefore not
clear how the model could generalize stress knowledge learnt from words, which are not learnt one
syllable at a time, to nonwords read aloud in analytical mode.

A fundamental difference CDP++ has compared to the MMTM (and indeed to most other models) is
that with the MMTM, the same sequence of letters are always processed in the same positions. This
causes an obvious problem for stimuli such as heterophonic homographs (e.g., crooked vs. croo.ked),
for which the same orthographic pattern maps onto two phonologies (/krukt/ and /kru.kId/). These pat-
terns are comparatively difficult to learn for the MTMM because the learning of one pattern will inter-
fere with the learning of the other. In CDP++, there is no such interference because identical letter
strings are not necessarily processed in the same positions. In crooked, the –ked is put in the first syl-
lable and maps to /kt/, while in croo.ked it is put in the second syllable and maps to /kId/. Thus, the two
models make different predictions as to how these types of stimuli are processed. The MTMM predicts
a massive interference effect, while CDP++ does not. Similar problems would also occur at the sub-
word level when identical letter sequences are processed in different words, such as the –gged in
ja.gged and bagged. This is because the letter –e can be treated by CDP++ like a coda consonant in
the first syllable (e.g., bagged; see also Plaut et al. (1996), who also allow –e to be treated as a coda
consonant) or like a vowel in the second syllable (e.g., jagged), causing two different orthographic
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segmentations. Alternatively, in the MTMM, the letter –e would be coded in the same fixed order and
place, and hence there would be interference in learning from the same letters having to activate two
different phonologies.

The Junction model can be compared to CDP++ both qualitatively and quantitatively. In terms of
quantitative performance on large-scale databases, the Junction model does a good job, accounting
for up to 30% of the variance on the monomorphemic words of the ELP. It is also sensitive to the same
variables that affect human latencies in these databases (Yap & Balota, 2009). However, the Junction
model has problems with nonword reading, performing far below the level of skilled readers, and
therefore any results should be seen as tentative until a final version that fixes this problem is
released.

One fundamental difference between CDP++ and other models is the way serial effects are pro-
duced. In CDP++, serial effects occur in part because of a processing assumption within the model
(left-to-right grapheme parsing), whereas others (e.g., Kello, 2006; Plaut et al., 1996; Seidenberg &
McClelland, 1989) assume that they are caused by peripheral effects related to either speech produc-
tion or visual encoding. Whilst length effects being caused by peripheral factors could potentially af-
fect CDP++, there are a number of strong reasons against believing that serial (or serial-like) effects are
only due to peripheral processes that occur in either speech production or early visual processing.
First, serial effects disappear in delayed naming (Weekes, 1997). If they were due to peripheral pro-
cesses of production, they should persist in delayed naming. Second, the size of the length effect found
in speech production tasks (e.g., Roelofs & Meyer, 1998) is relatively small compared to the size of the
length effect found in some reading aloud tasks (e.g., Weekes, 1997). Third, length effects are absent or
much smaller in lexical decision compared to naming tasks (e.g., Balota et al., 2004). If length effects
were caused by visual encoding processes, length effects should be seen in word recognition tasks
other than just reading aloud. Fourth, the size of length effect is different in German and English even
when almost identical items are used in the two languages (Ziegler et al., 2001). This suggests that
serial effects occur in the mapping between orthography and phonology rather than in visual input
or phonological output processes, which would have been the same in the two languages. Finally, se-
rial effects are stronger for nonwords than for words even if visual input and phonological output is
held constant, the first of which is possible in Serbian and the second of which is possible in Japanese
(Rastle, Havelka, Wydell, Coltheart, & Besner, 2009).

4.6. Criticisms and caveats

One potential criticism to the present approach is that it is more concerned with predicting vari-
ance and a large number of effects than understanding broader principles in word recognition and
reading aloud. A related criticism is that the superior performance of our model compared to other
models is simply due to the fitting of a large number of free parameters (Sibley et al., 2010). We think
that these criticisms are neither correct nor justified.

First, the present model is based on the principles of the connectionist dual route approach to mod-
eling reading aloud (Zorzi, 2010), which argue that two distinct processes are needed, a sublexical pro-
cess that implements a linear mapping between orthographic and phonological patterns and a lexical
process that retrieves word-specific information possibly in a non-linear and mediated fashion (Zorzi
et al., 1998a). As such, CDP++ stands in the long tradition of dual-route theories of reading. Our work
further shows that the same principles can be used to read words with more than one syllable and to
handle stress. Finally, we demonstrated that a linguistically motivated principle, onset maximization,
in combination with internal network dynamics are sufficient to solve the tricky problem of segment-
ing disyllabic letter strings.

Second, here and in our previous work (Perry et al., 2007), we have clearly defended the position
that a few theoretically important effects (e.g., consistency, length) can falsify a model regardless of
how many other effects or how much variance this model can account for. Fortunately, however, it
turns out that the model that currently simulates most of the theoretically relevant effects – CDP++
– is also the one that accounts for the largest proportion of the variance in large-scale databases.

Third, a closer inspection actually shows that there are hardly any parameters that were fit in
CDP++. Indeed, the lexical route is almost identical to the interactive activation model as implemented
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by Coltheart et al. (2001) and the sublexical route contains only a few parameters, and these are ‘‘set”
rather than ‘‘fit”. Indeed, the parameters are set in a way such that there is a balance between lexical
and sublexical processing. No parameter optimization algorithms were used in finding the best
parameter set and all parameter changes are fully interpretable. Most importantly, there is no param-
eter fitting of individual experiments, data sets, or large-scale studies, even if this could be easily jus-
tified (e.g., list composition, item difficulty, reading experience, etc.). Thus, parameter fitting is
minimal and highly constrained in the nested modeling approach. Note also that there are many ef-
fects the model captures where there are essentially no parameters that can be modified to change
the model behavior (e.g., nonword generalization performance).

Finally, some parameter-heavy processes are simply ‘‘inherited” from precursor models but could
actually be replaced by simpler procedures. For example, a version of CDP+ where the lexical route
was reduced to the provision of a frequency-weighted, feedforward activation of lexical phonology
showed almost the same performance as the full-blown model, both qualitatively and quantitatively
(Zorzi, 2010; see also Perry et al., 2007). Therefore, the large number of parameters that are needed for
the interactive activation part of the model could be reduced substantially even in CDP++. We have not
done this because the original lexical route is still required to simulate some effects, such as pseud-
ohomophone effects (e.g., McCann & Besner, 1987), that depend on feedback or interactions between
the various processing layers of the interactive activation model. Moreover, the current lexical route
implements a mechanism for visual word recognition that has been widely used to account for per-
ceptual identification and lexical decision data (Coltheart et al., 2001; Grainger & Jacobs, 1996;
McClelland & Rumelhart, 1981).

4.7. Limitations and future directions

An apparent limitation of the present work is its focus on disyllabic rather than all multisyllabic
words. This was a deliberate choice in order to isolate and fully understand the problems of reading
aloud disyllabic words before moving onto more complex systems. However, there is no principled
reason why one could not simply keep on extending the current coding scheme to more than two syl-
lables. That is, instead of using a two-syllable template, a multisyllabic template could be used. This is
the strategy used by the MTMM, which allows up to 5 syllables to be processed at the same time. A
similar scheme could be used with CDP++, where the grapheme parser could simply work across syl-
lables in the way that it works across the current two syllables – that is, when a new vowel is iden-
tified, it could try to work out the best slots for graphemes to go in the new syllable.

One might argue that duplicating the syllabic template for each additional syllable is not very ele-
gant as one may end up with a ‘‘monster-template”. However, we believe that this is simply an imple-
mentational detail, one that allows us to efficiently code and align letter strings. The real issue we
believe is important in extending the model even further is that one has to propose a mechanism
for integrating information across saccades. In particular, given that the mean saccade size in silent
reading is around 8 letters (Rayner, 1998), it means that most words with more than two syllables
are likely to be fixated more than once. Integrating information across saccades and determining
the effect it has on processing is a difficult problem for all current models, although some proposals
have been made on how that might be achieved (Plaut, 1999).

A second issue to do with integrating information is how the broader language system interacts
with the reading system (see e.g., Arciuli & Cupples, 2003; Ashby & Clifton, 2005). This is important
in terms of stress assignment because multisyllabic words are generally believed to be organized into
stress or prosodic feet (e.g., Burzio, 1994; Hammond, 1999; Hayes, 1995; Selkirk, 1980), which specify
how stress is assigned to small groups of syllables within words. How the reading system can influ-
ence the assignment of such feet, or indeed whether the sublexical system actually produces the pho-
nology of feet rather than whole words, is currently not well investigated.

A third apparent limitation of the present work is our focus on simulating reading aloud rather than
including other tasks, such as lexical decision or perceptual identification. Computationally speaking,
reading aloud is a harder problem than lexical decision because the model must produce the exact
phonological output for words and nonwords, whereas lexical decisions can be based on partial or
underspecified information. Nevertheless, it is important to note that CDP++ can make lexical
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decisions to the same extent as DRC (Coltheart et al., 2001) or MROM (Grainger & Jacobs, 1996) can
make lexical decisions. That is, ‘‘yes” decisions in these models are based on a read-out that takes into
account word specific and global activation in the orthographic lexicon, whereas ‘‘no” decisions are
based on a variable temporal threshold. Unfortunately, the temporal threshold mechanism for ‘‘no”
responses has been heavily criticized. In particular, Wagenmakers, Ratcliff, Gomez, and McKoon
(2008) argued that the response mechanism should be modeled as a diffusion process rather than a
deadline mechanism. Thus, until this debate has been settled, we decided to refrain from implement-
ing a decision mechanism in the present version of the model.

One area where CDP++ (and indeed all other major models of reading aloud) remains underdevel-
oped is in simulating errors and individual differences. At present, CDP++ is designed to explain the
‘‘average” pattern of findings, rather than individual data. This has a number of consequences. One
of the most important is that the parameter set is deliberately chosen so that almost all words are read
correctly. This is true both of the phonology of words generated and the stress they are assigned. How-
ever, this also means that the model is not good at simulating errors. Of course, one could change the
parameters to make the model make more errors. If this were done, however, then the model would
no longer simulate ‘‘average” results. The reason for this is that if an item is read incorrectly by CDP++,
it is clearly not behaving like the average response to that item (which is not an error), and this is espe-
cially true for most small-scale experiments where items with high errors rates are usually excluded.
One solution to this problem would be to conduct individual simulations, in which parameters are al-
lowed to vary from one subject to the other, thus occasionally creating an error for one subject but not
for another. This approach is particularly interesting when applied to modeling errors in atypical read-
ers (e.g., developmental dyslexics, see Ziegler et al., 2008). A second approach could be to train models
under different conditions and then examine their effect on performance (e.g., Zevin & Seidenberg,
2006).

An important direction for future development of CDP++ is that of increasing the role of learning,
which is currently limited to the sublexical spelling-to-sound and spelling-to-stress mappings. First,
learning in CDP++ could be augmented to include the identification of graphemes from the letter level
and their assignment to the graphosyllabic template. Second, lexical representations could also be
learnt as part of the training phase rather than set by hand (see Zorzi (2010) for discussion). The Inter-
active Activation network that forms the lexical route was perfectly suitable for our purposes, because
all it needs to do for the model to investigate effects related to sublexical processing is to produce a
simple frequency-weighted activation (Perry et al., 2007; Zorzi, 2010). However, there is no reason
to think that better results could not be obtained with a different scheme that includes the learning
of word forms and uses a letter level based on more modern data (see e.g. Davis and Bowers (2006)
for a review of just the letter level alone), and such changes remain to be investigated within a full-
blown model.
5. Conclusions

In the present paper, we have successfully extended our modeling work to disyllabic words, and
have successfully dealt with problems such as syllabification and stress assignment. An executable
version of the model is available at http://ccnl.psy.unipd.it/CDP.html. This model can be used not only
to test novel predictions about reading aloud, such as effects of stress typicality, syllable frequency,
and syllable neighborhood, but can also be used as a null model for the investigation of processes that
are not implemented in the model, such as the effects of morphology, semantics, or emotional valence.
Most importantly, CDP++, with its lexicon of over 32,000 words, is a notable example of the successful
scaling-up of a connectionist model to a size that more realistically approximates the human lexical
system.
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Appendix A. Graphemes used

Multi-letter graphemes used in the graphemic buffer:

Onsets: ch gh gn ph qu sh th wh wr kn
Vowels: air ai ar au aw ay ear eau eir eer ea ee ei er eu ew ey ier ieu iew ie ir oar oor our oa oe oi oo
ou or ow oy uar ua ue ui ur uy ye yr
Codas: tch ch ck dd dg ff gh gn ll ng ph sh ss th tt zz nn gg pp bb ff mm cc rr mb

Appendix B. Parameters used in the model

Lexical route
Features
Feature to letter excitation: 0.005
Feature to letter inhibition: �0.8

Letters
Letter to letter inhibition: �0.3
Letter to orthography excitation: 0.018
Letter to orthography inhibition: �0.8

Orthographic lexicon
Orthography to orthography inhibition: �.1
Orthography to letter inhibition: 0
Orthography to phonology excitation: 1.9
Orthography to letter excitation: 0

Phonological lexicon
Phonology to phonology inhibition: �.12
Phonology to phoneme excitation: 0.09
Phonology to phoneme inhibition: �0.125
Phonology to orthography excitation: 1.5

Phoneme output buffer
Phoneme to phoneme inhibition: �0.005
Phoneme to phonology excitation: 0.09
Phoneme to phonology inhibition: �.18

Parameters used in the sublexical route
Grapheme parsing cycles per letter: 10
Sublexical network to phoneme output buffer/stress output node activation: 0.072
Level of activation which a letter must be over before graphemic parsing begins: .30
Temperature (s) in the sublexical network: 3
Learning rate (e) in the sublexical network: 0.05
Dead node level: 7.5

Word stress parameters
Stress node naming criterion: 0.1 (unless otherwise stated)
Phonological lexicon to stress output node excitation: .037

http://ccnl.psy.unipd.it/CDP.html
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Phonological lexicon to stress output node inhibition: �.023
Stress output node to stress output node lateral inhibition: �.11

Overall parameters
Overall activation rate: 0.3

Lexicon frequency scaling: 0.2 � (log (word frequency + 2)/log (maximum word
frequency + 2))

Phoneme naming activation criterion: 0.69
Cycle-to-cycle stopping criterion: 0.0024
Appendix C. Orthographic information and the letter –e

A simple two-layer network with identical dynamics to the CDP++ sublexical network was used to
determine how the letter –e is processed (i.e., whether it is treated as a coda consonant or whether it is
treated as the vowel of the second syllable). The network was trained on all words in the database that
have the letter –e as a second vowel grapheme (7946 words). Training occurred between the letter level
(the input representation) and two output nodes. The two output nodes represented whether the letter
–e should go in the first or second syllable. The letter information was organized into wickelgraphs (let-
ters triplets; see e.g., Seidenberg & McClelland, 1989). Wickelgraphs were used simply as a convenient
way to represent letters and relationships between them. Only the information about letters that occur
between the first and the second vowel (including the latter) were used to form the wickelgraphs.

The network was trained for 30 cycles. After training, the predictions the network made about
whether the letter –e should go in the first or second syllable were examined. This was done with
all words that the network was trained on and was done by assigning the letter –e to the syllable cor-
responding to the output node in the network that had the stronger activation. Based on this simple
criterion, the model was able to correctly classify all but 18 words. Since some letter patterns are
ambiguous, in that they can lead to either monosyllabic or disyllabic pronunciations, a correct classi-
fication was determined by examining whether an extant coda from a monosyllabic database existed
that completely overlapped the coda letters of the word being examined. If it did, the answer was con-
sidered correct even if the word was disyllabic, because the pronunciation could potentially be mono-
syllabic if it were a nonword. For example, the word naked is disyllabic, but the coda is used in
monosyllables, e.g., baked. Thus, even though the network predicts this word should be monosyllabic
but naked is disyllabic, this was not considered an error in evaluating whether the letter –e can be as-
signed to a syllable position where it commonly goes. Note that for all of the simulations reported
elsewhere, if the parser assigned a letter to the incorrect syllable, and this was not corrected by lexical
phonology and hence the number of syllables output by the model was wrong, this was still consid-
ered an error.

It is worthwhile noting here that similar results can be achieved using only a memory of the graph-
emes the parser has encountered and an attentional window that has a greater number of letters than
the largest grapheme. The larger attentional window is needed since some identical letter sequences
can occur within monosyllabic and disyllabic words and whether they should force the creation of one
or two syllables can only be determined by either the word ending or letters to the right of the se-
quence. For example, the –es sequence often occurs in monosyllable (e.g., fines), but the –est sequence
typically occurs in disyllables (e.g., finest). Thus, the only way the –e can be correctly classified in this
case is to use a context that includes the two letters to the right.

Appendix D. Monosyllabic effects and dyslexia

D.1. Frequency, lexicality, length by lexicality

Weekes (1997) conducted a classic experiment examining length, lexicality, and frequency. He
found effects of all of these, and, importantly, an interaction between length and lexicality. Our first
analysis using his items with CDP++ was done using Length and Lexicality as factors in an ANOVA,
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and log Frequency as a covariate (nonwords were counted as having a frequency of zero). The results
showed that CDP++ showed main effects of Length, F(3, 280) = 69.88, MSE = 5373, p < .001; Lexicality,
F(1, 280) = 1151.391, MSE = 88,533, p < .001, as well as an interaction, F(3, 280) = 7.97, MSE = 613,
p < .001. We also compared just the high-frequency words to the low-frequency words, and CDP++
showed an effect of this also, t(195) = 8.96, SE = .98, p < .001. The model also showed a reasonable cor-
relation with the items data, explaining 7.3% of the word and 20.3% of the nonword latency variance.
(CDP++ cycles, High-Frequency Words (3–6 letters): 62.4, 68.7, 72.7, 77.4; Low-Frequency Words (3–6
letters): 71.3, 77.2, 81.6, 85.7; Nonwords (3–6 letters): 99.7, 106.0, 116.3, 127.6).

D.2. Frequency � regularity, word consistency

A benchmark experiment for regularity chosen by Coltheart et al. (2001) comes from the study by
Paap and Noel (1991). Whilst this study was run under dual-task conditions, it has been replicated
many times even under conditions of very light memory load (e.g., Bernstein & Carr, 1996). CDP++
showed the same result, displaying a significant interaction, F(1, 75) = 5.85, MSE = 245, p < .05
(CDP++ cycles, High Frequency Irregular: 66.0; High Frequency Control: 64.2; Low Frequency Irregu-
lar: 85.9; Low Frequency Control: 77.0). A t-test examining the high frequency irregular words versus
their controls was not significant, t < 1, unlike a similar comparison with the low-frequency words,
t(37) = 4.03, SE = 2.20, p < .001.

We also tested CDP+ on other data sets, in particular the carefully controlled study of Jared (2002).
As can be seen in Fig. D1, where the results of Jared’s (2002) Experiment 1 and Experiment 2 are
shown along with those of CDP++, the model displayed essentially the same effects as the data. In
the crucial first experiment, the model, like the human data, showed an effect of regularity and con-
sistency with low-frequency words, but only with words that had a greater token count of enemies (E)
than friends (F) (Irregular (E > F), t(38) = 3.00, SE = 2.19, p < .01; Irregular (F > E), t(37) = 1.48, SE = 1.90,
p = .15; Inconsistent (E > F), t(38) = 3.18, SE = 1.59, p < .005; Inconsistent (F > E), t < 1). In the crucial
second experiment, like the human data, CDP++ showed a regularity effect with both high and low-
frequency words that was restricted to words with more enemies than friends (High Frequency
(E > F), t(37) = 2.22, SE = 1.98, p < .05; High Frequency (F > E), t < 1. Low Frequency: Irregular (E > F),
t(38) = 3.00, SE = 2.19, p < .01; Irregular (F > E), t(37) = 1.48, SE = 1.90, p = .15). The quantitative perfor-
mance of CDP++ was also excellent across the four experiments, accounting for 29.0%, 32.4%, 46.4%,
and 40.0% of the variance. This is very similar to CDP+.

D.3. Nonword consistency

Andrews and Scarratt (1998) found that participants reading aloud nonwords with no regular anal-
ogy (i.e., nonwords that do not share orthographic bodies with any words that have a regular pronun-
ciation) are far less likely to give regular responses than to nonwords that do share bodies with regular
words. This no regular analogy effect was especially strong when the body of the nonwords was
shared by many other words. As can be seen in Fig. D2, CDP++ (and indeed the whole CDP family)
shows this effect (note that in the second experiment, CDP++ predicted no regular answers in the
no regular analogy condition).

D.4. Position of irregularity

Rastle and Coltheart (1999) reported that the cost of irregularity was modulated by the position of
the irregular correspondence in the word (but see Zorzi (2000) for an alternative account based on
consistency). Words which had an irregular correspondence in an early position were slower to read
aloud than words with an irregular correspondence in a late position. As can be seen from Fig. D3, this
is also true of CDP++, with the first and second position irregular words showing a significant differ-
ence compared to their controls: first (10.9 cycles): t(38) = 3.29, SE = 3.30, p < .005; second (6.1 cycles):
t(74) = 3.27, SE = 1.85, p < .005), but not the third position irregular words (3.2 cycles, t(56) = 1.67,
SE = 1.91, p = .10). The quantitative performance of CDP++ was also good, explaining 29.39% of the var-
iance. Due to potential confounds pointed out by Zorzi (2000) in the stimuli of Rastle and Coltheart set,
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Fig. D1. Human data (milliseconds) and CDP++ simulations (cycles) of Jared’s (2002) Experiment 1 and Experiment 2.
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Roberts, Rastle, Coltheart, and Besner (2003) ran a similar experiment to Rastle et al., examining sec-
ond and third position regularity with supposedly better stimuli. They found that there was a much
larger effect of second position irregularity than third position irregularity. CDP++ also predicted a
similar pattern, displaying a significant position by regularity interaction, F(1, 100) = 4.05,
MSE = 246, p < .05.
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D.5. Body neighborhood

Apart from a significant length by lexicality interaction, which is also shown by CDP++,9 F(3,
143) = 3.57, MSE = 1044, p < .05, Ziegler et al. reported that words and nonwords in a large body neigh-
borhood are read aloud more quickly than those in a small body neighborhood. The 2.7 cycle difference
shown by CDP++ between high and low body neighborhood items did not reach significance,
F(1, 143) = 1.28, MSE = 374, p = .26. CDP++ also explained only 4.9% of the variance with the words and
5.2% with the nonwords, which is less than CDP+. However, on inspection of the data, there were a num-
ber of outliers. We therefore re-analyzed the data with a 2SD cutoff instead of a 3SD cutoff, which re-
moved seven items. This increased the quantitative performance of the model (words: 10.5%;
nonwords: 10.8%).
D.6. Pseudohomophone advantage

McCann and Besner (1987) found that people read aloud pseudohomophones faster than non-
pseudohomophonic nonwords. CDP++ displayed the same pattern, t(128) = 2.52, SE = 3.86, p < .05
(pseudohomophones: 111.7 cycles; nonwords: 121.5 cycles).
D.7. Surface dyslexia

MP is the most important acquired surface dyslexic studied using a single-case approach. Two
important patterns she showed were a consistency effect, where the amount of errors she made on
irregular words decreased as the consistency of the words increased (Patterson & Behrmann, 1997)
and a frequency effect, where the amount of errors she made on irregular words decreased as the fre-
quency of the words increased (Behrmann & Bub, 1992). We simulated MP in a similar way as in CDP+,
where the inhibition parameters from the phonological lexicon to the phoneme output buffer was set
to zero and the excitation parameter reduced (in this simulation, to 0.025). As with CDP+, we also in-
creased the frequency scaling parameter (to 0.40), which makes low-frequency words comparatively
more difficult to access in the lexicons than high-frequency words. Unlike CDP+, this simulation in-
cluded both the monosyllabic and the disyllabic words that were used with MP. As can be seen in
Fig. D4, the results showed that CDP++ produced a very similar pattern of results compared to MP with
both data sets.
9 Two nonwords that were actually words were run through the model as if they were nonwords.
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D.8. Phonological dyslexia

LB is a phonological dyslexic who displayed more errors on pseudohomophones that are ortho-
graphically similar to their base words (e.g., meed/mead) than orthographically dissimilar (e.g.,
phocks/fox). This was simulated with CDP+ by reducing the strength of all of the inhibitory connections
in the model and reducing the strength of the sublexical activation. This same strategy was used to
simulate LB with CDP++. The values of all of the inhibitory connections were reduced to 1=4 of their ori-
ginal strength and the sublexical network to phoneme output buffer activation parameter was re-
duced to .031. The results showed that, on the same stimuli set used in Coltheart et al. (2001), the
percentage of words produced correctly by CDP++ was very similar to LB (LB/CDP++: Similar pseud-
ohomophone, 85/72.5; Dissimilar pseudohomophone: 52/50; Nonword control group 1, 35/35; Non-
word control group 2, 27/35).
D.9. Masked priming

Forster and Davis (1991) showed that if a masked prime word shared the same onset as a target
word, then response times to the target were faster than if the prime was unrelated or if the prime
shared the same rime as the target. We simulated this with CDP+ by simply running the prime word
in the system for a small number of cycles before the target word.

The strategy used with CDP++ was slightly modified from CDP+. In particular, the parser was reset
(i.e., the attentional window was moved back to the start of the string) only if the most active letter
within the three letter window changed. In addition, after reset, it was assumed that the first letter in
the parsing window was immediately available for use, as long as the letter was above the threshold
that the parser uses to begin parsing.

With a 15 cycle prime duration, CDP++ produced RTs of 61.2 cycles for the onset primes, 63.2 cycles
for the rime primes, and 63.6 cycles for the unrelated primes. Two t-tests showed that CDP++ read
aloud targets preceded by onset primes faster than both rime (t(24) = 4.29, SE = .42, p < .001) and unre-
lated (t(242) = 5.76, SE = .46, p < .001) primes. Alternatively, target words preceded by rime and unre-
lated primes were not read aloud at significantly different speeds, t < 1.
Appendix E. Supplementary material

Supplementary data associated with this article can be found, in the on-line version, at
doi:10.1016/j.cogpsych.2010.04.001.

http://dx.doi.org/10.1016/j.cogpsych.2010.04.001
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