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A milestone in numerical development is the acquisition of counting principles which allow children to
exactly determine the numerosity of a given set. Moreover, a canonical left-to-right spatial layout for rep-
resenting numbers also emerges during preschool. These foundational aspects of numerical competence
have been extensively studied, but there is sparse knowledge about the interplay between the acquisition
of the cardinality principle and spatial mapping of numbers in early numerical development. The present
study investigated how these skills concurrently develop before formal schooling. Preschool children
were classified according to their performance in Give-a-Number and Number-to-position tasks.
Experiment 1 revealed three qualitatively different groups: (i) children who did not master the cardinal-
ity principle and lacked any consistent spatial mapping for digits, (ii) children who mastered the cardi-
nality principle and yet failed in spatial mapping, and (iii) children who mastered the cardinality
principle and displayed consistent spatial mapping. This suggests that mastery of the cardinality principle
does not entail the emergence of spatial mapping. Experiment 2 confirmed the presence of these three
developmental stages and investigated their relation with a digit comparison task. Crucially, only chil-
dren who displayed a consistent spatial mapping of numbers showed the ability to compare digits by
numerical magnitude. A congruent (i.e., numerically ordered) positioning of numbers onto a visual line
as well as the concept that moving rightwards (in Western cultures) conveys an increase in numerical
magnitude mark the mastery of a spatial mapping principle. Children seem to rely on this spatial organi-
zation to achieve a full understanding of the magnitude relations between digits.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The development of a symbolic system to represent numerical
quantities can be considered one of the most powerful cultural
inventions of humans. The shift from an iconic to a symbolic nota-
tion has allowed individuals to efficiently denote and manipulate
numerical quantities using a variety of transformations (Wiese,
2003), from simple arithmetical operations (i.e., addition and sub-
traction) to advanced mathematical procedures. From two years of
age, young children begin to construct a stable connection between
exact numerosities and symbolic representations of numerical
quantities. Initially, this mapping is established between
number-words and the exact numerosties through the acquisition
of the counting principles (Gelman & Gallistel, 1978). At least three
counting principles must be respected to correctly count the items
of a given set: (a) the stable-order principle states that the list of
number-words must be recited in the correct (received) order
(i.e., 1, 2, 3, 4. . .); (b) the one-to-one correspondence principle
claims that each object in the set must be associated with only
one number-word in the counting list; and (c) the cardinality prin-
ciple states that the last recited number-word identifies the num-
ber of elements in the set. The correct implementation of these
principles allows children to determine the exact numerosity of a
given set, thereby creating a meaningful connection between num-
ber words and the corresponding objective numerosities. The Give-
a-Number (henceforth GaN;Wynn, 1990) is a well-established task
to assess the acquisition of cardinality principle in young children.
In this task, the experimenter repeatedly asks the child to give a
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specific number of items drawn from a larger set of objects (e.g.,
give 3 cookie toys from a basket containing 10 or more cookies).
Children’s performance shows a stable developmental pattern
which follows the acquisition of the cardinal meaning of
number-words (c.f. Knower-level theory, Carey, 2001; Sarnecka &
Carey, 2008). At first, children grab a handful of items irrespective
of the requested number: These children lack any numerical mean-
ing of number-words and they are referred to as pre-number
knowers (PN-knowers). Subsequently, children learn the cardinal
meaning of the number-word ‘‘one” (i.e., one-knowers) and they
correctly provide one item when requested. Interestingly, when
requested for a larger numerosity, one-knowers unlikely provide
one item because they know the cardinal meaning of the
number-word ‘‘one”. Later, children can correctly give two objects,
but they are still unsuccessful with larger numerosities (i.e., two-
knowers). With practice, children learn the cardinal meaning of
number-words up to four, thereby moving from a PN-knower level
to a four-knower level. These children are also denoted as subset-
knowers because their cardinal knowledge is limited to a subset
from 1 to 4 (Condry & Spelke, 2008; Le Corre & Carey, 2007; Le
Corre, Van de Walle, Brannon, & Carey, 2006; Sarnecka &
Gelman, 2004; Wynn, 1990, 1992). Children become cardinal-
principle knowers (CP-knowers) when they understand that the
next number-word in the count list corresponds to one additional
element in the set (i.e., n + 1). The CP-knowers extend the cardinal
principle to the whole counting list and display a proficient use of
counting (Sarnecka & Carey, 2008). The achievement of the cardi-
nality principle is an effortful process which engages children for
approximately over two years, usually from the age of 2–2½ to
4½–5 (see Almoammer et al., 2013, for cross cultural variations
due to linguistic structure).

Before entering the first year of formal schooling, children have
also shown the ability to spatially map2 Arabic numbers onto a
visual line. In a seminal study, Siegler and Opfer (2003) asked chil-
dren to place target numbers onto a horizontal line denoting a speci-
fic numerical interval (e.g., 0–100) by marking its position with a
pencil. As demonstrated in many studies that employed this
Number-to-Position task, hereafter Number Line (NL) task
(Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Siegler &
Booth, 2004; Siegler & Lortie-Forgues, 2014; Siegler & Opfer, 2003),
children initially overestimate small numbers and underestimate
the position of larger numbers. Progressively, with age and greater
familiarity with the numerical interval, children map numbers near
the correct location thus showing a linear and accurate positioning.
However, accuracy in positioning numbers on a small interval does
not grant success on a larger interval. For instance, second graders
display an accurate and linear mapping when placing numbers on
the 0–100 interval but revert to a biased mapping when placing
numbers on the 0–1000 interval (Siegler & Opfer, 2003). The shift
from a biased to an accurate (and formally correct) mapping of num-
bers has been explained as: (a) the consequence of a shift from a log-
arithmic to linear representation of numbers (Siegler & Opfer, 2003);
(b) the increasing ability and precision in performing a proportional
judgement (Barth & Paladino, 2011; Slusser, Santiago, & Barth,
2013); (c) the increased knowledge and familiarity with both the
proposed numbers and numerical intervals (Ebersbach, Luwel,
Frick, Onghena, & Verschaffel, 2008; Hurst, Leigh Monahan, Heller,
& Cordes, 2014; Moeller, Pixner, Kaufmann, & Nuerk, 2009); and
(d) the development of measurement skills (Cohen & Sarnecka,
2014). Regardless of the theoretical interpretation of this finding,
2 An encyclopaedic definition of mapping is that of ‘‘operation that associates each
element of a given set with one or more elements of a second set” (e.g., Stevenson &
Lindberg, 2010). In the present paper, we use the term spatial mapping to refer to the
association between each number and a spatial position on the visual line (for a more
general definition of number-space mapping, see Nunez & Fias, 2015).
the ability to accurately map numbers on the line is strongly corre-
lated with performance in more complex numerical tasks, as well as
with mathematical achievement and arithmetic proficiency (Booth &
Siegler, 2008). Crucially, performance in the NL task is a powerful
predictor of overall mathematics achievement, which remains reli-
able even after controlling for arithmetic, reading achievement,
and IQ (Booth & Siegler, 2006, 2008; Sasanguie, Göbel, Moll, Smets,
& Reynvoet, 2013). Moreover, children with math disability display
a less accurate performance in the NL task as compared to typical
developing children (Geary, Hoard, Nugent, & Byrd-Craven, 2008;
Landerl, Bevan, & Butterworth, 2004; Sella, Berteletti, Brazzolotto,
Lucangeli, & Zorzi, 2014). Finally, performance in the NL task is cor-
related with neural activation specific to arithmetical processing
(Berteletti, Man, & Booth, 2015).

Though the NL task (and its variants) has been extensively used
with different numerical and non-numerical intervals (Berteletti,
Lucangeli, & Zorzi, 2012; Sella, Berteletti, Lucangeli, & Zorzi,
2015b; Siegler, Thompson, & Opfer, 2009), little is known about
the acquisition of the spatial mapping for numbers at early stages
of development. In the largest study on preschoolers to date,
Berteletti et al. (2010) administered the NL task with three numer-
ical intervals (i.e., 1–10, 1–20, 0–100) to pupils belonging to three
different age groups (youngest group: Mage � 4 y.o.; middle group:
Mage � 5 y.o.; oldest group: Mage � 6 y.o.). In the 1–10 interval,
individual mapping analysis highlighted that children shifted from
a biased (logarithmic) to an accurate (linear) mapping with age.
Nevertheless, a consistent group of children displayed an inconsis-
tent (i.e., not numerically meaningful) mapping throughout the age
groups (52% in the youngest group; 38% in the middle age group;
15% in the oldest group). On average, children aged 5 years and
above show a linear mapping for the 0/1–10 numerical interval
(Berteletti et al., 2010; also see Muldoon, Towse, Simms, Perra, &
Menzies, 2013; Sasanguie, De Smedt, Defever, & Reynvoet, 2012;
Sasanguie, Van den Bussche, & Reynvoet, 2012), whereas younger
children either show a biased mapping or use a non-numerical
strategy to place numbers (e.g., placing numbers in the middle of
the line or alternating between right and left side answers irre-
spective of numerical value). Siegler and Ramani (2008) adminis-
tered the NL task with the 1–10 interval to preschool children
(between 4 and 5 years of age) as a pre-test measure in a training
study testing the effectiveness of playing linear board games in
enhancing linear numerical representation. In the pre-training
analysis, children mainly displayed a non-numerical estimation
strategy (e.g., placing numbers in the middle of the line) whereas,
after actively playing with a linear board game, children’s mapping
became linear (see also Ramani, Siegler, & Hitti, 2012; Siegler &
Ramani, 2009).

As the above studies demonstrate, counting and spatial map-
ping of numbers are two numerical abilities that emerge already
in young preschool children. However, little is known about the
relation between these two skills. Young, Marciani, and Opfer
(2011) found a positive correlation between linearity in the NL task
with the 0–20 interval and performance in the GaN task in children
between 3 and 5 years of age. Muldoon et al. (2013) also found a
correlation between linearity in different numerical intervals (i.e.,
0–10, 0–20, 0–100) and counting abilities in a sample of preschool
children. Moreover, it has been found that spatial-numerical train-
ing enhances children’s performance both in the NL task and in
counting (Fischer, Moeller, Bientzle, Cress, & Nuerk, 2011).
Berteletti et al. (2010) suggested that the acquisition of the cardi-
nality principle plays a central role in spatial mapping because
the ability of preschool children to map numbers linearly was cor-
related with the ability to numerically order sets of dots. Moreover,
in a subsequent study, Berteletti et al. (2012) suggested that linear-
ity is acquired in the numerical domain first and then generalized
to other non-numerical ordinal sequences because only numbers
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possess a cardinal value. All the above studies reported significant
correlations between counting and spatial mapping of numbers,
however there is sparse knowledge about how these two compe-
tences are interrelated in the early stages of development. In par-
ticular, previous studies mainly explored general counting skills
without focusing on the acquisition of the cardinality principle
and how this may eventually interact with the spatial mapping
of numbers.

The purpose of the present study was to investigate how the
acquisition of cardinality principle and spatial mapping of numbers
concurrently develop prior to formal schooling. In particular, we
classified preschool children according to their knower-level (using
a Bayesian method; Lee & Sarnecka, 2010) and their ability to spa-
tially map digits in a numerically meaningful way. We examined
whether mastery of the cardinality principle (i.e., the CP-knower
stage), which marks the achievement of proficient verbal counting,
is paralleled by consistent spatial mapping of numbers. If cardinal
principle knowledge is acquired before the emergence of spatial
mapping, then only CP-knowers should show the ability to consis-
tently map numbers on the visual line. On the other hand, if cardi-
nal principle knowledge entails the ability to map numbers onto
the visual line, then all CP-knowers should show consistent spatial
mapping. In Experiment 2 we also investigated how the acquisition
of cardinality principle and the accuracy in spatial mapping are
related to the ability to successfully compare visually presented
digits. To the best of our knowledge, these issues have never been
directly addressed in previous studies. As noted before, a large pro-
portion of the younger preschool children lack any consistent spa-
tial mapping (i.e., whether biased or linear; e.g., Berteletti et al.,
2010). Why this occurs has remained largely unexplored. There-
fore, it is also conceivable that the cardinality principle is a prereq-
uisite for spatial mapping of numbers per se, which implies that
subset-knowers would display an inconsistent (i.e., not numeri-
cally meaningful) mapping.

2. Experiment 1

In Experiment 1, we assessed children’s performance in the GaN
and NL tasks. In the GaN, we used a Bayesian classification analysis
in order to provide a reliable categorization of children’s perfor-
mance based on the knower-level theory (Lee & Sarnecka, 2011),
whereas for the NL task, children were classified as having a linear,
logarithmic or non-numerical mapping following the methodology
described in previous research (Berteletti et al., 2010; Siegler &
Opfer, 2003).3 To ensure a reliable classification, we assessed chil-
dren’s performance in the NL task three times to obtain a more
stable pattern of estimates. Finally, children were asked to recite
the number-word list and to name digits to assess their basic numer-
ical knowledge. A large age-range was selected to accurately assess
the developmental acquisition of each numerical competence and
their interrelation. We expected that only CP-knowers would show
a linear mapping of numbers on the line. For subset-knowers, who
know the exact meaning of fewer number words, we expected to
observe both non-numerical and biased (logarithmic) positioning
in the NL task (Berteletti et al., 2010; Siegler & Ramani, 2009). Alter-
natively, if mastery of the cardinality principle is a prerequisite for
spatial mapping per se, all subset-knowers should not be able to
3 Note that the ongoing debate about which model best captures the develop-
mental change in the pattern of estimates in the number-to-position task is
orthogonal to the aims of the present study. For this reason, we simply refer to the
classic distinction between logarithmic and linear positioning without assuming that
the selected model is a faithful index of the underlying representation (also see
Berteletti et al., 2012; Sella, Berteletti, Lucangeli, & Zorzi, 2015a, 2015b). Moreover, as
further described, the crucial distinction in the present dataset is not between log-like
and linear patterns but between consistent (numerically ordered) and inconsistent
(i.e., non-numerically meaningful) mapping.
position the numbers in a numerically meaningful (i.e., ordered)
manner.
3. Material and methods

3.1. Participants and procedure

Forty-six preschool children (29 boys, Mmonths = 61, SD = 6,
range = 48–70) from schools in the north-eastern region of Italy
took part in the study after obtaining informed consent from par-
ents or legal guardians. Children were met individually in a sepa-
rate quiet room during school hours and completed the four
tasks in one session. Two fixed orders were chosen to counterbal-
ance the GaN and NL tasks. Half of the participants completed the
tasks in the following order: Naming 1–10, NL, Verbal counting and
GaN. The other half performed the tasks in the following order:
Verbal counting, GaN, Naming 1–10 and NL. There were small
breaks between tasks and children could take longer breaks if
needed.
3.2. Numerical tasks

Naming task 1–10. Children were presented with an Arabic digit
on a cardboard card (3.7 � 3.7 cm) and were asked to name it
aloud. All the numbers from 1 to 10 were randomly presented.
One point was awarded for each correct naming and the percent-
age of correct responses was calculated.

Verbal counting task. Children were asked to orally recite the
numerical sequence starting from one and were stopped when
they reached 20. Children were allowed to correct themselves
immediately if they committed an error or to go back and restart
the sequence: One point was awarded for each correct number-
word and zero for skipped or incorrectly replaced numbers. For
instance, if a child skipped the number words from 11 to 14
(included), four errors were counted. The percentage of correct
responses was calculated.

NL task 1–10. A 20 cm black horizontal line was presented in the
middle of a half landscape A4 sheet with the digit one placed just
below the left-end of the line and the number ten placed just
below the right-end. Children were asked to correctly place a tar-
get number on the line by making a mark with a pencil. The num-
ber to be positioned was presented inside a box in the upper left
corner of the sheet to avoid giving an indication on the midpoint
of the line. For every trial, the experimenter said: ‘‘This line goes
from one to ten [pointing at the numbers]. Where is the correct place
for this number [pointing at the number in the upper left corner]?
Show me the correct place making a mark with your pencil!”. There
were two training trials (i.e., 1 and 10 to be placed) in which, if nec-
essary, the experimenter corrected the child by showing the cor-
rect position. Then, there were eight randomly presented
numbers to be placed (i.e., 2, 3, 4, 5, 6, 7, 8, 9) and no feedback
was given. Each child completed this task three times with a brief
pause between sessions for a total of 24 test trials.

GaN task. The task was an adaptation of Wynn’s (1990, 1992)
give-a-number. A small basket with fifteen cardboard cards repre-
senting oranges (7 cm of diameter) was presented to the child who
was free to manipulate them before starting the task. The task was
introduced as a role-play game in which the experimenter played
the role of a customer and the child played the role of the grocer.
The experimenter said: ‘‘Let’s play the market game! You are a grocer
and I’m a customer who wants to buy some delicious oranges. Ok? Are
you ready?”. The experimenter then said: ‘‘Hello! May I have X
orange/s, please?”. As soon as the child gave the selected number
of oranges, the experimenter said: ‘‘Is this/Are these X orange/s?”.
The child was allowed to modify the number of oranges until she
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was sure about the number. The experimenter asked for 1, 2, 3, 4, 5,
8 and 10 oranges in random order. Each numerosity was asked
three times with a brief pause between sessions.
Table 1
Type of mapping in the NL task separated for Subset-knowers and CP-knowers. Cell
values represent number of children (N = 46) in Experiment 1.

GaN task NL task
Type of mapping

Knower-level Non-numerical Logarithmic Linear

Subset-knowers 12 1 0
CP-knowers 8 7 18
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Fig. 1. Mean of median estimates of CP-mappers (N = 25), CP-non-mappers (N = 8),
and Subset-non-mappers (N = 12) in Experiment 1. The estimates of CP-mappers
are best fit by a linear model, while those of the other two groups are unrelated to
the magnitude of the target numbers.
4. Results

We analysed the GaN task data in order to categorize children
as Subset-knowers or CP-knowers. Similarly, we categorized chil-
dren as displaying linear, logarithmic or non-numerical mapping
based on their performance in the NL task. Then, we investigated
how the type of spatial mapping was related to the knower level.

GaN analysis. We assigned each child to a knower-level using a
Bayesian model (Lee & Sarnecka, 2010, 2011; Negen, Sarnecka, &
Lee, 2012). The model developed by Lee and Sarnecka (2010)
assumes that children’s performance in the GaN task can be inter-
preted as a Bayesian inference based on children’s knowledge of
numerical concepts and the numerosity requested in each trial
by the experimenter (Negen et al., 2012). For instance, if a child
knows the meaning of the number-words up to three (i.e., three-
knower), the probability of correctly giving items from one to three
increases when these numerosities are requested, whereas the
probability of producing other numerosities decreases. Conversely,
when a three-knower is asked to produce five items, the probabil-
ity to provide one, two or three elements drastically decreases,
whereas the probability of giving other numerosities increases.
The most useful application of this model is the possibility to
determine each child’s knower-level based on her answers in the
GaN task. We used the Excel sheet (www.cogsci.uci.edu/codev?ne-
gen?Knower-LevelEstimater.xls) developed by Negen et al. (2012)
to determine the knower-level for each child in our study. Given
the large age range in the sample, we set the same prior probabil-
ities for each possible knower-level (i.e., PN-knower, one-knower,
two-knower, three-knower, four-knower, and CP-knower). The cal-
culation sheet provides for each child the posterior distribution for
each knower-level, that is the probability that a child has a specific
knower-level based on the observed answers and the model
assumptions (Negen et al., 2012). Therefore, for each child, the
knower-level corresponded to the highest peak of her posterior
distribution. For example, if a child had a posterior distribution
yielding an 82% probability to be a three-knower and an 18% to
be a four-knower, the child was classified as three-knower. After
implementing this procedure, we identified 2 children in the PN-
knower, 3 in the one-knower, 3 in the two-knower, 2 in the
three-knower, 3 in the four-knower, and 33 in the CP-knower
groups. Increase in knower-level, with PN-knower classified as 0
to CP-knower classified as 5, was positively correlated with age
in months (rs(44) = .41, p = .005). In agreement with previous stud-
ies (Sarnecka & Carey, 2008), we considered children ranging from
PN-knower to four-knower as Subset-knowers. Therefore, there
were 13 Subset-knowers (Mmonths = 57, SD = 6, range = 48–69)
and 33 CP-knowers (Mmonths = 63, SD = 5, range = 52–70).

NL analysis. In order to describe the mapping displayed by chil-
dren, we ran linear and logarithmic regression analyses on individ-
ual median estimates as a function of target numbers. The highest
R2 determined what type of mapping the child displayed. When
neither model was significant, the child was considered unable to
properly perform the task and classified as displaying a non-
numerical mapping. We also computed the Percentage of Absolute
Error using the formula: (|Estimate � Target Number|/Numerical
Interval) ⁄ 100. In agreement with previous studies (Berteletti
et al., 2010), we found a positive correlation between the type of
mapping (Non-numerical = 0; Logarithmic = 1; Linear = 2) and age
in months (rs (44)= 0.4, p = .006).

Intersection between GaN and NL. Central to the purpose of the
present study is to investigate the intersection between knower
level and type of spatial mapping. All Subset-knowers, except
one, displayed a non-numerical mapping of numbers, whereas
within CP-Knowers two distinct subgroups were identified, those
who mapped numbers (i.e., mappers) either linearly or logarithmi-
cally, and those who adopted a non-numerical mapping (i.e., non-
mappers; Table 1). We considered a child as a mapper irrespective
of whether the best fitting function was linear or logarithmic
because both fits entail the understanding of spatial order for num-
bers with respect to a non-numerical mapping.

To further investigate the relation between numerical knowl-
edge and spatial mapping of numbers, we analysed performance
in the other tasks subdividing children in three qualitatively differ-
ent subgroups. Children categorized as subset-knowers in the GaN
task and showing a non-numerical mapping in the NL task were
defined as Subset-non-mappers (n = 12). CP-knowers showing a
non-numerical mapping in the NL task were defined as CP-non-
mappers (n = 8). Finally, CP-knowers displaying a consistent spatial
mapping (either linear or logarithmic) in the NL task were defined
as CP-mappers (n = 25). We fit the linear and logarithmic models on
median estimates as a function of target numbers for Susbset-non-
mappers, CP-non-mappers and CP-mappers (see Fig. 1). Subset-
non-mappers and CP-non-mappers displayed a non-numerical
mapping (i.e., all estimates in the middle of the line), with both lin-
ear and logarithmic models failing to reach significance. CP-
mappers, instead, displayed a progressive increase in estimates
as a function of number magnitude. Accordingly, the linear model
had better fit (R2 = .99) compared to the logarithmic model
(R2 = .92), as well as smaller absolute residuals, t(7) = 4.37, p = .003.

To compare the three groups we analysed the percentage of cor-
rect responses in the Verbal Counting task and in the Digit Naming
task, as well as the percentage of error in the NL task and the age in

http://www.cogsci.uci.edu/codev?negen?Knower-LevelEstimater.xls
http://www.cogsci.uci.edu/codev?negen?Knower-LevelEstimater.xls


Table 2
Results of statistical analyses comparing Subset-non-mappers (SSnMAP), CP-non-mappers (CPnMAP) and CP-mappers (CPMAP) on numerical tasks and age. Bonferroni correction
(BC) adjusted one tail alpha level to .10/8. BC: *p < .0125. The effect sizes were calculated as: g2 = v2/N � 1; r = Z/

p
N (Rosenthal, 1991).

Main analysis Multiple comparisons

Groups SSnMAP CPnMAP CPMAP SSnMAP vs. CPnMAP CPnMAP vs. CPMAP

Measures M(SD) M(SD) M(SD) v2 p g2 Z p BC r Z p BC r

Verbal counting (% correct) 68(31) 95(14) 93(11) 10.65 .005 0.24 �2.35 .019 0.37 �0.80 .422 0.10
Naming task (% correct) 38(32) 82(23) 93(11) 20.78 <.001 0.47 �2.70 .007 ⁄ 0.43 �1.22 .221 0.15
NL interval 1–10 (PAE) 36(9) 35(9) 20(10) 17.51 <.001 0.40 �0.34 .734 0.05 �3.22 .001 ⁄ 0.40
Age (months) 57(6) 60(4) 63(5) 9.46 .009 0.22 �1.40 .161 0.22 �1.61 .108 0.20
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months, in a series of one-way Kruskal-Wallis tests with Group
(Subset-non-mappers, CP-non-mappers, CP-mappers) as
between-subjects factor (Field, Miles, & Field, 2012). Results of
main tests and subsequent post hoc comparisons are reported in
Table 2. The Subset-non-mappers had a lower performance in
the Naming task compared to the CP-non-mappers. Interestingly,
the CP-non-mappers and CP-mappers had similar numerical knowl-
edge (i.e., Verbal Counting and Naming task) and yet CP-non-
mappers lacked the ability to meaningfully map numbers onto
spatial position for the 1–10 interval. Within the group of
CP-mappers, children who displayed a log-like pattern had similar
age to those who displayed a linear mapping as well as similar
performance in the Verbal Counting and in the Naming tasks
(all ps > .05).
5. Discussion

We administered the GaN task and the NL task in order to high-
light how cardinal principle knowledge and spatial mapping of
numbers are interrelated prior to formal schooling. Children’s
responses in the GaN task were in line with the knower-level the-
ory which assumes a progressive acquisition of number-words
meaning (Sarnecka & Carey, 2008; Wynn, 1990, 1992). Results in
the NL task identified children as displaying a non-numerical
(i.e., non-ordered) or a biased logarithmic mapping which tended
to become linear with age as observed in previous studies.

Crucially, the intersection between performances in the GaN
and NL allowed the identification of three qualitatively different
groups: The Subset-non-mappers had the cardinal meaning limited
to few number-words and displayed a non-numerical spatial map-
ping of digits; the CP-non-mappers mastered the cardinality prin-
ciple but displayed a non-numerical (non-ordered) spatial
mapping of digits; finally, the CP-mappers mastered the cardinality
principle and displayed a consistent (either linear or logarithmic)
mapping of digits. Interestingly, while subset-knowers performed
poorly in digit naming, CP-mappers and CP-non-mappers showed
a similar level of numerical knowledge. Therefore, failure in spatial
mapping of the latter group does not reflect lack of knowledge of
the digits (this issue is further addressed in Experiment 2). These
findings suggest that the ability to correctly read Arabic digits
along with the mastery of the cardinality principle do not imply
a consistent and meaningful spatial mapping of numbers. In a pre-
vious study, Le Corre and Carey (2007) also categorized CP-
knowers into two qualitatively different groups, those who could
reliably estimate rapidly presented discrete quantities larger than
four and those who lacked this ability. Interestingly, Le Corre
(2014) observed that only the former group could perform correct
numerical comparisons (i.e., 10 is larger than 6) thus demonstrat-
ing a deeper knowledge of the magnitude relation between num-
bers words. In this light, the acquisition of counting principles
does not directly imply a semantic induction about the magnitude
meaning of each number (Davidson, Eng, & Barner, 2012;
Gunderson, Spaepen, & Levine, 2015; Le Corre & Carey, 2007; but
see Odic, Le Corre, & Halberda, 2015). Given Le Corre and Carey’s
observation, we questioned whether the ability to spatially map
numbers (i.e., digits) was also related to a deeper knowledge of
the magnitude relation between digits. This was the aim of the
Experiment 2.

6. Experiment 2

The aim of Experiment 2 was to replicate the findings of Exper-
iment 1 and extend them by assessing how the acquisition of the
cardinality and the accuracy in spatial mapping are related to the
ability to perform magnitude comparison of Arabic digits. If the
ability to spatially map numbers is related to a deeper understand-
ing of magnitude relations, then children able to position numbers
spatially on the line (i.e., CP-mappers), even in a biased (logarith-
mic) way, should also demonstrate the ability to correctly compare
Arabic digits. Conversely, children who lack a consistent spatial
mapping of numbers should fail in choosing the larger between
two digits despite the acquisition of the cardinality principle and
their equivalent knowledge of digits.

In Experiment 2, we administered the same tasks presented in
Experiment 1 to a wide age-range of preschool children and added
a Digit Comparison task with digits from 1 to 9. We also extended
the numerical range tested by evaluating the ability to read num-
bers between 11 and 20 and to correctly place numbers on a line in
the interval between 1 and 20. These two additional tasks were
intended to more thoroughly describe children’s numerical skills.
Finally, given that in Experiment 1 subset-knowers correctly read
on average only four digits out of ten (38%), in Experiment 2 the
numbers to be placed in the NL task were read aloud by the exper-
imenter as to minimize the influence of digit naming skill on
performance.

We analysed the GaN task data in order to categorize children
as Subset-knowers or CP-knowers. Similarly, we categorized chil-
dren as having a linear, a logarithmic or non-numerical mapping
based on their performance to the NL task with 1–10 interval.
We expected to observe the same three subgroups as in Experi-
ment 1. Finally, we analysed the performance in the Digit compar-
ison task to test the prediction that the CP-mappers would be the
only group showing the ability to correctly compare digits.

7. Material and methods

7.1. Participants and procedure

Forty-six preschool children (28 boys, Mmonths = 58, SD = 11,
range = 41–77) from north-eastern Italy took part in the study after
obtaining informed consent from parents or legal guardians. Par-
ticipants completed the same tasks as in Experiment 1 as well as
the 1–20 interval for the NL task, a Naming task including numbers
from 11 to 20, and a Digit Comparison task. Tasks from Experiment
1 were presented in the same two orders, while the new tasks
involving larger numbers were presented last to avoid discourag-



Table 3
Type of mapping in the NL task separated for Subset-knowers and CP-knowers. Cell
values represent number of children (N = 46) in Experiment 2.

GaN task NL task
Type of mapping 1–10 interval
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ing children. Presentation orders of the tasks were: (a) Naming 1–
10, NL task 1–10, Verbal counting 1–20, GaN, Naming 11–20, NL
task 1–20 and Digit Comparison or (b) Verbal counting, GaN, Nam-
ing 1–10, NL 1–10, Digit Comparison, Naming 11–20, and NL task
1–20.
Knower-level Non-numerical Logarithmic Linear

Subset-knowers 23 1 0
CP-knowers 11 3 8
7.2. Numerical tasks

We administered the GaN task, Naming 1–10 task, Verbal
Counting task and NL 1–10 task as in Experiment 1. The only differ-
ence was that numbers to position in the NL task were also read
aloud to the child (see instructions for the NL task 1–20).

Naming task 11–20. Children were presented with an Arabic
digit on a cardboard card (3.7 � 3.7 cm) and were asked to name
it aloud. All the numbers from 11 to 20 were randomly presented.
One point was awarded for each number correctly named and the
percentage of correct responses was calculated.

NL task 1–20. A 20 cm black horizontal line was presented in the
middle of a half landscape A4 sheet with the digit one placed just
below the left-end of the line, whereas the number twenty was
placed just below the right-end. Children were asked to correctly
place a number on the line by making a mark with a pencil. The
number to be positioned was presented inside a box in the upper
left corner of the sheet. For every trial, the experimenter said: ‘‘This
line goes from one to twenty [pointing at the numbers]. Where is the
correct place for this number X [pointing at the number in the upper
left corner]? Show me the correct place for X making a mark with
your pencil!”. There were two training trials (i.e., 1 and 20) in which
the experimenter corrected the child if necessary. There were eight
randomly presented numbers to position (i.e., 2, 4, 6, 7, 13, 15, 16,
and 18). The experimenter read aloud the numbers to be placed.
Each child completed the task three times with a brief pause
between sessions.

Digit Comparison task. Two single digit numbers, between 1 and
9, were horizontally presented on an A4 landscape sheet (font
height was approx. 2.5 cm, the distance between numbers was
approx. 9 cm). The child was asked to decide which digit was larger
by indicating or naming it. Responses were marked on a record
sheet and the child could change her response before moving to
the next trial. There were 36 trials presenting all possible compar-
isons. The larger number was presented equally often in either
right or left locations. We calculated the percentage of correct
responses as accuracy measure.
4 For all CP-mappers, we also estimated the individual logarithmic component (i.e.
k) using a mixed log-linear model (Anobile, Cicchini, & Burr, 2012; Opfer, Thompson
& Kim, 2016). The k parameter estimation is constrained to assume values between 0
(linear model) to 1 (logarithmic model). CP-mappers with a log-like mapping pattern
displayed a slightly positive and larger lambda (M = 0.37, SD = 0.28) compared to CP-
mappers with a linear mapping pattern who displayed a lambda equal to zero (M = 0
SD = 0). We also computed the correlation between lambda and digit comparison
accuracy, which should be taken as explorative due to the very small sample size. The
correlation was modest and it failed to reach significance (r(9) = �.37, p = .27).
8. Results

GaN analysis. After the Bayesian classification analysis, we iden-
tified 1 PN-knower, 7 one-knowers, 4 two-knowers, 6 three-
knowers, 5 four-knowers, and 23 CP-knowers. Therefore, there
were 23 Subset-knowers (Mmonths = 50, SD = 8, range = 41–63)
and 23 CP-knowers (Mmonths = 66, SD = 7, range = 52–77). As
observed in Experiment 1, knower-level (from 0 = PN-knower to
5 = CP-knower) was positively correlated with age in months
(rs(44) = .76, p < .001).

NL 1–10 Analysis. As in Experiment 1, we fit the linear and the
logarithmic functions on individual median estimates in order to
classify each child as having a linear, logarithmic or non-
numerical mapping in the 1–10 interval. We chose to limit the
classification to the interval 1–10 for coherence with Experiment
1 and because it represents an interval that should be mastered
by children at the end of preschool, thereby yielding greater vari-
ability between participants (Berteletti et al., 2010). As observed
in Experiment 1, the type of mapping (Non-numerical = 0; Loga-
rithmic = 1; Linear = 2) was positively correlated with age in
months (rs(44) = .53, p < .001).
Intersection between GaN and NL. In the 1–10 interval, all
Subset-knowers, except one, displayed a non-numerical mapping
of numbers onto the line. We classified the CP-knowers in two
distinct groups, those who mapped numbers (i.e., mappers),
whether linearly or logarithmically, and those who displayed a
non-numerical mapping (i.e., non-mappers). Based on the type
of mapping displayed in the 1–10 interval, we identified 23
Subset-non-mappers, 11 CP-non-mappers, and 11 CP-mappers
(see Table 3).

We fit the linear and logarithmic models on median estimates
as a function of target numbers for Subset-non-mappers, CP-non-
mappers and CP-mappers separately for the 1–10 and 1–20 inter-
vals (see Fig. 2). In both numerical intervals, Subset-non-mappers
and CP-non-mappers displayed a non-numerical mapping (i.e., all
estimates in the middle of the line), with both linear and logarith-
mic models failing to reach significance. CP-mappers, instead, dis-
played a progressive increase in estimates as a function of the
magnitude of target numbers. For the 1–10 interval, the linear
model had a better fit (R2 = .98) compared to the logarithmic model
(R2 = .89), as well as smaller absolute residuals, t(7) = 3.49, p = .01.
Conversely, the logarithmic model had a better fit (R2 = .98) com-
pared to the linear model (R2 = .89), as well as smaller absolute
residuals, t(7) = 3.49, p = .01, for the 1–20 interval.

For Verbal Counting, Naming and Digit Comparison tasks we
calculated the percentage of correct responses, whereas for the
two NL tasks we calculated the percentage of error with the same
formula as in Experiment 1. These variables were then analysed,
along with age in months, in a series of one-way Kruskal-Wallis
tests with Group [Subset-non-mappers, CP-non-mappers, CP-
mappers] as between-subjects factor to compare the three groups.
Main results and subsequent post hoc comparisons are reported in
Table 4. Subset-non-mappers displayed a lower performance in
Verbal Counting and in 1–10 Naming; they were also significantly
younger compared to the CP-non-mappers. CP-non-mappers and
CP-mappers had similar numerical knowledge (i.e., Verbal Count-
ing and Naming scores) and age. CP-mappers, compared to CP-
non-mappers, showed better performance in both the NL tasks
and importantly they showed greater accuracy in the Digit Com-
parison task (Fig. 3). Interestingly, within the group of CP-
mappers, accuracy in the Digit Comparison task was very similar
for children displaying a log-like pattern (M = 95%, SD = 6) and chil-
dren displaying a linear pattern (M = 96%, SD = 5).4

We further explored whether the ability to compare digits in
CP-mappers and CP-non-mappers might be modulated by number
magnitude. In this regard, Le Corre (2014) found that only a sub-
group of CP-knowers who could reliably estimate visually pre-
sented objects ranging from 6 to 10 were also able to tell that
,
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Fig. 2. Mean of median estimates for CP-mappers (N = 11), CP-non-mappers (N = 11), and Subset-non-mappers (N = 23) in the 1–10 interval (panel a) and 1–20 interval
(panel b) in Experiment 2. Estimates of CP-mappers are best fit by a linear model in the 1–10 interval and by a logarithmic model in the 1–20 interval. The estimates of the
other two groups are unrelated to the magnitude of the target numbers.

Table 4
Results of statistical analyses comparing Subset-non-mappers (SSnMAP), CP-non-mappers (CPnMAP) and CP-mappers (CPMAP) on numerical tasks and age. Bonferroni correction
(BC) adjusted one-tailed alpha level to .10/14. BC: *p < .006. The effect sizes were calculated as: g2 = v2/N � 1; r = Z/

p
N (Rosenthal, 1991).

Main analysis Multiple comparisons

Groups SSnMAP CPnMAP CPMAP SSnMAP vs. CPnMAP CPnMAP vs. CPMAP

Measures M(SD) M(SD) M(SD) v2 p g2 Z p BC r Z p BC r

Verbal counting (% correct) 51(30) 86(18) 93(13) 18.62 <.001 0.42 �3.18 .001 ⁄ 0.39 �0.93 .35 0.14
Naming task 1–10 (% correct) 26(30) 95(10) 96(8) 28.51 <.001 0.65 �4.18 <.001 ⁄ 0.51 �0.45 .654 0.07
Naming task 11–20 (% correct) 5(7) 12(24) 38(40) 9.93 .007 0.23 �0.64 .524 0.08 �2.04 .041 0.31
NL interval 1–10 (PAE) 47(5) 43(8) 17(9) 24.02 <.001 0.55 �1.36 .173 0.17 �4.27 <.001 ⁄ 0.64
NL interval 1–20 (PAE) 46(6) 41(7) 18(7) 26.39 <.001 0.60 �2.04 .042 0.25 �4.39 <.001 ⁄ 0.66
Digit comparison (% correct) 54(15) 61(20) 96(5) 20.85 <.001 0.47 �0.98 .325 0.12 �3.54 <.001 ⁄ 0.53
Age (months) 50(8) 63(7) 69(6) 26.31 <.001 0.60 �3.71 <.001 ⁄ 0.45 �1.91 .056 0.29
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Fig. 3. Percentage of correct responses in the digit comparison task for Subset-non-
mappers, CP-non-mappers and CP-mappers. Bars represent the 95% CI and the
dotted line represents the chance level (i.e., 50% of correct responses).
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‘‘ten” is more than ‘‘six” and more than ‘‘eight”. Nevertheless, all
CP-knowers could reliably say that ‘‘three” is more than ‘‘two”
and that ‘‘eight” is more than ‘‘one”, thereby suggesting that they
could successfully compare small to large digits but not large to
large digits. In fact, before becoming CP-knowers, children learn
the meaning of number-words up to four and know that all num-
ber words beyond three denote larger numerosities (Condry &
Spelke, 2008; Le Corre & Carey, 2007; Wynn, 1992). Accordingly,
we analysed the response accuracy for comparisons that include
one digit smaller than or equal to 4 separately from comparisons
that only include digits greater than 4 (there were ten trials of
the latter type: 5–6, 5–7, 8–5, 9–5, 7–6, 6–8, 6–9, 8–7, 7–9, 8–9).
We analysed the mean percentage of correct responses in a mixed
ANOVA with Type of Comparison [Small, Large] as within-subjects
factor and Group [CP-mappers, CP-non-mappers] as between-
subjects factor. The main effects of Type of Comparison, F(1,20)
= 10.05, MSE = 107.9, p = .005, gp

2 = .33, and Group, F(1,20)
= 25.63, MSE = 477.5, p < .001, gp

2 = .56, were both significant
whereas the interaction Type of Comparison x Group failed to
reach significance, F(1,20) = 1.15, MSE = 107.9, p = .297, gp

2 = .05.
Accuracy was slightly higher for small than for large comparisons
across groups, but this did not reduce the large performance gap
between CP-mappers (Small: M = 99.6%, SD = 1%; Large: M = 86%,
SD = 16%) and CP-non-mappers (Small: M = 63%, SD = 21%; Large:
M = 56%, SD = 22%).

Strikingly, performance of CP-non-mappers was at chance level
for the comparison of large numbers (one-tailed t-test vs. 50%: t
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(10) = 0.98, p = .18). Their performance was above chance for com-
parisons involving at least one small number (t(10) = 2.05,
p = .034), but it reverted to chance level when trials involving pairs
of small numbers (e.g., 2–4) were excluded (M = 60.9%, SD = 24%; t
(10) = 1.49, p = .08). Overall, the ability of CP-non-mappers to com-
pare visually presented Arabic digits was extremely poor, in sharp
contrast with the mature ability displayed by CP-mappers.

In order to highlight the different contribution of cardinal
principle knowledge and spatial mapping of numbers on the
ability to compare digits, we ran two hierarchical regression
analyses with percentage of correct responses in the Digit
Comparison task as outcome variable. Indeed, within the
CP-knowers group, different levels of performance could
potentially relate to differences in magnitude comparison skill.
Therefore, to account for within group variability in counting
proficiency, we used a continuous measure (percentage of correct
responses). In both models, age in months was entered as first
predictor, which explained a large amount of variance (see
Table 5), followed by accuracy in Verbal Counting and Naming.
For the first model (see Model A in Table 5), we added the
percentage of correct responses in the GaN task, which did not
explain additional variance (Step 3A), and percentage of error in
the NL task, which explained a significant and consistent amount
of variance (Step 4A). In the second model (see Model B in
Table 5), we first added the percentage of error in the NL task
with the interval 1–10 (Step 3B), which improved significantly
the variance explained, whereas entering the percentage of cor-
rect responses in the GaN task as last predictor failed to increase
the fit of the model (Step 4B). The two regression models suggest
that the ability to compare digits is related to the spatial mapping
of numbers rather than to the mastery of the cardinality principle,
even when the effects of age and basic numerical knowledge
(i.e., Verbal Counting and Naming) were statistically removed.
Table 5
Hierarchical regression models with percentage of correct responses in the Digit Comparis
whereas numerical knowledge (i.e., percentage of correct responses in the Naming and in
responses in the GaN task was entered in Step 3A and Percentage of Absolute Error (PAE) i
entered in Step 3B and accuracy in the GaN task was entered in Step 4B. Regardless of the or
fit.

Model A M

Variables DR2 B SE B b p V

Step 1 .460 S

Constant �0.163 0.136 .238 C
Age (months) 0.014 0.002 0.678⁄⁄⁄ <.001 A

Step 2 .051 S

Constant �0.007 0.162 .967 C
Age (months) 0.009 0.003 0.424⁄ .014 A
Naming task 1–10 (% correct) 0.121 0.091 0.224 .193 N
Verbal counting (% correct) 0.116 0.103 0.156 .266 V

Step 3A .001 S

Constant �0.009 0.164 .957 C
Age (months) 0.009 0.004 0.448⁄ .021 A
Naming task 1–10 (% correct) 0.147 0.127 0.271 .256 N
Verbal counting (% correct) 0.125 0.108 0.168 .256 V
GaN (% correct) �0.001 0.002 �0.082 .771 N

Step 4A .166 S

Constant 0.746 0.214 .001 C
Age (months) 0.003 0.004 0.142 .402 A
Naming task 1–10 (% correct) 0.175 0.105 0.323 .103 N
Verbal counting (% correct) 0.110 0.089 0.149 .223 V
GaN (% correct) �0.001 0.002 �0.178 .448 G
NL 1–10 (PAE) �0.009 0.002 �0.543⁄⁄⁄ <.001 N

⁄⁄ p < .01.
⁄ p < .05.
⁄⁄⁄ p < .001.
9. Discussion

In Experiment 2, we replicated the observation that the inter-
section between cardinal principle knowledge and spatial mapping
of numbers yields three qualitatively different groups. The three
groups also showed qualitative differences in basic numerical
skills: Subset-non-mappers displayed a reduced ability in naming
digits from 1 to 10 as well as a reduced performance in reciting
the verbal counting sequence up to 20 compared to CP-non-
mappers. These two groups also differed in terms of age, with
the Subset-non-mappers being younger compared to the CP-non-
mappers. Crucially, CP-mappers outperformed CP-non-mappers
in the Digit Comparison task despite the similar basic numerical
knowledge. Unsurprisingly, CP-mappers showed lower error in
positioning numbers on both number line intervals (i.e., 1–10
and 1–20). The hierarchical regression showed that, after control-
ling for age and basic numerical knowledge, the performance in
comparing digits is explained by the precision in spatially mapping
numbers rather than proficiency in counting. Indeed, only children
who displayed a consistent spatial mapping of numbers (i.e., CP-
mappers) were able to accurately select the larger between two
visually presented digits. Similarly to the results of Le Corre et al.
(Le Corre, 2014; Le Corre & Carey, 2007), the mastery of the cardi-
nality principle did not imply understanding of the magnitude
relation between numbers.

10. General discussion

The present study investigated the relation between the acqui-
sition of the cardinality principle and spatial mapping of numbers
in preschool children. We classified children as Subset-knowers or
CP-knowers using a robust Bayesian analysis of the GaN task per-
formance (Lee & Sarnecka, 2011; Negen et al., 2012). In line with
on task as outcome measure. In both models, Age was entered as predictor in Step 1,
the Verbal Counting task) was entered in Step 2. In Model A, percentage of correct

n the 1–10 NL task was entered in Step 4A. Conversely, in Model B, PAE in the NL was
der in which it was inserted as predictor, GaN did not significantly improve the model

odel B

ariables DR2 B SE B b p

tep 1 .460

onstant �0.163 0.136 .238
ge (months) 0.014 0.002 0.678⁄⁄⁄ <.001

tep 2 .051

onstant �0.007 0.162 .967
ge (months) 0.009 0.003 0.424⁄ .014
aming task 1–10 (% correct) 0.121 0.091 0.224 .193
erbal counting (% correct) 0.116 0.103 0.156 .266

tep 3B .162

onstant 0.739 0.213 .001
ge (months) 0.002 0.003 0.094 .547
aming task 1–10 (% correct) 0.120 0.076 0.221 .122
erbal counting (% correct) 0.091 0.085 0.123 .290
L 1–10 (PAE) �0.008 0.002 �0.535⁄⁄⁄ <.001

tep 4B .005

onstant 0.746 0.214 .001
ge (months) 0.003 0.004 0.142 .402
aming task 1–10 (% correct) 0.175 0.105 0.323 .103
erbal counting (% correct) 0.110 0.089 0.149 .223
aN (% correct) �0.001 0.002 �0.178 .448
L 1–10 (PAE) �0.009 0.002 �0.543⁄⁄⁄ <.001
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previous studies, the individual knower-level strongly correlated
with age thus suggesting that the progressive acquisition of cardi-
nal knowledge follows a specific developmental trajectory
(Sarnecka & Carey, 2008; Wynn, 1992). For the spatial mapping,
in both experiments we repeatedly asked children to position the
target numbers on the visual line with the 1–10 interval in order
to classify their mapping as non-numerical, biased (logarithmic),
or linear. As in previous studies, the precision in estimating num-
bers on the line was correlated with age (Berteletti et al., 2010;
Muldoon et al., 2013; Sasanguie, De Smedt, et al., 2012;
Sasanguie, Van den Bussche, et al., 2012; Siegler & Opfer, 2003;
Young et al., 2011).

As central purpose of this study, we categorized children
according to their performance in both the GaN and NL tasks to
obtain a clear picture of the interplay between the acquisition of
the cardinality principle and the spatial mapping of numbers.
The two experiments highlighted the presence of three develop-
mental stages: Subset-non-mappers lacked the understanding of
the cardinality principle and placed numbers on the visual line
with a mapping that was not numerically meaningful (i.e., non-
ordered). Importantly, we excluded that non-numerical mapping
in the NL task could be due to poor number reading because the
numbers to be placed on the line were named aloud by the exper-
imenter (Experiment 2). A second group, defined as CP-non-
mappers, showed the mastery of the cardinality principle but
displayed a non-numerical mapping of numbers. Notably, these
children also showed poor performance in choosing the larger
between two visually presented digits. Indeed, they failed when
comparing large digits and performed slightly above the chance
level only when asked to compare pairs of digits which included
at least a small number (i.e., 64). Finally, the CP-mappers mastered
the cardinality principle, displayed a consistent spatial mapping of
numbers, and also successfully chose the larger between two visu-
ally presented digits.

The existence of the CP-non-mappers group, replicated across
the two experiments, suggests that mastery of the cardinality prin-
ciple does not entail the ability to map numbers on the visual line
in a consistent way, as well as to reliably determine the larger
between two digits. It is worth to emphasize that in the GaN task,
CP-non-mappers reliably associated each number-word to the cor-
responding exact numerosity. Nevertheless, CP-non-mappers had a
poor performance in the digit comparison task where the magni-
tude (semantic) relation between two digits needs to be accessed.
Importantly, this failure cannot be attributed to poor knowledge of
the symbolic numbers given that they showed the same perfor-
mance of CP-mappers in the Digit Naming task 1–10 (95% vs.
96% accuracy). The finding that CP-non-mappers had a poor digit
comparison performance is consistent with previous observations
that some CP-knowers may fail in choosing the larger between
two numbers presented as number-words (e.g., ‘‘ten” and ‘‘eight”;
Le Corre, 2014), or in adding 1 to a given number-word (Davidson
et al., 2012). Some CP-knowers may also fail to provide reasonable
verbal estimates for the numerosity of a set without counting
(Gunderson et al., 2015; Le Corre & Carey, 2007).

Le Corre (2014) found that only a subgroup of CP-knowers could
verbally estimate the numerosity of sets larger than 4. Interest-
ingly, only this subgroup of CP-knowers was also able to compare
two verbally presented digits when both were larger than 4, sug-
gesting that the cardinality principle per se does not imply that
number-words have been systematically mapped on internal
numerical representations (Le Corre, 2014). The finding that some
CP-knowers fail in verbal numerosity estimation has been recently
accounted for in terms of asymmetry in the development of bidi-
rectional mappings between number-words and ANS, with the
ANS to number-words mapping established later than the opposite
mapping (Odic et al., 2015). Indeed, all CP-knowers, including
those with poor verbal numerosity estimation, were able to reli-
ably generate an approximate number by rapid tapping in
response to a verbal number (Odic et al., 2015). This suggests that,
at least in principle, children could use the earlier-acquired map-
ping from number-words to ANS: that is, reading the target digits
should activate the corresponding non-symbolic representations
and allow a magnitude comparison. However, this was clearly
not the case for our CP-non-mappers, whose performance in num-
ber comparison remained poor even for trials involving one small
digit. Overall, our findings suggest that the ability to compare the
full range of one-digit numbers is not strictly linked to the devel-
opment of mappings between symbols and ANS. Indeed, leading
computational accounts of symbolic number comparison (see
Verguts, Fias, & Stevens, 2005; Zorzi & Butterworth, 1999; Zorzi,
Stoianov, & Umiltà, 2005) assume a semantic representation of
exact numbers that encodes magnitude relationships but is distinct
from the ANS. Most importantly, our results show that proficient
digit comparison is achieved at a developmental stage that is char-
acterized by the emergence of consistent spatial mapping of
numbers.

We propose that congruent (i.e., numerically ordered) position-
ing of numbers onto a visual line as well as the concept that mov-
ing rightwards (in Western cultures) conveys an increase in
numerical magnitude mark the mastery of a spatial mapping princi-
ple. This implies reliance on a layout composed of spatially ordered
numbers in which moving rightwards on a line, akin to a real or
imaginary line (Zorzi, Priftis, & Umiltà, 2002), conveys an increase
in numerical magnitude (note, however, that the spatial direction
corresponding to magnitude increments is culture-dependent;
Gobel, Shaki, & Fischer, 2011, for review). This spatial mapping
principle might guide children in understanding the magnitude
relations between digits, thereby allowing a successful accom-
plishment of the digits comparison task. In line with our results,
Opfer, Thompson, and Furlong (2010), observed that preschool
children with a clear left-to-right association between numbers
and space also demonstrated more mature numerical skills.

The link between spatial mapping and the understanding of
magnitude relationships is consistent with the hypothesis that
the representation of numerical magnitude is grounded in space
(Hubbard, Piazza, Pinel, & Dehaene, 2005; Zorzi et al., 2002) and
that digit comparison involves shifts of spatial attention on the
mental number line (Ranzini, Lisi, & Zorzi, 2016; Ranzini et al.,
2014; Stoianov, Kramer, Umiltà, & Zorzi, 2008; Zorzi et al., 2012).
This fits the proposal that a number-space mapping is already pre-
sent in infants in the form of spontaneous association between
numerosity and spatial extent (de Hevia & Spelke, 2010;
Lourenco & Longo, 2010), or in the form of left/small-right/large
associations for non-symbolic numerical quantities (Patro &
Haman, 2012). Space is an excellent frame of reference for map-
ping a variety of magnitudes/quantities (from numbers to non-
spatial continuous quantities, Sella et al., 2015b; also see
Möhring, Ramsook, Hirsh-Pasek, Golinkoff, & Newcombe, 2016,
for musical pitch) as well as non-numerical order (Berteletti
et al., 2012; Zorzi, Priftis, Meneghello, Marenzi, & Umiltà, 2006)
and time (Bonato, Zorzi, & Umiltá, 2012, for review). Nevertheless,
our results also show that the development of counting does not
require spatial mapping of numbers. Indeed, CP-non-mappers
were able to proficiently count and read numbers even if they
could not map them onto space. One potential caveat is that the
difference between CP-mappers and CP-non-mappers might be
related to domain-general factors. For example, children who show
an earlier acquisition of the spatial mapping principle may possess
better visuospatial skills (Sella, Sader, Lolliot, & Cohen Kadosh,
2016; Simms, Clayton, Cragg, Gilmore, & Johnson, 2016;
Thompson, Nuerk, Moeller, & Cohen Kadosh, 2013). Alternatively,
CP-mappers might be children who tend to spontaneously focus
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on numerical information (Hannula & Lehtinen, 2005; Hannula,
Lepola, & Lehtinen, 2010; Sella et al., 2015a) and, as a consequence,
have more experience with numbers and better awareness of their
spatial ordering in daily environments (see McCrink & Opfer, 2014
for a review on the development of spatial-numerical association).
These issues could be addressed in future studies.

In a broader perspective, the ability to map numbers to other
dimensions should be considered a milestone in the acquisition
of basic numerical competences. Preschool children display the
ability to associate discrete numerosities (e.g., sets of dots) to ver-
bal labels (Barth, Starr, & Sullivan, 2009; Odic et al., 2015; Sullivan
& Barner, 2014) and the precision of mapping demonstrates a sig-
nificant correlation with numerical and mathematical knowledge
in advanced stages of development (Brankaer, Ghesquière, & De
Smedt, 2014; Castronovo & Göbel, 2012). Similarly, the ability to
map symbolic quantities onto spatial positions on the line has also
been found to correlate with math achievement (Booth & Siegler,
2006, 2008; Sasanguie, De Smedt, et al., 2012) and to be compro-
mised in children with math disability (Geary et al., 2008;
Landerl et al., 2004; Sella et al., 2014). A crucial question is whether
these association skills precede or follow the understanding of
magnitude relations between numbers. Indeed, children are likely
to use the information conveyed by these associations (spatial or
verbal) to infer magnitude relations between numbers (e.g., the
numbers get larger moving rightward on the line or stepping for-
ward through the counting list). However, it is also conceivable
that some children learn magnitude relations in a trial-and-error
process under the supervision of adults (or more skilled peers)
and then understand that the larger numbers should be placed
on the rightmost part of the line or that the later number-word
in the counting list denotes a larger numerosity. Both scenarios
are plausible and they are not mutually exclusive if we assume that
children exploit all the information at their disposal to understand
the semantic knowledge conveyed by symbolic numbers, which
represent a key component for future math achievement
(Merkley & Ansari, 2016).
11. Conclusion

In the present study, the classification of children’s performance
in the GaN and the NL tasks revealed the presence of three distinct
developmental stages in the acquisition of the cardinality principle
and spatial mapping of numbers. In the first stage, children have
limited knowledge of symbolic numbers, do not master the cardi-
nality principle, and fail to show a numerically meaningful spatial
mapping of numbers. Subsequently, children improve their knowl-
edge of numbers, they can name single digits accurately, and show
the mastery of the cardinality principle; however, they still fail in
mapping numbers onto space in a meaningful way and show a
poor performance in choosing the larger between two digits.
Finally, children show the ability to meaningfully translate num-
bers into spatial positions on a line and can also compare numbers
based on their magnitude. Therefore, spatial mapping of numbers
might be the key to fully understand the magnitude relations
between numbers. The latter hypothesis fits well with the finding
that performance of skilled adults in symbolic number comparison
is influenced by experimental manipulations of spatial-attentional
processing (Kramer, Stoianov, Umiltà, & Zorzi, 2011; Ranzini et al.,
2014; Stoianov et al., 2008; also see Cutini, Scarpa, Scatturin,
Dell’Acqua, & Zorzi, 2014 for recent neuroimaging evidence of
number-space interactions at the semantic level of representation)
as well as by impaired spatial processing after brain damage
(Vuilleumier, Ortigue, & Brugger, 2004; Zorzi et al., 2012). More
generally, it is conceivable that the acquisition of spatial mapping
marks the emergence of a mental representation of numbers that is
characterized by a spatial metric similar to that of a (real or
imagined) visual line (Zorzi et al., 2002).

In conclusion, congruent (i.e., numerically ordered) positioning
of numbers onto a visual line as well as the concept that moving
rightwards (in Western cultures) conveys an increase in numerical
magnitude mark the mastery of a spatial mapping principle. Chil-
dren seem to rely on this spatial organization to achieve a full
understanding of the magnitude relations between digits.
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