
A HMM-based Pre-training Approach for
Sequential Data

Luca Pasa1, Alberto Testolin2, Alessandro Sperduti1

1- Department of Mathematics
2- Department of Developmental Psychology and Socialisation

University of Padova - Italy

Abstract. Much recent research highlighted the critical role of unsuper-
vised pre-training to improve the performance of neural network models.
However, extensions of those architectures to the temporal domain intro-
duce additional issues, which often prevent to obtain good performance in
a reasonable time. We propose a novel approach to pre-train sequential
neural networks in which a simpler, approximate distribution generated
by a linear model is first used to drive the weights in a better region of the
parameter space. After this smooth distribution has been learned, the net-
work is fine-tuned on the more complex real dataset. The benefits of the
proposed method are demonstrated on a prediction task using two datasets
of polyphonic music, and the general validity of this strategy is shown by
applying it to two different recurrent neural network architectures.

1 Introduction

Even if deep learning systems reach state-of-the-art performance in several ma-
chine learning tasks, their computational complexity is still a limit in many real-
word scenarios. This issue has been partially tackled with the advent of new high
performance parallel computing architectures, which exploit powerful graphic
processors to speed-up learning algorithms [1]. However, the breakthrough that
allowed to effectively train large-scale networks has been the introduction of an
unsupervised pre-training phase [2], where the objective is to build a good gen-
erative model of the data that can eventually be fine-tuned using a supervised
criterion. Pre-training drives the network weights in a region where optimiza-
tion is somehow easier, thus helping the fine-tuning phase to reach better local
optima. It might also act as a regularizer, by introducing a bias towards good
configurations of the parameter space [3]. Although the benefits of pre-training
have been extensively investigated in the static domain (e.g., learning images
encoded as fixed-size vectors), it is not yet clear how this approach should be
extended to the temporal domain, where the aim is to model sequences of events.
Dealing with time poses many challenges, because temporal dependencies limit
the parallelization. Despite recent advances in training recurrent networks [4],
improving their convergence speed is therefore still challenging. A possible solu-
tion is to pre-train only input-to-hidden connections, thereby ignoring temporal
information (encoded by hidden-to-hidden connections) by considering each el-
ement of the sequence as independent from the others [5].

In this paper we propose a different pre-training strategy, which is reminis-
cent of the idea of curriculum learning [6]. The rationale behind this approach is

467

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

that complex problems should be learned by starting from simpler concepts and
then increasing the difficulty level by gradually showing more complex training
examples to the learning agent. To this aim, instead of using the same dataset for
both pre-training and fine-tuning, we first use a linear Hidden Markov Model
(HMM; [7]) to generate a new dataset, which represents an approximation of
the target probability distribution. We use this simpler dataset to pre-train
the more powerful non-linear model, which is subsequently fine-tuned on the
real data. We tested our method on a complex temporal task, which required
to learn the structure of polyphonic music encoded using symbolic sequences
(piano-roll MIDI format). We first applied the HMM pre-training on a recently
proposed recurrent architecture [5] that has been shown to obtain state-of-the-
art performance on a prediction task for the considered dataset, which consisted
in predicting the notes that will be played at the next time step given all pre-
viously played notes in the sequence. We then assessed the robustness and the
generality of the method by applying it also to a classic recurrent neural network
(RNN). Our results demonstrate the value of the proposed pre-training strategy,
which allows to learn a good model of the data in a significantly shorter time.

2 RNN and RBM-based models for sequential data

RNNs are a popular family of neural networks used to model sequential data. At
each time step, the current element is presented to the network through a layer
of input units. An output layer is used to predict the next element of the se-
quence, and a layer of hidden units encodes the latent features of the data. RNNs
typically exploit non-linear (e.g., logistic) activation functions, which ensure ex-
pressive power while maintaining efficient learning. Formally, given a sequence
of input vectors x1, x2, ..., xT ∈ R

n, the RNN computes the sequence of hidden
states h1, h2, ..., hT ∈ R

m and the sequence of output states o1, o2, ..., oT ∈ R
k

by iterating the following equations:

hi = σ(Whxxi +Whhhi−1 + bh)

oi = σ(Wohhi + bo)

where σ is the logistic function, bh and bo are the biases of hidden and output
units, and Whx, Woh, and Whh are the input-to-hidden, hidden-to-output and
hidden-to-hidden weights. RNNs can be trained using backpropagation through
time, which is a temporal variant of stochastic gradient descent (SGD).

The Recurrent Neural Network - Restricted BoltzmannMachine (RNN-RBM;
[5]) is a sequential model that combines an RNN with an RBM. This architecture
merges the best feature of RNNs (i.e., the ability to learn temporal dependencies)
with that of RBMs (i.e., the ability to efficiently model multimodal distributions
by means of energy functions). RNN-RBMs are stochastic models, for which the
joint probability distribution of hidden and input units is defined as:

P (v(t), h(t)) =

T∏
t=1

P (v(t), h(t)|v(t−1), v(t−2), ..., v(1), ĥ(t−1), ĥ(t−2), ..., ĥ(1))

468

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

where: ĥ(t) = σ(W2v
(t)+W3ĥ

(t−1)+bĥ) and v
(t), h(t) and ĥ(t) represent, respec-

tively, the input units, the RBM-hidden units and RNN-hidden units, whereas bĥ
represents RNN-hidden unit biases (see Fig. 1). The authors of the RNN-RBM
demonstrated the importance of the pre-training phase in order to obtain a good
model of the data. In particular, their original approach consisted in separately
pre-train the RBM-part of the model using the contrastive divergence algorithm
[2], and then the RNN-part of the model using either the SGD method or a
recently proposed Hessian-Free (HF) optimization method [4].

Fig. 1: Schematic representation of
the RNN-RBM (see [5] for details).

train
HMM

pre-train
RNN

fine-tune
RNN

original data

smooth data

Fig. 2: Flow chart of the proposed
HMM-based pre-training method.

3 HMM-based pre-training

The pre-training method that we propose improves the learning process by first
modeling an approximation of the real probability distribution of the data. This
initial, imprecise knowledge will serve as the basis for the fine-tuning phase,
which benefits from this better starting point both in terms of convergence speed
as well as in terms of the quality of the final model (i.e., higher prediction ac-
curacy). The idea is to first learn a smoothed version of the data and gradually
consider less smoothing, with the intuition that a smooth version of the problem
reveals the global picture and therefore allows improving during the fine-tuning
phase. To this aim, a simpler probabilistic model is first trained on the real
dataset. We chose to use HMMs because they represent a sound, powerful and
efficient framework for modeling sequential data, and despite their linear formu-
lation they reach state-of-the-art results in many practical problems, including
music modeling [5]. Once the HMM has learned a model of the data, we used
it to generate a fixed number of sequences that populated a new dataset, which
constituted an approximated version of the real polyphonic sequences. These
simplified patterns are then used to pre-train the non-linear model, with the
aim of transferring the knowledge acquired by the HMM to the more power-
ful recurrent network. The number of sequences generated by the HMM is an
important parameter that can be chosen according to the dimension of the train-
ing set. In our study, 500 sequences were enough to obtain good performances.

469

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

After pre-training, the non-linear model is fine-tuned on the real dataset in or-
der to refine the distribution learned during pre-training. A flow chart of the
HMM-based pre-training method is given in Fig. 2.

4 Experimental results

We tested our pre-training method on both the recurrent architectures described
above, using two different datasets. The first one (Nottingham) contains folk
songs, which have a small number of different chords and redundant structure
(mean sequences length: 212; max length: 1491; min length: 35; sequences in
training set: 694; sequences in test set: 170). The second one (Piano-midi.de) is
an archive of classic piano music, which contains more complex songs with many
different chords (mean sequences length: 812; max length: 4405; min length: 78;
sequences in training set: 87; sequences in test set: 25). Learning the structure
of polyphonic music with HMMs was challenging due to the exponential number
of possible configurations of notes that can be produced at each time step, which
would cause the alphabet of the model to have an intractable size. We solved
this issue by only considering the configurations that were actually present in
the dataset, which reduced the complexity of the alphabet but at the same time
maintained enough variability to produce realistic samples. We assessed the
accuracy of the models on the prediction task defined in [5], using the same
evaluation metric and model parameters. We also collected the total training
times, which were affected by both the pre-training phase and the convergence
speed of the fine-tuning phase.

For the RNN-RBM, we compared our pre-training method with those used
by the authors of the model. The RBM- and RNN-part of the model had, re-
spectively, 150 and 100 hidden units. Pre-training was performed for 100 epochs,
and fine-tuning for 200 epochs. Total training times and prediction accuracies
for the HMM, SGD and HF pre-trainings are reported in Fig. 3. In general,
different pre-training methods led to similar accuracies at the end of the fine-
tuning phase. However, in the more complex Piano-midi dataset our HMM
pre-training obtained slightly better results. Regarding convergence speed, the
HMM method always significantly outperformed the others (e.g., it saved more
than 8 hours of computing in the Nottingham dataset). We also assessed the
change in performance as the number of HMM states varies. As expected, using
a smaller number of hidden states (≤ 25) reduced pre-training times. Interest-
ingly, this did not affect the quality of the models after the fine-tuning phase,
which still converged to good solutions. Using a HMM with 50 states, instead,
was detrimental due to the slow convergence speed of the HMM training. Finally,
the HMM pre-training seemed to perform a better initialization of the network,
which allowed to improve convergence speed also during the fine-tuning phase.
For example, the network pre-trained with the HMM reached the highest accu-
racy after only 110/120 epochs, compared to 200 epochs required by the other
methods. It is worth noting that the accuracies measured directly on the HMMs
were always fairly low, at best approaching 53% in the Nottingham dataset and

470

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Fig. 3: Accuracy and running times of the tested pre-training methods, measured
on the Nottingham (top) and Piano-midi (bottom) datasets. In parentheses:
times for training the HMM and for pre-training the network (our method) and
for RBM and RNN pre-training (SGD and HF methods).

10.1% in the Piano-midi dataset. For the simpler RNN, we compared the final
accuracy obtained using the HMM method with that obtained in [5] and, as a
baseline, with an RNN without pre-training. The implemented RNN had 200
hidden units, pre-training was performed for 400 epochs and fine-tuning for 800
epochs. The benefits of introducing the pre-training are clearly shown by the
marked difference on prediction accuracy (Nottingham dataset): 10,1% for the
network without pre-training, 66.64% with the pre-training used in [5] and 69,5%

471

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

with the HMM pre-training. Notably, using the HMM method the accuracy of
the simple RNN approaches that of the more complex RNN-RBM.

5 Conclusions and future directions

In this paper we proposed a novel method for pre-training recurrent neural net-
works, which consists of generating a smoothed, approximated dataset using a
linear HMM trained with the original data. When applied to a recently pro-
posed recurrent neural network architecture [5], our HMM-based pre-training
led to prediction accuracies comparable (and sometimes greater) than those ob-
tained with currently available pre-training strategies, but requiring a signifi-
cantly lower computational time. We also tested the method on a basic recur-
rent neural network, and also in this case the effectiveness of our approach was
confirmed. It should be stressed that the proposed method does not need ad-hoc
adjustments of existing learning algorithms, because it consists in generating a
simplified dataset that will be used to initialize the parameters of the learner.
Our pre-training strategy is therefore very general, and its benefits could be
readily extended to pre-train many other types of sequential models.

Even if our results are encouraging, further research is needed to better char-
acterize the strengths (and possibly the weaknesses) of the proposed approach.
In particular, a formal characterization of the method could improve its appli-
cability in other domains. Indeed, the method should be evaluated on different
datasets and tasks, in order to verify whether the high performance is maintained
even if the objective does not measures mean prediction accuracies, which are
likely to be easily captured by linear models like HMMs. Finally, future experi-
ments should better explore the parameters tuning, because there could still be
room for improvement by carefully selecting the number of epochs, number and
length of sequences generated by the HMM, network parameters (e.g., number
of hidden units) and other meta-parameters of the learning algorithms.

References

[1] R. Raina, A. Madhavan, and A.Y. Ng. Large-scale deep unsupervised learning using
graphics processors. International Conference on Machine Learning, pages 110–880, 2009.

[2] G.E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–7, 2006.

[3] D. Erhan, Y. Bengio, and A. Courville. Why does unsupervised pre-training help deep
learning? The Journal of Machine Learning Research, 11:625–660, 2010.

[4] J. Martens and I. Sutskever. Learning recurrent neural networks with Hessian-free opti-
mization. International Conference on Machine Learning, pages 1033–1040, 2011.

[5] N. Boulanger-Lewandowski, Y. Bengio, and V. Pascal. Modeling temporal dependencies in
high-dimensional sequences: Application to polyphonic music generation and transcription.
arXiv preprint arXiv:1206.6392, 2012.

[6] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. International
Conference on Machine Learning, pages 1–8, 2009.

[7] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

472

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

