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1  | INTRODUC TION

It is well accepted that both humans and non-human animals 
are able to make approximate judgments of relative numerosity 

(Dehaene, 2011). Discriminability of two visual numerosities 
can be characterized, at least approximately, as a function of 
their ratio, in accordance with Weber's law (Dehaene, 2003). 
Notably, ratio-dependent performance has been observed also 
in infants (Xu, Spelke, & Goddard, 2005) and even neonates 
(Izard, Sann, Spelke, & Streri, 2009), although discriminability 
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Abstract
Both humans and non-human animals exhibit sensitivity to the approximate number 
of items in a visual array, as indexed by their performance in numerosity discrimina-
tion	tasks,	and	even	neonates	can	detect	changes	in	numerosity.	These	findings	are	
often interpreted as evidence for an innate ‘number sense’. However, recent simula-
tion work has challenged this view by showing that human-like sensitivity to numer-
osity can emerge in deep neural networks that build an internal model of the sensory 
data.	This	emergentist	perspective	posits	a	central	role	for	experience	in	shaping	our	
number sense and might explain why numerical acuity progressively increases over 
the course of development. Here we substantiate this hypothesis by introducing a 
progressive unsupervised deep learning algorithm, which allows us to model the de-
velopment of numerical acuity through experience. We also investigate how the sta-
tistical distribution of numerical and non-numerical features in natural environments 
affects the emergence of numerosity representations in the computational model. 
Our simulations show that deep networks can exhibit numerosity sensitivity prior to 
any training, as well as a progressive developmental refinement that is modulated by 
the	statistical	structure	of	the	learning	environment.	To	validate	our	simulations,	we	
offer	a	refinement	to	the	quantitative	characterization	of	the	developmental	patterns	
observed in human children. Overall, our findings suggest that it may not be neces-
sary to assume that animals are endowed with a dedicated system for processing nu-
merosity, since domain-general learning mechanisms can capture key characteristics 
others have attributed to an evolutionarily specialized number system.
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consistently improves with development over the period from in-
fancy to adulthood (Halberda & Feigenson, 2008; Odic, Libertus, 
Feigenson, & Halberda, 2013; Piazza et al., 2010). For exam-
ple,	 while	 6-month-old	 infants	 can	 discriminate	 visual	 displays	
of dots with a ratio of 2:1 or greater, they fail to discriminate 
smaller ratios such as 3:2 (Xu et al., 2005). Discrimination per-
formance	 is	 commonly	 quantified	 by	 estimating	 the	 subject's	
Weber fraction, a psychophysical measure which is thought to 
reflect the precision of the underlying numerosity representa-
tions (Halberda, 2011).

How should we understand these findings? One widely held 
view points to an innate, phylogenetically primitive system that 
has	 been	 called	 the	 ‘Approximate	 Number	 System’	 (Feigenson,	
Dehaene,	 &	 Spelke,	 2004).	 According	 to	 this	 view,	 the	 ability	
to estimate number enhances individual fitness (e.g. for finding 
abundant sources of food), and natural selection led to its early 
emergence and preservation across much if not all of the animal 
kingdom	 (Agrillo,	2014;	Butterworth,	1999;	Cantlon	&	Brannon,	
2007;	Ferrigno	&	Cantlon,	2017;	Leslie,	Gelman,	&	Gallistel,	2008;	
Nieder, 2005). However, the ability of organisms to respond to 
a particular dimension of variation in the environment might not 
be evolutionary pre-specified as such – instead, general purpose 
adaptive mechanisms might be sufficient, and these might easily 
be available to a wide range of species. In this article, we thus 
argue for an emergentist view, which emphasizes the possibil-
ity that cognitive abilities – including the capacity to make ap-
proximate judgements of numerosity – arise from the interplay 
between experience and domain-general learning mechanisms 
(McClelland et al., 2010). Indeed, the significant change in nu-
merosity sensitivity observed during development suggests that 
experience and learning play key roles in shaping our numerosity 
representations.

Our emergentist framework can be naturally instantiated in 
the form of computational simulations based on artificial neural 
networks	 (Rumelhart	&	McClelland,	 1986),	which	 can	 reproduce	
elementary numerical abilities through hardwired mechanisms 
(Dehaene & Changeux, 1993) or, most interestingly, as a result 
of statistical learning over inputs of varying numerosity (Verguts 
&	Fias,	2004).	A	crucial	step	forward	 in	modelling	number	sense	
has been provided by more recent computational work based 
on	deep	neural	 networks	 (Cappelletti,	Didino,	 Stoianov,	&	Zorzi,	
2014;	 Chen,	 Zhou,	 Fang,	 &	McClelland,	 2018;	 Stoianov	&	 Zorzi,	
2012;	Zorzi	&	Testolin,	2018).	 In	particular,	the	seminal	model	of	
Stoianov	and	Zorzi	(2012)	simulated	human-like	numerosity	judg-
ments over two-dimensional displays that spanned a wide range of 
numerosities and incorporated variations in non-numerical visual 
properties.	The	model	implemented	a	form	of	unsupervised	repre-
sentation learning (Bengio, Courville, & Vincent, 2012), where the 
objective is to create an invertible code on the internal (hidden) 
layers that can be used to accurately reconstruct the observed 
sensory input.

Here we further extend this computational approach by address-
ing	three	outstanding	questions:

1.1 | What is the initial numerical competence of 
deep neural networks?

The	investigation	of	a	fully	trained	network	(Stoianov	&	Zorzi,	2012)	
does not address the crucial finding that even infants (including 
neonates) can exhibit a degree of sensitivity to differences in nu-
merosity (Izard et al., 2009; Xu et al., 2005). In our simulations we 
therefore explore how well the initial state of a deep network can 
support numerosity discrimination. Surprisingly, it turns out that 
even randomly connected deep networks can support numeros-
ity judgments, thereby shedding light on what might be a sufficient 
neural architecture not only to account for adult competence, but 
also to address the remarkable sensitivity to numerosity exhibited 
by human newborns.

1.2 | What is the developmental trajectory of 
number sense in deep neural networks?

Unsupervised deep learning models are usually trained in a ‘greedy 
layer-wise’	fashion	(Hinton	&	Salakhutdinov,	2006),	where	learning	is	
completed at one layer of the hierarchy (starting with the one closest 
to the input) before progressing to the next deeper layer. In line with 
previous developmental modelling (McClelland, 1989, 1994; Rogers & 
McClelland, 2004; Seidenberg & McClelland, 1989), we instead explore 
the	possibility	that	acquisition	of	numerical	acuity	might	arise	from	a	
gradual	learning	process.	To	this	aim,	we	formulate	a	novel	progressive	
algorithm for unsupervised deep learning, which allows adjustment of 
all of the connection weights following each sensory experience. Our 
developmental simulations show that this learning regimen supports 
a gradual improvement of numerical acuity, in line with experimental 
findings	on	humans.	Moreover	we	provide	a	better	quantitative	char-
acterization of the developmental trajectories of numerical acuity, 

Research Highlights

•	 Although	even	newborns	 are	 sensitive	 to	 the	 approxi-
mate number of items in a visual display, our numerical 
acuity gradually improves during development.

• Initial sensitivity to numerosity can be simulated even in 
randomly initialized neural networks, and unsupervised 
deep learning leads to a progressive refinement of nu-
merical representations.

• Numerosity sensitivity emerges in controlled environ-
ments	(uniform	number	frequency	and	orthogonal	vari-
ation between number and area) and with experience 
statistics mirroring that of natural environments.

• Our work suggests that domain-general learning mecha-
nisms are sufficient to capture the key characteristics of 
the ‘number sense’ and its development.



     |  3 of 13TESTOLIN ET aL.

incorporating the initial numerical competence measured at birth (for 
children) or at initialization (for our deep networks).

1.3 | Would a number sense emerge in deep neural 
networks exposed to the statistical structure of 
natural environments?

A	key	principle	 in	computational	neuroscience	 is	 that	perceptual	
systems are adapted to the statistical properties of the surround-
ing environment (Fiser, Berkes, Orbán, & Lengyel, 2010; Girshick, 
Landy,	&	Simoncelli,	2011).	This	is	also	a	foundational	principle	of	
unsupervised deep learning, where the objective is to discover 
high-order statistical structure that captures the distribution of 
the	training	data	(Hinton,	2007).	The	model	of	Stoianov	and	Zorzi	
(2012) was trained with synthetic images where number and cu-
mulative area were orthogonally varied, and where all numerosi-
ties	 appeared	 with	 the	 same	 frequency.	 Such	 a	 training	 corpus	
does not reflect the statistical structure of natural environments, 
where cumulative area might co-vary with number and where the 
frequency	 distribution	 of	 numerosities	 is	 far	 from	 uniform.	We	
thus investigate how the statistics of natural environments might 
affect the emergence of number sense in deep networks by train-
ing the model using numerosity, size and position information from 
a	large-scale	natural	 image	corpus.	Although	the	use	of	different	
corpus statistics indeed modulates the learning outcome, our re-
sults show that the computational architecture itself may play an 
important role in the emergence of a Weber-like encoding of nu-
merosity information, offering a distinct and viable alternative to 
other approaches for understanding the compressed encoding of 
numerosity	in	real	brains	(Piantadosi,	2016).

2  | METHODS

In this section, we will first introduce the motivation and the general 
structure of our progressive deep learning algorithm. We will then 
describe the materials and procedures used for training and test-
ing	the	models.	Additional	technical	details	about	network	architec-
ture, learning hyperparameters and model fitting are provided in the 
Supporting Information.1 

2.1 | A developmental approach for unsupervised 
deep learning

The	neural	network	model	we	use	grows	out	of	the	proposal	that	
perceptual processing takes place in a hierarchical processing sys-
tem, with neurons in the lower layers encoding simple visual prop-
erties that are successively combined into more complex features 
(Fukushima, 1980; McClelland & Rumelhart, 1981; Riesenhuber & 
Poggio,	1999).	Subsequently,	it	was	demonstrated	that	‘deep’	neu-
ral networks composed of several layers of non-linear processing 

units can be effectively trained with the simple objective of re-
constructing	their	own	input	(Hinton	&	Salakhutdinov,	2006).	This	
approach is often called unsupervised deep learning since the deep 
network itself is not explicitly trained to represent numerosity or 
other	specified	characteristics	of	the	input	(Hinton,	2007;	Testolin	
&	Zorzi,	2016)	–	the	only	constraint	is	to	form	an	internal	represen-
tation that minimizes error in reconstructing the inputs included 
in the training data. We view these models as widely applicable to 
modelling perception and perceptual learning, since the bi-direc-
tional propagation of activity in these models allows them to com-
bine bottom-up sensory information with top–down expectations 
(McClelland, 2013) and shows how abstract representations can 
emerge	through	unsupervised	learning	(Zorzi,	Testolin,	&	Stoianov,	
2013).

Our model is based on a stack of two auto-encoders (see 
Supporting Information). In order to explore the developmental 
time-course of deep learning, we develop a progressive alternative 
to the greedy layer-wise training approach commonly used in ma-
chine	 learning	 (ML)	as	discussed	above.	The	work	of	Stoianov	and	
Zorzi	 (2012)	employed	 the	greedy	 layer-wise	approach,	 in	keeping	
with their goal of modelling the adult performance. In our develop-
mental approach, instead, we interleave learning in each layer-wise 
stage so that each is performed in the course of processing each 
training example (Figure 1). Besides extending the use of neural net-
works	previously	used	to	capture	the	acquisition	of	semantic,	per-
ceptual and other cognitive abilities (McClelland, 1994; Seidenberg 
& McClelland, 1989), our scheme is consistent with the complemen-
tary learning systems theory (Kumaran, Hassabis, & McClelland, 
2016;	McClelland,	McNaughton,	 &	O'Reilly,	 1995),	where	 percep-
tual and cognitive abilities gradually arise through the accumulated 
impact of adjustments to connections made after each learning 
experience.

As	 illustrated	 in	Figure	1,	 for	 each	 training	example	presented	
to the network, our algorithm combines one iteration of layer-wise 
training with one iteration of full network reconstruction. Note that 
learning remains completely unsupervised, in the sense that the 
learning task is only to build an internal model that optimizes the 
network's ability to reconstruct the input patterns. We followed 
Stoianov	and	Zorzi	(2012)	in	using	two	hidden	layers	with	80	units	
in the first layer and 400 in the second. For each learning trial, a 
random item was drawn with replacement from the training data 
set, and the developmental algorithm described above was used 
to update the weights, using a constant learning rate of 0.01, with 
no	weight	decay	or	momentum.	Training	continued	 for	2,800,000	
pattern presentations, a regime that would correspond to approxi-
mately 300 patterns per day over a 25-year period.

2.2 | Visual stimuli

Stimuli were presented to the network as two-dimensional images 
of size 30 × 30 pixels containing a different number of white rectan-
gles drawn on a black background. We trained the deep networks on 
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three data sets (samples of stimuli are shown in Figure 2a, and their 
statistical properties are reported in Figure 3), in order to investigate 
how different characteristics of the training corpus could have an 
impact on the time course of learning.

The	 first	one,	which	we	call	 the	 ‘S&Z	data	set’,	was	generated	
using	the	procedure	described	in	Stoianov	and	Zorzi	(2012).	Two	fac-
tors (visual numerosity and cumulative surface area) were varied in 
order to create rectangular white patches to be placed in the display. 
In particular, for each pattern, the cumulative area was randomly 
sampled from a uniform discrete distribution in steps of 32 between 
32	and	256	pixels,	while	the	target	numerosity	was	randomly	sam-
pled from a uniform distribution between 1 and 32.

The	 second	 data	 set,	 which	 we	 call	 the	 ‘Natural	 data	 set’,	 was	
generated from popular computer vision data sets used for the 
PASCAL	detection	challenge	(Everingham,	Van	Gool,	Williams,	Winn,	
&	Zisserman,	2010),	which	consist	of	 images	with	rectangular	boxes	
indicating sizes and positions of objects. For each original image (see 
examples in Figure 2b), we replaced each object with its localized 
bounding box, projecting them as non-overlapping white rectangles 
in a black 30 × 30 pixel background while preserving the placement 
of	objects	to	the	extent	possible.	The	number	of	objects	per	display	
ranged	from	1	to	56,	though	the	proportion	of	displays	containing	a	
given	number	of	 items	 fell	 off	 very	quickly	 as	 the	number	of	 items	
increased.

Because the relationship between probability and n is often ap-
proximated by a power law of the form p(n)∝ 1

nα
, we show the re-

sulting function of this form in Figure 3 (black dashed line; α = 2). In 
our natural data set, the best-fitting value of α was 2.8. It is evident, 
however, that the fall off in p(n) is more gradual than the formula im-
plies for n <5, and steeper than this for n	>10.	The	shape	of	the	curve	
is thus better explained by a shifted power function p(n)∝ 1

(β+n)α
 

(Mandelbrot, 1953; Piantadosi, 2014), also shown in Figure 3 (blue 
dashed line; α = 9.5 and β = 15).

The	third	data	set,	which	we	call	the	 ‘Irregular-shape	alpha	=	2	
(ISA2)	data	set’,	was	constructed	to	address	the	extreme	roll-off	in	
relative	frequency	with	n >10 in the natural data set, and to explore 
the possibility that, during development, the deep network might 
be exposed to visual stimuli containing irregular shapes rather than 
just	rectangular	and	square	 items.	To	this	aim,	visual	stimuli	 in	the	
ISA2	data	 set	 contained	ellipsoids	of	varying	aspect	 ratios,	whose	
per-item size distribution was approximately matched to that of the 
natural	data	set	and	whose	number	frequency	distribution	was	de-
fined according to a power law with α = 2 (third column in Figure 3). 
This	value	seems	to	provide	a	good	approximation	to	estimates	of	
frequencies	of	occurrence	of	numbers	 in	 text	 (Dehaene	&	Mehler,	
1992;	Piantadosi,	2016).

2.3 | Testing procedure

Our interest in testing the model focused on assessing how well 
the internal representations on the deepest layer could support 
the kind of numerosity judgment assessed in behavioural stud-
ies. We should distinguish between the statistical properties of 
the materials used to train the deep network and the properties 
of those used during behavioural testing. We treat the deep net-
work as a system that learns over developmental time from the 
statistics	 of	 its	 experiences.	 As	 such,	 we	 explore	 the	 effects	 of	
varying the statistical properties of these experiences on the nu-
merosity sensitivity that the deep network can support, with the 
aim of simulating the influence of environment on development. 
When it comes to testing the network, we turn our attention in-
stead to the characteristics of the materials used in behavioural 
assessments of human performance, with the aim of evaluating 
the model on a set of stimuli reflecting the statistical properties of 
those	commonly	employed	in	psychophysical	experiments.	Among	

F I G U R E  1   Comparison of the standard machine learning (ML) approach with our developmental approach to training a deep neural 
network.	The	objective	was	to	create	an	invertible	code	D	at	the	deepest	layer,	optimized	to	allow	an	input	V	to	be	reproduced	at	the	
network's	output	(V′	or	V′′).In	the	ML	approach,	the	connection	weights	between	the	hidden	and	visible	layers	WHV	are	learned	in	a	first	
stage	of	training	over	the	full	set	of	training	examples;	weights	are	optimized	to	learn	the	invertible	mapping	that	makes	V′	as	similar	to	V	
as	possible,	as	indicated	by	the	“=”	sign.	These	weights	are	then	frozen	(dotted	arrow	in	the	mid	panel),	and	the	weights	between	the	deep	
and	hidden	layer	WDH	are	optimized	to	make	H′	as	similar	to	H	as	possible.	In	a	final	fine-tuning	stage,	the	weights	are	further	optimized	to	
make	V′′	as	similar	as	possible	to	V	after	propagating	activation	from	the	input	to	the	deep	layer	and	back.	In	our	developmental	approach,	
one iteration of each of the three steps is instead conducted in the course of processing each pattern
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other things, evidence suggests that in natural experience smaller 
numbers	 are	 encountered	more	 frequently,	 but	 this	 is	 generally	
not true during behavioural testing, where experimenters use 
equal-frequency	sampling	of	a	 range	of	numerosities.	Therefore,	
although we trained the deep networks using each of the three 
data	 sets	mentioned	 above,	 only	 the	 S&Z	 training	 and	 test	 data	
sets were used to train and test the classifier, since these stimuli 
have	a	balanced	frequency	distribution	across	numerosities,	con-
trol for cumulative area, and use uniform random placement of 
items in the visual field.

In order to translate the network's internal representations 
into behavioural responses, we trained a simple classifier to map 
the internal representations at the deepest layer of the network 
into	a	binary	classification	response	(Stoianov	&	Zorzi,	2012)	indi-
cating whether or not the visual input numerosity was larger than 

a reference number (two reference numbers were used, N = 8 and 
N	=	16).	We	do	not	intend	the	classifier	training	as	a	model	of	the	
process whereby human subjects learn to map internal represen-
tations of numerosity onto overt responses. Instead, we treat the 
classifier as a procedure for allowing us to estimate the internal 
Weber fraction of the model, that is, to measure how well the deep 
networks' representations can support explicit numerosity judg-
ments	 (for	 discussion,	 also	 see	 Zorzi	 et	 al.,	 2013).	 The	 classifier	
weights were optimized for each of the initial weight conditions 
and at each of several different time points during developmental 
training, in order to assess the representational capacity of the 
deep network under each initialization or developmental stage. 
We report results based on 10 simulation runs using different ran-
dom	initial	weights	and	random	sequences	of	training	examples	to	
train the deep networks.

F I G U R E  2   (a) Examples of visual stimuli from the three different data sets used in our simulations. (b) Examples of images from the 
PASCAL	object	detection	challenge	used	to	create	the	natural	data	set

(a)

(b)
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2.4 | Weber fraction estimation

The	 response	distribution	 (probability	of	 ‘larger’	 responses)	 of	 the	
classifier resulted in a psychometric function (see Figure S3) which 
was	used	to	estimate	the	model's	Weber	fraction.	The	primary	data	
we compare our model to comes from experiments in which par-
ticipants compared two numerosities and indicated which one was 
larger. One of these stimuli is usually based on a reference numeros-
ity nr	(for	example,	Piazza	and	colleagues	used	16	and	32	as	reference	
numbers) and the other stimulus has a different, comparison numer-
osity nc.	The	psychophysical	model	standardly	thought	to	underlie	
such comparisons holds that the data is based on independent sam-
ples from two Gaussians, one for each of the two displays. Under the 
logarithmic Gaussian model of numerosity representation (Dehaene, 
2012),	each	distribution	is	treated	as	having	a	mean	equal	to	the	log	

of the presented numerosity, and both are assumed to have the same 
standard deviation w. When asked to determine which stimulus has 
the larger numerosity, the participant is thought to compare a sam-
pled value sc from the distribution of mean nc, to a sampled value sr 
from the distribution of mean nr, and to designate the comparison 
stimulus as the larger of the two if sc > sr.	The	probability	that	sc > sr is 
equivalent	to	the	probability	that	the	difference	sc − sr is greater than 
0, and this difference is also a normally distributed random variable 
with mean log(nc)	−	log(nr) and standard deviation 

√

2w. Given this, 
the probability of choosing the comparison stimulus should be:

where Φ is the probability density function of the Normal distribution, 
evaluated at x	=	0.	This	curve	can	then	be	fit	to	produce	an	estimate	

p
�

sc> sr
�

=1−Φ
�

log
�

nc∕nr
�

,
√

2w
�

,

F I G U R E  3   Statistics for the different data sets considered. For each numerosity, the graphs show the relative presentation probabilities 
plotted on a log-log scale (top panels), the average cumulative area of all the items in the displays (middle panels) and the average area of 
individual	items	in	the	displays	(bottom	panels).	In	the	presentation	probability	graph	for	the	natural	data	set,	the	dashed	black	line	(Zipfian	
distribution	with	alpha	=	2)	highlights	that	the	images	in	the	natural	data	set	exhibit	a	steeper	decrease	in	number	frequencies.	The	trend	is	
better	captured	by	the	dashed	blue	line	(shifted	Zipfian	distribution	with	alpha	=	9.5	and	beta	=	15)
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of the Weber fraction w, as was done in Piazza et al. (2010). However, 
the	√2	scale	factor	is	omitted	in	our	case,	since	the	classifier	decision	
is taken by comparing a single sample from the distribution of the 
comparison numerosity with a fixed internal reference (either N = 8 or 
N	=	16),	so	that	all	the	variability	would	only	be	in	the	estimate	of	the	
numerosity of the display (see Supporting Information for more de-
tails).	This	choice	is	conservative,	in	the	sense	that	it	results	in	larger	
estimates of w	than	would	be	obtained	if	the	√2	factor	was	included,	
as it was in the estimation of w	by	Stoianov	and	Zorzi	(2012);	thus,	for	
the same observed pattern of classification accuracy (Figure S3), our 
estimated value of w will be larger than the value they reported.

3  | RESULTS

We first examined how well the classifier could perform based on 
representations formed in the deep network with untrained (ran-
dom)	initial	weights.	This	allowed	us	to	consider	whether	a	generic	
neural network could support numerosity judgments even without 
any prior exposure to environmental stimulation. In addition, this al-
lowed us to examine whether variations in the range of the initial 
weights might affect initial numerosity sensitivity, considering this 
to be the kind of parameter that might be optimized by evolution. 
Others have shown that networks with random weights can support 
surprisingly good performance in a variety of classification tasks if 
the range of weight values is optimized (Jaeger, Maass, & Principe, 
2007;	Widrow,	Greenblatt,	Kim,	&	Park,	2013).	We	 therefore	 ran-
domly initialized the weight matrices of the network using different 
values of the random weight standard deviation parameter σ, setting 
unit biases of all layers to zero. Using representations produced at 
the second layer of such random networks, the Weber fraction was 
computed as the average value resulting for each of 10 different ran-
domly initialized networks for each value of σ.

Results	in	the	first	row	of	Table	1	show	that	if	the	standard	devi-
ation of the initial connection weights was set to 0.1 or 0.5, random 
initialization of the two-layer neural network supported a Weber 
fraction	 of	 about	 1.6.	 Smaller	 or	 larger	 standard	 deviation	 values	
generally led to worse performance. Furthermore, the second row 
of the table illustrates an interesting finding from a variant of the 
same simulation: if only the first layer of the network is fully trained 
on	the	S&Z	data	set,	a	Weber	fraction	around	0.4	 (rivaling	that	of	
children over 4 years old) can be obtained from the output of the 

second layer, over a wide range of values of the standard deviation 
used	to	initialize	the	second	layer	weights.	These	findings	are	aligned	
with computational studies showing that random matrices can 
support approximate encoding of magnitudes (Hannagan, Nieder, 
Viswanathan, & Dehaene, 2018), and with recent work carried out 
with more sophisticated architectures showing that numerosity sen-
sitivity can be observed in untrained convolutional neural networks 
(Kim, Jang, Baek, Song, & Paik, 2019). One possible explanation for 
such findings is that random weights can provide an approximate 
signal that co-varies with continuous visual features (e.g. cumulative 
area, item size, density, etc.) that are correlated with number. Indeed, 
it has been shown that deep networks endowed with basic visuo-
spatial processing can exhibit a remarkable accuracy in numerosity 
discrimination, but only when numerosity covaries with other mag-
nitudes	(Zorzi	&	Testolin,	2018),	and	in	preliminary	investigations	of	
our networks we observed a similar effect. Notably, a similar influ-
ence of continuous visual features is also observed in numerosity 
judgments in younger human age groups (Halberda & Feigenson, 
2008;	Soltész,	Szűcs,	&	Szűcs,	2010).

Based on the results obtained with random initializations, we set 
the connection weight initialization parameter σ to 0.1 for the de-
velopmental simulations. Learning trajectories of the deep networks 
trained on the three different data sets are reported in Figure 4, with 
error bars representing the standard deviation of the mean for the 10 
different random initializations. For all data sets the developmental 
trajectory followed a similar pattern, exhibiting rapid learning at first 
followed by a levelling off towards the end of training. Learning pro-
gressed at a somewhat smaller rate in the deep networks trained on 
the	ISA2	data	set	(green	curve):	this	phenomenon	is	not	likely	to	be	
due	to	the	Zipfian	distribution	of	numerosities	in	that	corpus,	since	a	
similar distribution is also present in the Natural data set (blue curve). 
We hypothesize that this might instead be due to the less defined 
borders of the objects, which might have caused a slower develop-
ment of localized feature detectors in the first hidden layer. However, 
the	Zipfian	distribution	of	numerosities	does	appear	to	have	an	im-
pact on the endpoint of learning, since the final acuity of the deep 
networks	trained	on	the	ISA2	and	Natural	corpora	is	worse	than	the	
final	acuity	of	the	networks	trained	on	the	S&Z	corpus	(red	curve).

Figure 5 shows the individual data points and the developmen-
tal trajectories obtained from three longitudinal behavioural studies 
(Halberda & Feigenson, 2008; Odic et al., 2013; Piazza et al., 2010). 
We also included two additional data points derived from experiments 

TA B L E  1   Weber fractions for untrained deep networks by level of variability in initial weights

Architecture σ = 10 σ = 1 σ = 0.5 σ = 0.1 σ = 0.01

Both layers randomly 
initialized

1.94 ± 0.23 1.65	±	0.13 1.60	±	0.13 1.58	±	0.17 4.55 ± 1.10

Only second layer randomly 
initialized

0.37	±	0.01 0.38 ± 0.01 0.37	±	0.01 0.37	±	0.01 0.38 ± 0.01

Note: The	parameter	σ	represents	the	standard	deviation	of	the	initial	random	weights.	The	numbers	in	each	cell	are	the	mean	of	the	value	of	the	
Weber fraction fitted to the classifier output ± the standard deviation of the fitted values, based on 10 separate networks initialized using the 
indicated value of σ.
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with infants, which used coarse estimates (see Supporting Information) 
of the Weber fraction right after birth (Izard et al., 2009) and at the age 
of	6	months	(Xu	et	al.,	2005).	Although	these	estimates	are	based	on	
habituation rather than a two alternative forced choice, they might still 
provide a useful indication of initial numerosity sensitivity, and such 

estimates have also been included in previous attempts to character-
ize the human developmental trajectory (Halberda & Feigenson, 2008; 
Odic et al., 2013).

Overall,	the	simulations	start	at	an	average	Weber	fraction	of	1.6,	
a value compatible with the value of 1.5 we estimated for newborns. 

F I G U R E  4   Developmental trajectories 
for deep networks trained using the 
three	different	data	sets.	The	first	plotted	
data point reflects performance prior to 
any learning (i.e. random initialization), 
while successive points thereafter 
are at intervals of 200,000 pattern 
presentations. Fitted curves correspond 
to the power model with initial 
competence

Simulations 

F I G U R E  5   Developmental trajectories 
derived from experimental data reported 
in three independent studies. Fitted 
curves correspond to the power model 
with initial competence

Experimental data

Green points: infant studies
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The	final	Weber	fractions	achieved	by	the	deep	networks	were	be-
tween	0.2	and	0.4.	These	values	fall	within	the	range	of	the	mean	val-
ues across participants estimated by other studies on human adults 
(DeWind,	 Adams,	 Platt,	 &	 Brannon,	 2015;	 Halberda,	 Ly,	 Wilmer,	
Naiman, & Germine, 2012; Halberda, Mazzocco, & Feigenson, 2008; 
Piazza, Pica, Izard, Spelke, & Dehaene, 2013; Revkin, Piazza, Izard, 
Cohen, & Dehaene, 2008), although values as high as 0.4 are at the 
high end of the adult range. For reasons that are not fully clear, es-
timated values of w for adults reported from developmental studies 
tend to fall below the final values measured in the studies mentioned 
above; for example, a value of 0.15 was reported for the educated 
Italian adult group in the developmental study of Piazza et al. (2010).

To	provide	a	descriptive	quantitative	characterization	of	both	the	
simulated and empirical developmental curves, we fitted three dif-
ferent	descriptive	functions	to	each	series	of	data	points.	The	sim-
plest function was simply a power law function in the form:

where w is the predicted value of the Weber fraction, x is the age 
during development, and a and b are two parameters that repre-
sent respectively the normalization constant and the exponent of 
the	function.	This	is	the	function	that	has	been	traditionally	used	to	
characterize the developmental trend of numerical acuity (Halberda 
& Feigenson, 2008; Odic et al., 2013), and we call it the ‘simple power 
model’. One limitation of this model is that it assigns extremely large 
values (approaching infinite) to the Weber fraction within hours 
and	days	of	birth.	To	address	this,	we	introduce	an	 initial	constant	
to produce a value for the Weber fraction ‘at birth’, producing the 
equation:

We	 call	 this	 the	 ‘power	 model	 with	 initial	 competence’.	 This	
equation	imposes	an	arbitrary	scaling	of	the	relative	importance	of	
initial	competence	compared	to	subsequent	development.	To	allow	
for flexible weighting of these two factors, we also introduce an 

additional parameter s	that	serves	as	a	scaling	factor.	The	equation	
therefore becomes:

We call this the ‘power model with initial competence, scaled’. 
This	additional	parameter	 increases	 the	 flexibility	of	 the	model,	at	
the cost of one fewer degree of freedom in the fit.

Using a maximum likelihood fitting procedure, the best fit-
ting models were those taking into account initial competence, 
both for the empirical and for the simulations (see Supporting 
Information	for	details).	The	fitted	curves	shown	in	Figures	4	and	5	
are based on the power model with initial competence, which pro-
vided a very accurate fit (see Figure S4 for plots of all other mod-
els,	 and	Table	 S1	 for	 the	 corresponding	 estimated	 parameters2 ). 
Overall, the shape of the simulated learning curves is strikingly 
similar to that of the empirical developmental trajectories, as also 
attested by the parameters resulting from the fitting procedure 
(see	 Table	 2),	 though	 the	 exponent	 estimated	 for	 the	 simulated	
curves is generally smaller.

4  | DISCUSSION

Overall, our computational simulations show that (a) the initial 
numerosity discrimination ability of randomly initialized deep 
networks could rival that of human newborns; (b) their gradual de-
velopment follows trajectories very similar to those observed in 
human longitudinal studies; and (c) their final competence approxi-
mates	that	of	human	adults.	These	results	are	consistent	with	an	
emergentist perspective in which generic properties and learning 
mechanisms of neural systems might be sufficient to character-
ize the ability to approximately represent and process numerosity 
information.

Regarding the first point, it should be noted that connection 
weights need to be initialized within a well-chosen range of values. 
While we made this choice to optimize numerosity performance, a 

w=ax−b,

w=a
(

1+x
)−b

.

w=a
(

1+sx
)−b

.

 

Power model with initial competence

a b r2 NLL χ2 df

Empirical data

Odic et al. (2013) 1.49 0.83 0.98 0.17 7.46 5

Piazza et al. (2010) 1.33 0.71 0.98 0.09 3.43 5

Halberda and 
Feigenson (2008)

1.37 0.92 0.98 0.11 4.54 5

Simulation data

S&Z	data	set 1.49 0.56 0.99 0.02 0.22 13

Natural data set 1.42 0.46 0.97 0.11 4.58 13

ISA2	data	set 1.98 0.55 0.94 0.14 4.88 13

Note: Tables	report	the	estimated	values	for	the	functional	parameters	(a and b), the resulting 
statistics (r2, Negative Log Likelihood, χ2) and the corresponding degrees of freedom (df).

TA B L E  2   Results of model fitting for 
empirical and simulated developmental 
trajectories using maximum likelihood 
estimation, for the ‘power law with initial 
competence’
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similar choice might be made by evolution for other reasons. Indeed, 
considerations applicable to generic multi-layer networks (Glorot & 
Bengio, 2010) suggest that weights initialized between our two best 
values (σ = 0.1 and 0.5) would be optimal for our networks.3 	Thus,	
only	very	generic	assumptions	are	required	to	create	a	network	sup-
porting a discrimination ability at a level close to that of infants.

Regarding the second point, our deep networks developed rep-
resentations that gradually became more and more refined, support-
ing greater and greater acuity in approximate numerosity judgments 
following a progressive refinement similar to that seen over human 
development. Initial discriminability improves rapidly and then levels 
off, with much slower progress in later stages of learning. Such a pat-
tern is widely observed in developmental and learning studies across 
a wide range of domains and it is captured, for reaction time data, in 
the famous power law of practice widely applied to behavioural data 
sets	starting	almost	a	century	ago	(Snoddy,	1926).	The	power	law	of	
practice is also observed in neural network models trained with back 
propagation (Cohen, Dunbar, & McClelland, 1990) as well as other 
models simulating learning dynamics (Newell & Rosenbloom, 1981). 
Given	the	ubiquity	of	power	laws	in	both	behaviour	and	simulation	
models of learning, we argue that this general pattern can be seen 
as an example of a generic characteristic of learning as a function of 
experience, rather than a signature of a special characteristic of a 
specific system for the representation of approximate numerosity.

Our research introduces a further refinement to the power law 
formulation used in numerosity perception research, allowing for 
initial competence prior to any actual experience, as exhibited by 
our	 randomly	 initialized	 networks.	 A	 similar	 allowance	 for	 initial	
competence is generally included in power law models of practice in 
other domains (e.g. Newell & Rosenbaum, 1981), and is necessary to 
describe the human data if initial competence at birth as observed 
by	Izard	et	al.	 (2009)	is	to	be	captured.	The	initial	competence	can	
be viewed as representing time before birth during which the initial 
Weber fraction decreases from discriminability of 0 (corresponding 
to w = infinity) to its value at birth, idealizing the processes that take 
place in utero as neural networks are formed during embryological 
and foetal development (notably, it is known that random neural ac-
tivity can contribute to the structuring of such networks even prior 
to birth, see, for example, Miller, Keller, & Stryker, 1989).

One of the purposes of our simulations was also to investigate 
how numerical acuity develops under different training distribu-
tions,	exploring	the	question	of	whether	a	similar	progressive	trend	
would be observed regardless of the specific statistical properties 
encoded in the learning environment. Interestingly, the answer ap-
pears to be yes, since all models exhibited similar developmental tra-
jectories. However, it should be stressed that the dataset derived 
from the statistics of photographs of natural scenes is only a ten-
tative approximation of children's perceptual environment, which is 
also determined by the concurrent development of attention mech-
anisms	allowing	selection	of	the	most	relevant	information.	A	prom-
ising venue for future research would thus be to investigate more 
fully how children parse egocentric visual scenes, in order to under-
stand which (and how many) objects might be actually perceived at 

different	 developmental	 stages	 (Clerkin,	 Hart,	 Rehg,	 Yu,	 &	 Smith,	
2017).

Regarding the final performance, all models achieved a numerical 
acuity well aligned with that reported in studies on human adults, 
though	we	should	be	cautious	in	performing	quantitative	compari-
sons. Indeed, it is well-known that different experimental protocols 
and testing conditions (e.g. lab settings vs. on-line crowdsourcing 
platforms) induce differences in the estimated Weber fraction, lead-
ing	some	authors	to	question	the	inter-test	reliability	of	this	measure	
(Clayton, Gilmore, & Inglis, 2015; Guillaume & Van Rinsveld, 2018; 
Price,	Palmer,	Battista,	&	Ansari,	2012).	Furthermore,	variability	 in	
individual estimates is very high even within the same experimental 
study, for example ranging from 0.15 to 0.3 in Revkin et al. (2008), 
from 0.1 to 0.5 in Halberda et al. (2008), from 0.1 to 0.4 in Piazza 
et al. (2013) and from 0.15 to 0.5 in DeWind et al. (2015). It should 
also be noted that our modeling captures only the process whereby 
experience leads to improvements in numerosity sensitivity. Factors 
other than those at work in our present model would have to be in-
troduced to explain the reduction in numerosity sensitivity observed 
in older participants (Cappelletti et al., 2014; Halberda et al., 2012).

Interestingly,	 the	 deep	 networks	 trained	 on	 the	 S&Z	 data	 set	
achieved a slightly superior numerical acuity, possibly approaching 
that of educated humans, while the numerical acuity of the networks 
trained on the more ecological data sets could be more aligned to-
wards that of uneducated populations (Piazza et al., 2013). On the 
one hand, the fact that adherence to Weber's law is observed even 
when	the	network	is	trained	using	a	flat	number	frequency	distribu-
tion	 (S&Z	data	set)	 suggests	 that	adherence	 to	Weber's	 law	might	
not need to be explained at a ‘rational analysis level’, under the as-
sumption that the brain maximizes average precision in numerosity 
representation	when	number	frequency	of	occurrence	decreases	ac-
cording	to	a	power	law	(see	Piantadosi,	2016,	and	other	papers	cited	
therein). On the other hand, the lower numerical acuity achieved by 
the networks trained on the data sets featuring a more naturalistic 
statistical structure is aligned with the finding that culture and for-
mal education may play an important role in sharpening numerosity 
representations (Piazza et al., 2013). In this respect, the more con-
trolled	statistical	structure	of	the	S&Z	data	set	might	have	encour-
aged the network to encode numerosity while avoiding confounding 
factors that orthogonally varied with number (such as cumulative 
area), a constraint that might somehow emulate the more extensive 
experience with number occurring in formal educational settings.

It is also important to emphasize that the classifier used to assess 
the representational competency of the deep network is trained to 
make numerosity judgments. In this respect, our procedure for train-
ing the classifier can be seen as aligned with the explicit feedback 
that is commonly used in empirical studies (Halberda & Feigenson, 
2008; Izard & Dehaene, 2008; Piazza, Izard, Pinel, Le Bihan, & 
Dehaene, 2004; Revkin et al., 2008). While some authors argue that 
the role of feedback is mostly motivational, as it helps in maintain-
ing a high level of attention (Cantlon et al., 2009; Odic et al., 2013), 
others have shown that it also significantly improves numerosity 
sensitivity (DeWind & Brannon, 2012). It could also be argued that 
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demonstrations of numerosity sensitivity right after birth (Izard et al., 
2009)	in	a	situation	where	no	overt	response	is	required,	still	provide	
a basis for thinking there may be initial representation of numerosity 
per se, since it is difficult to argue that children this young could 
have received classifier training. We acknowledge this possibility, 
although we note that recent simulations have shown that good dis-
crimination performance can be achieved even when the classifier is 
trained	with	minimum	supervision	(Zorzi	&	Testolin,	2018).

We finally note that children's numerosity judgments can be 
strongly influenced by item size (Soltész et al., 2010) or other 
non-numerical visual properties (Clayton et al., 2015), and studies 
that find lesser influence of such factors provide children with trial-
by-trial accuracy feedback (Halberda & Feigenson, 2008; Odic et al., 
2013), essentially allowing the experiment itself to provide a classi-
fier training signal. Interestingly, deep networks also exhibit sensi-
tivity	to	congruency	manipulations,	for	example	by	more	frequently	
misclassifying stimuli where continuous visual cues are in disagree-
ment	with	numerosity	(Testolin,	Dolfi,	Rochus,	&	Zorzi,	2019;	Zorzi	
&	Testolin,	2018).	While	further	work	is	needed	to	better	establish	
how a generic neural network might support numerosity sensitivity 
in infancy, it could still be argued that explicit numerosity judgments 
may	 require	 feedback-driven	 tuning	 of	 classification	 responses	 in	
humans, as in our models.

A	further	possibility	worth	considering	is	the	idea	that	experience	
with number itself might shape, not only the readout of internal rep-
resentations, but also the representations themselves. In the current 
work, we have not relied on this possibility, but other neural network 
modeling work has shown that smaller values of w can be achieved in 
a network trained end-to-end with backpropagation to estimate the 
number of items in a display (Chen et al., 2018). Because numerical 
acuity improves over development even in uneducated individuals 
from cultures without number words, we think it is likely that the 
emergence of representations capable of supporting numerosity 
judgements	can	and	do	arise	through	unsupervised	learning.	At	the	
same time, it seems reasonable to be open to the possibility that 
supervised learning could play a role in further shaping numerical 
acuity in educated populations, and even the possibility that non-vi-
sual information about number could act as a supervisory signal to 
promote refinement of visual numerosity sensitivity in uneducated 
populations and animals.

Overall, we believe that the computational work presented 
here constitutes an important step toward a better understand-
ing of the mechanisms underlying the progressive development of 
our visual number sense. Our primary modelling effort concerned 
the identification of sufficient conditions that would allow a neural 
network to support sensitivity to numerosity prior to any visual 
experience as well as a gradual development of numerical acuity 
resembling that observed in children. One exciting venue for fu-
ture work will be to investigate whether the inclusion of additional 
architectural and learning constraints in the model could help in 
capturing the high variability observed in empirical studies, thus 
possibly enlightening the computational bases of individual dif-
ferences in numerical acuity. However, we believe that the most 

challenging direction for future research will be to push our frame-
work into uncharted territory, in order to establish whether our 
perspective on numerical development could also account for the 
emergence of more complex, high-level numerical skills, such as 
those	 required	 to	 represent	 and	 manipulate	 symbolic	 numbers	
(Leibovich	&	Ansari,	2016).
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ENDNOTE S
 1	 The	complete	source	code	of	our	developmental	algorithm,	along	with	
the code used to generate the visual stimuli and test the deep networks, 
are made publicly available at the Open Science Framework: https ://osf.
io/h5pfm . 

 2 Slightly better fit statistics were obtained when including the scaling 
factor, but this could reflect overfitting due to the increase in the number 
of free parameters. We chose to present the simpler model here because 
the additional scaling parameter can trade off with the other parameters 
with little change in the overall goodness of fit, rendering the best-fitting 
values of the parameters less informative. 

 3 Given ns sending units and nr receiving units, an optimal starting point 
for	learning	is	provided	by	values	distributed	uniformly	in	the	range	[−r, 
r] were r=4∗

√

(

6
/

(ns+nr)
) (the scale factor of 4 adjusts for our use of 

sigmoid units rather than tanh units as described in the original analy-
sis	in	Glorot	and	Bengio,	2010).	The	formula	gives	values	of	r = .31 for 
the weights between the input (n = 900) and first hidden layer (n = 80) 
and 0.45 for the weights between the first hidden and second hidden 
(n	=	400)	 layers.	The	corresponding	standard	deviations	for	these	two	
cases are 0.18 and 0.25 respectively, between the values of 0.1 and 0.5 
used in our simulations. 
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