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Abstract. Recently, a promising probabilistic model based on Boltz-
mann Machines, i.e. the Recurrent Temporal RBM, has been proposed. It
is able to learn physical dynamics (e.g. videos of bouncing balls), however
up to now it was not clear whether this ability could apply to symbolic
tasks. Here we assess its capabilities on learning graphotactic rules from
a set of English words. It emerged that the model is able to extract local
transition rules between items of a sequence, but it does not seem to be
suited to encode a whole word.

1 Introduction

Several methods for dealing with temporal data have been proposed by the
machine learning community [1]. In this work we will focus on connectionist
models, whose application in this scenario was already discussed by J. Elman in
his landmark paper on simple recurrent neural networks (SRN) [2]. Since then,
many extensions and refinements on connectionist models have been developed,
in order to deal with even more complex domains, where data can be highly
structured [3].

The aim of this paper is to assess the capabilities of a recently introduced
probabilistic graphical model based on Boltzmann Machines [4], which is able of
manipulating sequential data through recurrent connections and it is therefore
called Recurrent Temporal Restricted Boltzmann Machine (RTRBM, from now)
[5]. It has some peculiar characteristics that make it interesting, not only from
an engineering point of view but also for applications in computational cognitive
modelling. First, the learning process is completely unsupervised because the
network only learns to reproduce the training data as accurately as possible. We
can therefore use it as a generative model, in order to produce new sequences that
have a similar structure of those seen before. Moreover, learning exploits only
local information and it is therefore more biologically plausible than classical
backpropagation methods. Boltzmann Machines are experiencing a renaissance
during last years, thanks to improved learning algorithms that allow an efficient
training of large networks and that have been the basis for the development of
promising paradigms like deep learning.

Thus far, RTRBM has been tested on motion capture, demonstrating that
the network is capable to successfully extract the physical dynamics of such
phenomena. Although such visual sequences are high-dimensional and present
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high-level dependencies, their dynamic is generally smooth. Here we study the
performance of the model on a symbolic task. The network was trained on a set
of English words, presenting one letter at each time, thus assessing if the model is
able to extract the graphotactic rules of that language, that are the compositional
rules that describe how letters should be combined together in order to form
plausible words. We compared the RTRBM ability of predicting the next letter
of a word with other baseline learning algorithms in computational linguistics:
n-gram models and Hidden Markov Models (HMMs). We also analysed the
internal representations of the model (i.e. hidden units activations) in order to
verify if the network was able to produce static, holistic representations of whole
sequences. It emerged that the model principally extracts local transition rules
instead of memorizing the entire sequence. Therefore, although the network
obtains good performance on predicting the next element of a sequence, our
study also points out some of its limitations.

2 The Recurrent Temporal Restricted Boltzmann Machine

An RTRBM is a partially directed graphical model with recurrent connections,
defined in such a way that at each timestep hidden units activations depend
both on the observed visible units (v) and on the previous hidden units (h) acti-
vations. A graphical representation of such a model is given in Fig. 1, where the
network is unrolled over time in order to highlight sequential relations. RTRBMs
are an extension of the well-known Restricted Boltzmann Machines, which de-
fine probability distribution over pairs of vectors exploiting a constrained graph
structure that allows to factorize conditional distributions over variables.
The joint distribution induced by an RTRBM is defined as:

T
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where the factor Py(v1)Pp(h1|v1) corresponds to the probabilities associated with
the first element of the sequence, when no previous context is available and
therefore we use an initial bias b;,;;. If we know the current visible values v; and
the previous hidden values h;_1, the new hidden activations are computed as:

P(Hi|v, hi—1) = o(VH v, + HHhy 1 + bgr) (1)

where o is the sigmoid function, VH is the matrix of visible-to-hidden weights,
HH is the matrix of hidden-to-hidden weights and by is the vector of hidden units
biases. Eq. 1 represents a mean field approximation, in which we consider the
average of the neural activations instead of their stochastic correlations. Since
we can compute the hidden units activations using this deterministic process,
it turns out that inference in RTRBMs is very efficient, given the values of
visible units, because we only have to sequentially compute hidden activations
using Eq. 1. If we know the current hidden units activations h;, the conditional



Fig. 1: Two schemes illustrating a Recurrent Temporal RBM.

distribution of the binary hidden units and the visible units at the following
timestep is defined as:
exp (vl VHR, (4 + vl by + hL (b + HHhy)) @)
Z(hy)

where the factor (by + HHh;) represents the new biases for the binary hidden
units of the RBM at time ¢ + 1, and it is computed taking into account the
hidden unit bias by and the dynamic bias HHh; generated from the hidden
units activations at the current timestep. Z is the so-called partition function
and it is used to normalize values into legal probabilities.

According to Eq. 1 and Eq. 2, we can define a generative process that allows
to get samples from the model distribution:

forl <t <T:{sample vy ~ P(Vi|hi_1); set hy < P(Hy|ve|hi—1)}

where the symbol ~ indicates the sampling operation performed with block
Gibbs sampling, while the symbol < stands for the deterministic assignment
obtained using the mean field approximation. When generating the values of
visible units, we thus need to use an MCMC algorithm, while once we have
the visible units activations and the previous hidden units activations we can
compute the new hidden units activations in just one step.

P(Vigr, H 4 |he) =

3 Lexical Processing Task

The focus of our work was on the lexical level of written language, hence one
sequence corresponded to an English word. Previous research on phonotactic
learning exploited simple recurrent networks as neural models [6] and demon-
strated the effective capability of these systems to extract phonotactic rules from
a given set of data. Here we aimed at exploring the potential of the RTRBM
on the similar task of graphotactic learning, thus demonstrating that such a
model is capable of extracting these rules from experience, without needing an
explicit encoding of them or any prior knowledge about the task. Another de-
sirable feature that a sequences neural processor should exhibit is the capability
of developing rich holistic representations that correspond to whole sequences of
elements. When manipulating temporal information, the network should gradu-
ally create an internal description that will eventually represent the information
as a whole. In other words, the model should be able to encode dynamic in-
formation in a proper way such that we can perform further manipulations on



it directly over the internal (possibly static and distributed) representations,
instead of having to analyse the initial, external form of the data.

3.1 Method

The dataset used contained a large set of English monosyllables, thus almost
exhaustively describing their graphotactic rules. Each letter was codified as a
fixed-length binary vector using an orthogonal representation, hence the visible
layer consisted of 27 units (one for each letter plus one for a termination symbol).
Weights were randomly initialized to small values and the learning rate was
set to 0.025 and gradually decreased as the learning proceeded. The number of
steps performed by the Contrastive Divergence procedure was scheduled to be
small during the first phase of the training and successively increased (from 5, to
10, 25 and finally 40). Training stopped after 1200000 weight updates. We first
trained an RTRBM with 110 hidden units over a small subset of 300 words (with
lengths between 3 and 5) and then tested the scaling capabilities of the model
by training another network with 200 hidden units over the complete dataset
(5300 words for training and 1700 for testing, with lengths between 3 and 7).
In order to reduce the computational time required by learning and generative
processes, we exploited NVIDIA graphic cards using the Gnumpy library [7] and
adopting a mini-batch learning strategy, obtaining a speed-up of about 25 times.
We first evaluated the performance of the network on making predictions
about the (¢ + 1)-th element of a sequence, given the previous ¢ elements. In
other words, the model estimated the conditional probability of generating each
letter, given the evidence represented by the current context. These probabil-
ities represent the successor distribution associated with a certain context and
they should be as close as possible to the empirical successor distribution com-
puted on the training data [6]. We measured the prediction error by averaging
the Euclidean distances between the vectors of model expectations and empir-
ical distributions calculated for every possible prefix in the dataset. We then
compared performance of RTRBM with other two families of statistical models:
n-gram models, implemented as simple look-up tables where each row contains
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Fig. 2: Prediction errors on the training set (black) and on the test set (grey).



the successor distribution extracted from training data for each possible context
(i.e. the last n letters analysed, with n varying between 1 and 3) and HMMs,
trained according to a previous work on phonotactic learning [8] using 7 and
40 hidden states. The second metric adopted to evaluate the model consisted
in testing its generative performance. We therefore collected a fixed number of
samples (s = 100000) and calculated the accuracy (i.e. the ratio between gener-
ated sequences that were present in the training set and s) and the completeness
(i.e. the ratio between generated sequences that were present in the training set
and the total size of the training set) of the generation.

4 Results

Fig. 2 reports prediction errors for each model analysed. RTRBM obtained
good performance over the small dataset (comparable to the one obtained by
the bi-gram model), while its generalization ability over the large dataset did not
improve as it happened for the other models. Fig. 3 shows that both the sampling
indicators improve as the training proceeds. Note that, since the number of
samples was kept equal for both the small and the large dataset, in the latter
case the completeness value is lower. Nevertheless, sampling a greater number
of sequences (e.g. one billion) resulted in a completeness of 80%.

Analysis of the internal (i.e., hidden layer) representations, generated after
the production of the last letter of a word, revealed that the similarity between
them (calculated as Euclidean distances) is correlated with the similarity be-
tween the corresponding sequences (measured with the Levenshtein distance),
with a correlation coefficient r of 0.39 (see Fig. 4). It is important to note that the
generative process can produce multiple instances of the same sequence; there-
fore, one crucial question is whether these different instances are associated to
the same internal representations , or at least by highly similar representations.
In particular, the similarity between internal representations for all instances
of a certain sequence should be smaller than the similarity between internal
representations across different sequences. As shown in Fig. 4, the internal rep-
resentations corresponding to different words (“between class similarity”) are
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Fig. 3: Sampling completeness and accuracy collected during training.
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Fig. 4: Correlation between internal representations similarity and Levenshtein
distances of corresponding words (left). Probability density functions of Eu-
clidean distances between internal representations (right).

much more distant than the representations corresponding to different instances
of the same word (“within class similarity”). Though the two distributions ap-
pear separated, the overlap between the respective tails suggests that perfect
discrimination is not possible.

5 Conclusions and Future Directions

In this paper, we evaluated the performance of the Recurrent Temporal RBM
model on learning sequences of letters corresponding to English words. Our
results demonstrate that the network is able to learn local transition probabilities
between sequence elements, that is graphotactic rules of the language, although
its prediction ability does not fully match the performance of other state-of-the-
art algorithms. Our study also points to a potential limitation of the model,
because its internal representations do not seem to encode the entire sequence
in a way that allows perfect discriminability between different sequences.
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