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Abstract. It has been shown that “visual numerosity emerges as a sta-
tistical property of images in ‘deep networks’ that learn a hierarchical
generative model of the sensory input”, through unsupervised deep learn-
ing [1]. The original deep generative model was based on stochastic neu-
rons and, more importantly, on input (image) reconstruction. Statistical
analysis highlighted a correlation between the numerosity present in the
input and the population activity of some neurons in the second hid-
den layer of the network, whereas population activity of neurons in the
first hidden layer correlated with total area (i.e., number of pixels) of
the objects in the image. Here we further investigate whether numeros-
ity information can be isolated as a disentangled factor of variation of
the visual input. We train in unsupervised and semi-supervised fashion
a latent-space generative model that has been shown capable of disen-
tangling relevant semantic features in a variety of complex datasets, and
we test its generative performance under different conditions. We then
propose an approach to the problem based on the assumption that, in
order to let numerosity emerge as disentangled factor of variation, we
need to cancel out the sources of variation at graphical level.

1 Introduction

There is general consensus that humans’s ability to perceive numerosity in visual
stimuli relies on two core neuro-cognitive systems [2]: the Approximate Number
System (ANS) enables to roughly estimate numerosity when there are many
items in the visual display, whereas a second system processes small numerosities
(in the “subitizing” range, typically up to four items) and it is tied to tracking
objects in time and space. In order to represent numerical quantity at a semantic
level, a cognitive system would need to abstract it away from the many low-
level (e.g., graphical) features present in the sensory input, thereby extracting
numerosity as a common factor of variation between the images.
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Recent simulation work [1,5,6] has shown that deep learning models can
reproduce human performance in numerosity discrimination tasks that tap the
ANS, suggesting that our numerical abilities might emerge from domain general
learning mechanisms [3]. In particular, Stoianov and Zorzi [1] argued that in their
model numerosity was “computed through the combination of local computations
and a simple global image statistic (cumulative area), without explicit individua-
tion and size normalization of visual objects”. However, despite these initial find-
ings it is still unknown whether deep networks could learn to encode numerosity
as a single explicit dimension, which would allow to control the generative pro-
cess in an efficient and interpretable way, rather than having numerosity encoded
as distributed pattern of activation of some neurons that can be “decoded” via
the use of a trained linear classifier, with no direct access and control over it.

In the present work we address this question by focusing on InfoGAN [4],
a powerful deep learning model that has been shown capable of disentangling
the most relevant factors of variations in many different datasets, ranging from
handwritten digits to faces [16]. We study if and how this type of generative
model could learn to map numerosity into one or possibly more latent variables.
Although it has been proved that it is theoretically impossible for an arbitrary
generative model to learn disentangled representations of the input data in unsu-
pervised settings [7], this impossibility holds a priori only for models without
any inductive biases suitable for the task at hand (that is, the set of solutions the
unsupervised model is able to produce and their probability under the model).
Inductive biases can be expressed in many ways (model architecture, training
algorithm, initialization scheme, etc.). In our study, we explore the role of dif-
ferent biases in the InfoGAN by adding cost components and varying the model
architecture, latent space dimensionality and other hyperparameters.

Our main contributions can be summarized as follows. Three different models
are analyzed with the aim of investigating the emergence of single elements of
the latent code that would represent numerosity; the models are based on the
following assumptions:

– with the first InfoGAN model, we implicitly make the assumption that no
particular strategies must be considered to abstract numerosity from other
graphical features in the input data in an unsupervised fashion;

– with the second model, we move to a semi-supervised setting to overcome the
challenges resulting from a completely unsupervised learning regimen;

– with the third model, we tackle the problem of mapping numerosity as a
disentangled dimension in the latent space assuming that this might emerge
if we cancel out the sources of statistical variation at the graphical level.

Overall, one of the models appears to have the greater potential for disentangling
numerosity. Our experiments also confirm the difficulties indicated in [5]. The
outline of the paper is as follows: Sect. 2 overviews related literature. Section 3
formulates the problem. Section 4 presents experimental results, which are dis-
cussed in Sect. 5. The last section concludes the paper and outlines further
research.
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2 Related Work

An important assumption in representation learning [7,9] is that real-world data
(like images or videos) can be thought as generated by a generative process
that has two phases: first a latent random variable is sampled from a (possibly
multivariate) prior distribution P (z), where z can be thought of as the “cause”
of the semantic factor of variations in the input data, and then the real-word
data x would be generated by sampling a conditional probability P (x|z). A
classic unsupervised learning task is to find the “best” representation of the data,
meaning a representation that embodies as much information about the input
data as possible, being at the same time constrained to meet some conditions
that are application-specific. In the present work, we have taken the position for
which “best” corresponds to “disentangled”, meaning a data representation that
attempts to disentangle the sources of variation underlying the data distribution
such that the dimensions of the representations are statistically independent [9].

The InfoGAN [4] is a variation of Generative Adversarial Networks [10] that
extends the basic adversarial setup with a regularization based on the maxi-
mization of the Mutual Information between the Generator output and part of
the latent code fed into the Generator itself. The InfoGAN model considers a
minmax game that starts from the fundamental GAN minmax game:

min
G

max
D

V (D,G) (1)

V (D,G) = Ex�Pdata
[log(D(x))] + E(c,z)�P (c,z)[log(1 − D(G(c, z)))] (2)

and adds a regularizer that represents the Mutual Information between the gen-
erated output G(c, z) and the coding part c of the noise fed into the Generator
to obtain a modified minmax game:

I(c;G(c, z)) = H(c) − H(c|G(c, z)) = H(G(c, z)) − H(G(c, z)|c) (3)
min
G

max
D

VI(D,G) (4)

VI(D,G) = V (D,G) − λI(c;G(c, z)) (5)

Also the related CatGAN model [11] is of interest here, as the author intro-
duced the extension for the Discriminator to classify the output of the Generator
either in a number of classes known a priori, when it is possible to access labels
for the dataset at hand, or simply using an “estimated” number of classes. When
the labels are accessible, it is possible to add a cost component corresponding to
the cross-entropy between the sought distribution and the one obtained at the
classifier output. When the labels are not available, by assuming a specific num-
ber of classes (but ignoring the labels for each entry) it is possible to add a cost
component maximizing a ratio between the entropy of class y assigned to G(c, z)
by the classifier (which is supposed to be high) and the entropy of the assigned
label conditioned to G(c, z), so y|G(c, z), (which is supposed to be low, for the
choice to be sure); this is basically the same idea used in the Inception Score [12].
It can also be shown [13] that maximizing the Inception Score corresponds to
maximizing the Mutual Information between the input being classified, in this
case G(c, z) and the class y being outputted by the additional classifier.
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3 Problem Formulation and Methods

3.1 Problem Formulation

Fig. 1. Dataset samples.

The main problem considered here is to study if and
how it is possible for the InfoGAN model to learn to
represent numerosity as independent factor of variation
in its latent space. To this aim, we extended the Info-
GAN to make it develop the same disentangled repre-
sentations seen on the MNIST dataset, but extracted
from a dataset composed of images containing a differ-
ent number of items [1] (see samples in Fig. 1). Though
the visual structure of these images might look simpler than MNIST images, the
most relevant semantic direction of variation is not strictly graphical but more
abstract in nature, being indeed numerosity.

To test the hypothesis behind each model we consider, and assess the qual-
ity of the related learning process, we explicitly look for a “minimum degree”
of disentanglement in the representation learned by each model, investigating
what kind of latent space representation is induced by the learning process for
each model, and we visualize it by changing one latent variable at a time and
generating new data (images) with the trained Generator of the model under
test. The visual inspection of the Generator output obtained in this way is a
first qualitative indicator of whether any disentanglement has been reached in
the process. Though this approach may seem fuzzy, there is no formal definition
(yet) of disentanglement which is widely accepted, and there is no unified pro-
tocol to quantify it [7]; therefore, in this paper we accept the visual inspection
as first qualitative evaluation of disentanglement of the latent space, as it has
been done in the original InfoGAN paper [4].

3.2 Methods

We start out with the InfoGAN model as used in [4] (experiment 1 in that paper),
but using a synthetic dataset obtained from the one used in [1] after applying
the following basic transformations ad data augmentation techniques:

1. We reduce the numerosity range from 1 to 8, with most the experiments actu-
ally focusing on the range from 1 to 4. Though these intervals are somewhat
limited, they still leave the possibility to build instructive parallels between
the simulations and the ANS/Subitizing distinction.

2. We apply simple data augmentation procedures based on image reflection
along orthogonal and diagonal axes.

3. We invert the background with the foreground, therefore doubling the total
amount of images.

In so doing, we obtain a full dataset, for numerosity 1 to 8, composed of 128.000
images, half of in black over white, and half in white over black. In particular,
the third transformation is motivated by the fact that numerosity should be
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minimally linked to any graphical representation, being a concept connected to
“areas of coherence or correlation” in the perceptual input domain, whatever this
could be (visual, audio or else). Our investigation is carried out incrementally,
in terms of complexity of the models considered:

1. Infogan: Fully unsupervised with InfoGAN
2. Label-aware: InfoGAN with unsupervised G but D aware of labels
3. R-oriented: ‘Relational’ oriented learning

Fig. 2. Pictorial representations of InfoGAN, CatGAN, and R-oriented model (Info-
GAN and CatGAN pictures from [17]).

We conduct many simulations with each model, with different latent code
dimensionalities (that is c in the equations; the uncompressible noise z is always
set to 32), for both the Categorical variable (number of possible choices) and the
number of continuous Uniform[−1,1] variables in c. We also experiment changing
the numerosity of the dataset from 1 to a maximum (2,3,4,...8), with the aim to
study in each case the latent space with the methodology clarified at the begin-
ning of this section, and compare qualitatively the degree of disentanglement
reached in each case. For brevity, in this report, we provide illustrations only of
specific but (we believe) representative cases of the results.

Infogan - Fully Unsupervised with InfoGAN: the model is the same as the one
described in [4] with the exception of the latent space configuration, which for
us is a field of exploration, and a change in the activation function in the first
convolutional layer of the Discriminator, using the Absolute Value Rectification
which has been shown [9] to be well suited for features that are invariant under a
polarity reversal, like in our dataset. Few other modifications are also attempted
(reducing the number of feature maps in the convolutional layers) aimed at sim-
plifying the Generator and Discriminator networks, as the visual patterns in our
synthetic data are simpler than the ones in the MNIST dataset. However, no sig-
nificant differences were found in the overall results, both in terms of graphical
reconstruction and, more importantly, with respect to numerosity disentangle-
ment. In [4] it is shown how to derive a variational lower bound to the Mutual
Information between the coding part of the latent “noise” and the output of the
Generator G(c, z). The minmax game is then re-defined as follows:
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min
G,Q

max
D

VInfoGAN (D,G,Q) (6)

VInfoGAN (D,G,Q) = V (D,G) − λLI(G,Q) (7)

where D can intervene on LI as Q in practice is often implemented using some
layers of D. The LI lower bound is shown in the same paper to be:

LI(G,Q) = Ec′�P (c′ ),(c,z)�P (c,z)logP̂ (c|G(c, z)) + H(c) (8)

where P̂ is the probability distribution estimated by Q. So, D and G aim at
minimizing respectively:

Dtot.loss = −[Ex�Pdata
[log(D(x))] + E(c,z)�P (c,z)[log(1 − D(G(c, z)))]]

− λLI(c;G(c, z)) (9)

Gtot.loss = E(c,z)�P (c,z)[− log(D(G(c, z)))] − λLI(c;G(c, z)) (10)

Label-Aware - Unsupervised G but D Aware of Labels: This model is trained
in a semi-supervised way and it could be considered as an union of the models
presented in [4] and [11], as it extends the InfoGAN settings with an additional
classifier whose output corresponds to the numerosity of the image at its input,
and it introduces a regularization component to the total cost function in the
following way: during the Discriminator training we expect the output of the
classifier to be the correct class of the real data being submitted, while the output
of the classifier is ignored when the generated data is passed to the Discriminator.
During the Generator training, conversely, the output of the Generator -in every
single instance in the batch- is expected to be classified with very low entropy
(that is P (y|G(z)) expected to have very low entropy), and at batch level we
expect the entropy of the classifier output to be high (that is, P (y) expected to
have very high entropy). Based on these considerations, it is possible to add a
cost component (IS−1 in the following equations) to the total loss function for
the Generator. This approach is similar to the reasoning behind the “Inception
Score” metric for generative models, proposed in [12], and the whole setup used
in this case has also similarities to the one proposed in [11]. In mathematical
terms this translates in the following cost functions for D and G.

Dtot.loss = −[Ex�Pdata
[log(D(x))] + E(c,z)�P (c,z)[log(1 − D(G(c, z)))]]

− λLI(c;G(c, z)) + CE(labels, y) (11)

Gtot.loss = E(c,z)�P (c,z)[− log(D(G(c, z)))] − λLI(c;G(c, z))

+ IS−1(P (y|x), P (y)) (12)

where CE is the Cross Entropy and IS−1 is as just described1.
1 It is worth clarifying that for each component of the cost functions shown in all the

equations, for all the three models considered, we apply a weighting hyper-parameter
(thus, not only for the Information based reguliarized of the InfoGAN model), and
we investigate empirically the effect of changing them.
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R-oriented - Relational Oriented Learning: This model is trained in a semi-
supervised way and it is based on the idea that in order to learn a disentangled
representation of numerosity, we need to abstract it from the specific graphical
appearance of an image. We thus force the model to represent features that are
shared between two datasets, but expressed through different graphical repre-
sentations, and whose informative content is what we want the model to learn to
represent. This can be thought of as learning to represent a relation between sets
rather than the features that one object (image) has or a set of objects (image
dataset) exposes in statistical terms. This approach is inspired by the fact that
a natural number can be defined as an equivalence class of finite sets under the
equivalence relation of equinumerosity. We thus force the Generator to be multi-
output over the same latent space. This in practice means that the whole setup
described in Label-aware model is duplicated, sharing a bottom layer for the
Generators which use the same single latent space. In this new duplicated setup
we also add a component to the Generator loss function, the Jensen-Shannon
divergence, which is symmetric with respect to its arguments, and we calculate it
between the probability distributions over the output class predicted by the two
classifiers. This has the goal to force to learn a probability distribution in the
bottom layers of the Generator which must contain the necessary information to
make both the reconstructions possible, while representing the same numeros-
ity2. A pictorial representation of the model is shown in Fig. 2. In this setup the
total loss functions used are slightly more complex than in the previous cases,
as we have split the Generator in two lines of generation, rooted on the same
latent space. With JS being the Jensen-Shannon divergence as per above, and
with all the remaining quantities averaged between the two lines of the model,
D and G aim at minimize respectively:

Dtot.loss = −[Ex�Pdata
[log(D(x))] + E(c,z)�P (c,z)[log(1 − D(G(c, z)))]]

− λLI(c;G(c, z)) + CE(labels, y) (13)

Gtot.loss = E(c,z)�P (c,z)[− log(D(G(c, z)))] − λLI(c;G(c, z))

+ IS−1(P (y|x), P (y)) + JS(P1(y), P2(y)) (14)

4 Experiments and Results

4.1 InfoGAN

With this model, we do not observe a clear “departure” from graphical features,
in the sense that the study of the latent space always shows a strong connection
with the graphical appearance of the images being generated, and very weak

2 In our first setup to investigate this model we used, as second dataset, the labels
themselves, feeding one line of the model with the labels and the other line with
images. It must be noted however that this approach can be extended to a setup
that does not use labels at all, however we leave this for future developments.
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control over numerosity results from changes of the latent code dimensions. We
note that whenever the dimensionality of the Categorical space is set to 2 (so with
possible values (1,0) or (0,1)), the model appears to be capable of associating
the Categorical part of the code to the kind of background/foreground of the
image being generated (white over black versus black over white), but still not
in a totally independent way, as changing from (1,0) to (0,1) it usually changes
also the numerosity being represented (columns in the upper half, left in Fig. 3).
Apart from that, no evidence of a correlation with numerosity, rather than with
graphical features, is detected in any of the latent variables in all the tested
options.

We provide latent space visualizations for two cases that we believe are repre-
sentative of what we observe with this model. The first case (upper half of Fig. 3)
has the latent code c configured as 2D Categorical variable and 1D continuous
Uniform variable, with dataset numerosity equal to 2, abbreviated to (2D-1C-
1,2); in this case the learning process cause the Categorical latent to represent
the relation background/foreground of the image (columns on the upper left of
Fig. 3), while the continuous variable shows a weak tendency to represent the
numerosity contained in the dataset (1 or 2), only occasionally changing the
numerosity displayed when it moves from negative values (left side of the rows
in the upper part of Fig. 3) to positive values (right side of the rows).

Fig. 3. Example of latent space exploration with the InfoGAN model, (2D-1C-1,2)
upper part, (10D-1C-1,2,...8) lower part.

The second case (lower half Fig. 3), abbreviated as (10D-1C-1,2,...8) shows
no evident signs of numerosity control in the continuous variable (rows in the
center of Fig. 3) and the 10-dimensional Categorical variable does not seem to
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have picked any particular role (columns at the bottom of Fig. 3). We notice
an increasing difficulty of the model to deal with the task as we increase the
numerosity of the dataset, but we still obtain acceptable graphical quality of the
generated samples. More interesting, we observe that a greater dimensionality
of the Categorical part of the latent code never corresponds3 to numerosity as
learned descriptive (disentangled) dimension of the data.

4.2 Label-Aware

Fig. 4. Typical Losses and Entropies
in Label-aware and R-oriented.

Similar results are obtained with the Label-
aware model; we provide illustration for the
same two cases considered in the previ-
ous section. We note a deterioration in the
quality of the reconstructions contrasted
by a slightly increase in the consistency
with numerosity, as being represented in
the Categorical part of the code (Fig. 5).
As found for the previous model, in the
case of binary Categorical latent variable,
(2D-1C-1,2) in Fig. 5, we can see again that
the Categorical variable picks the type of
background while the continuous part of
the latent space models some aspects that
are fully connected to graphical features of
the dataset. Generally, we notice that as we
increase the numerosity of the input also this model fails to show any possible
correlation between any latent code variable and numerosity.

4.3 R-oriented

This model is designed to take as input two datasets, both with numerosity as
either a strong or weak factor of variation. Here, we take a first exploratory step
and we choose the inputs to be the dataset of images for one generative line,
whereas the other generative line takes in, at the corresponding generator, the set
of labels represented in one-hot encoding. This means that the two Generation
lines are now expected to generate credible images on one side and valid coding
for labels on the other, with a priori no relation since the Generators are never
exposed to the association between labels and images from the dataset. For this
model too, we provide latent space visualizations for the (2D-1C-1,2) case, as
well as for (3D-1C-1,2,3), (4D-1C,1,2,3,4) and (6D-1C-1,2,...6), and we show that
with this model, in all cases, numerosity is mapped to the Categorical variable

3 Even when the Categorical dimensionality is somehow compatible with the numeros-
ity being analized, for example with numerosity 5 and Categorical dimension 5, or
Categorical dimension 10 to account for 8 quantities and 2 possible graphical expres-
sions, w/b or b/w.
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Fig. 5. Latent space exploration with Label-aware model with 2-dim. Categorical and
1-dim. continuous code; numerosity 1,2 (2D-1C-1,2); and 10-dim. Categorical and 1-
dim. continuous, numerosity 1,2,...8 (10D-1C-1,2...8)

(Fig. 6) and that the continuous code only changes graphical aspects of the image
being generated. Each picture shows the generated output image from the image
generative line, while each digit on top each picture is the output of the classifier
on the label generative line.

When setting the Categorical variable to a fixed value and changing randomly
the remaining part the latent code, image numerosity (number of coherent col-
ored areas in the image) stays the same in most of the cases, while the pattern of
pixel activation of the image changes, giving rise to different ways of expressing
the same numerosity. We note however that the graphical quality of the recon-
struction is deteriorated compared to previous models; this might be connected
to the setup used, in which the full latent code (c, z) is shared between the gen-
erative lines, even the uncompressible noise z, which seems neither necessary nor
helpful. An appropriate calibration of the weights of the various cost functions
components might also help improving the graphical reconstruction. However,
our main goal was to investigate disentanglement, thus we accept a deterioration
in graphical appearance leaving to future work taking care of this improvements.

5 Discussion

From our experiments it turned out, maybe not surprisingly, that it is not easy
to map numerosity to any of the latent codes, either discrete or continuous,
regardless of the dimensionality used in the various attempts. Being numerosity
a concept of discrete nature, the first naive approach would be to model the
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Fig. 6. Latent space study for the R-oriented model, for a (2D-1C-1,2), lower part of
the image, for which we report a latent space study for both discrete and continuous
variable, and, in the upper part, the latent space exploration with the Categorical vari-
able for (6D-1C-1,...,6), (4D-1C-1,...,4), (3D-1C-1,...,3); the number above each single
picture is the corresponding output of a classifier on the image generative line

InfoGAN code space as a Categorical code whose dimensionality is equal to the
maximum number of objects present in the input images. This appeared to be
effective with the first two models only with numerosity of 2 (see Sect. 4). From
a semantic perspective, numerosity can be understood as an inclusion concept,
for an image with 2 objects includes an image with 1 and so on; in this view one
may think that the optimal representation for the concept might be discrete,
but perhaps not simply Categorical. Similarly, representing numerosity using a
continuous variable seems counter-intuitive, as the latent space should learn a
distribution that is peaked around some values (that is, multimodal) to provide
a “Categorical-like” representation of numerosity, along one continuous direction
only. In this scenario, we might end up with parts of this continuous axis where
the mapped images would be “morphing” from one numerosity to another one,
leaving the result in this “transitory part of the latent space” undefined. The
results we obtained confirm that learning a high level concept like numerosity in
a generative model, in an unsupervised or semi-supervised fashion, and map it to
an independent dimension of the latent space is not a straightforward task even
for the InfoGAN model. This is in harmony with the findings in [8], and it may
interpreted thinking about the semantically meaningful variations of “higher
level of abstraction” as being overwhelmed by other statistical variations in the
data, connected to much lower level features, like purely graphical for example.
These variations must be somehow ignored by the learning process in order to
let emerge the variations that carry the relevant semantic information. In this,
the way the learning process is driven seems to be a way to leave the higher
level semantic features to emerge, and we proposed here a possible approach,
the R-oriented model, which is also inspired by the findings in [15].
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6 Conclusion and Future Work

In this work we verified whether a powerful latent space generative model could
learn a representation of numerosity as a disentangled factor of variation of
input images derived from the dataset used in a seminal deep learning model of
numerosity perception [1]. We tested several extensions of InfoGAN, mixing ideas
coming from other GAN architectures like CatGAN [11], finding results that are
in agreement with previous work but at the same time adding details and ideas
to the field. We also introduced an alternative way to attack the problem of
learning a disentangled representation of numerosity, introducing an ad-hoc R-
oriented model, for which we have reported some preliminary but encouraging
results. We leave to future efforts the in-depth study of the possibilities and
developments of the latter approach.
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