
RESEARCH ARTICLE

Effects of Multimodal Load on Spatial
Monitoring as Revealed by ERPs
Mario Bonato1,2☯*, Chiara Spironelli2,3☯*, Matteo Lisi4,2, Konstantinos Priftis2,
Marco Zorzi2,3,5*

1 Department of Experimental Psychology, Ghent University, Ghent, Belgium, 2 Department of General
Psychology, University of Padova, Padova, Italy, 3 Center for Cognitive Neuroscience, University of Padova,
Padova, Italy, 4 Laboratoire Psychologie de la Perception (CNRS UMR 8242), Université Paris Descartes,
Paris, France, 5 IRCSS San Camillo Hospital, Lido-Venice, Italy

☯ These authors contributed equally to this work.
* mario.bonato@ugent.be (MB); chiara.spironelli@unipd.it (CS); marco.zorzi@unipd.it (MZ)

Abstract
While the role of selective attention in filtering out irrelevant information has been exten-

sively studied, its characteristics and neural underpinnings when multiple environmental sti-

muli have to be processed in parallel are much less known. Building upon a dual-task

paradigm that induced spatial awareness deficits for contralesional hemispace in right

hemisphere-damaged patients, we investigated the electrophysiological correlates of multi-

modal load during spatial monitoring in healthy participants. The position of appearance of

briefly presented, lateralized targets had to be reported either in isolation (single task) or

together with a concurrent task, visual or auditory, which recruited additional attentional

resources (dual-task). This top-down manipulation of attentional load, without any change

of the sensory stimulation, modulated the amplitude of the first positive ERP response (P1)

and shifted its neural generators, with a suppression of the signal in the early visual areas

during both visual and auditory dual tasks. Furthermore, later N2 contralateral components

elicited by left targets were particularly influenced by the concurrent visual task and were

related to increased activation of the supramarginal gyrus. These results suggest that the

right hemisphere is particularly affected by load manipulations, and confirm its crucial role in

subtending automatic orienting of spatial attention and in monitoring both hemispaces.

Introduction
In everyday life we are often required to perform several tasks in parallel. Under these condi-
tions, our otherwise efficient cognitive system might reveal a number of capacity limits, some-
times fairly severe [1]. The limitations of our spatial abilities under attentional load have a
number of practical consequences. For example, activities requiring complex spatial process-
ing, such as driving, are implemented with more effort when we perform another task in paral-
lel, such as talking to a person [2]. It has been known since the 1960s that performing an
auditory task or increasing visual demands at fixation makes detection of peripheral visual
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targets slower and less accurate [3], giving rise to what has been called “tunnel vision” [4].
More recently, the studies addressing this fascinating issue, namely the effects of attentional
demands on visual perception, have been mostly framed within the framework provided by
Lavie’s [5,6] influential “load theory” of attention. The load theory focuses on the processing of
visual information. It provides a comprehensive explanation of how the influence of peripheral
distractors depends on the ‘load’ of a current attentional task at fixation, with less interference
occurring when more attentional capacity is demanded by the processing of the central stimuli.
Specifically, higher load for central position would lead to the exclusion of irrelevant peripheral
inputs at an earlier stage of visual processing, as compared with lower central load. A less com-
mon approach to investigate the effect of task load in healthy participants consists in using
task-relevant, lateralized targets. A similar context is ubiquitous in everyday life behaviour
(e.g., talking on the phone while driving) and it is also particularly relevant for a leading
theoretical proposal regarding the functional architecture of attention networks in the brain
[7]. Although (or because) several alternative terminologies exist, a neutral taxonomy of the
manipulations typically performed in load studies distinguishes top-down from bottom-up
approaches. Top-down manipulations consist of a change in the instructions (respond to a
given color only vs. respond to a given color and a given shape) while stimuli are kept constant.
In contrast, in bottom-up manipulations different levels of attentional load are obtained with a
physical change in the stimuli, whereby instructions (tasks) are kept constant.

While not much is known about the interplay between spatial and non-spatial attention in
the intact brain, some important hints about the effects of load are provided by studies requir-
ing brain damaged patients to implement overt responses to lateralized targets. Indeed, a
wealth of neuropsychological findings converge in showing that increased load results in asym-
metrical processing of peripheral targets after unilateral brain damage. There is now consensus
that right-hemisphere-damaged patients show more severe rightward bias/leftward omissions
whenever a concurrent task is performed. This disruption occurs regardless of the nature of the
concurrent task, that is, whether visual [8–13] or auditory [14] or both visual and auditory
[15,16]. Patients data thus suggest that the right hemisphere, known to be prominently
involved in spatial monitoring, is also particularly sensitive to the general increase in atten-
tional load. These recent findings extend the fact that the mere disengaging from a central posi-
tion poses a challenge to right brain-damaged patients [17,18]. Attentional asymmetries can be
easily explained by the selective impairments of bottom-up mechanisms characterizing neglect
[19].

We recently implemented a novel, exclusively top-down, manipulation of attentional load
in a series of clinical studies on right-hemisphere damaged patients [15,16]. Our experimental
paradigm used peripheral stimuli as task-relevant targets and load was increased through the
use of multi-tasking. That is, one additional stimulus, either visual (at fixation) or auditory
(binaural) had to be concurrently reported in the dual-task condition. Chronic right-hemi-
sphere damaged patients showed striking awareness deficits for contralesional hemispace when
performing dual-tasks [20], whereas their spatial monitoring performance was relatively spared
in the single task condition. A dramatic drop in performance under dual task occurred not
only for bilateral targets (i.e., indexing extinction [15,16]) but also for single, unilateral, con-
tralesional stimuli (i.e., hemispatial neglect [21]). The load manipulation effectively resulted in
a pattern of omissions for left-sided targets also in several patients who did not show neglect
according to standard, paper-and-pencil, tests [21]. The load-induced deficit selectively
affected the contralesional side, and was not present in matched controls [15,16]. Intriguingly,
at the group level, the effect of dual-tasking was identical across the two conditions (visual vs.
auditory [21]). This suggests that performance in spatial monitoring was hindered by the
recruitment of unspecific, amodal, attentional resources, rather than to modality-specific (e.g.,
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visuospatial) load. Whether the latter finding has a counterpart in normal brain functioning is
an issue that remains to be investigated. Several fMRI studies investigated the neural correlates
of spatial processing under attentional load [13, 22–27]. It has been shown [23] that increased
visual load strongly modulates neural activity in the primary visual cortex (V1) of healthy par-
ticipants, also in the absence of conscious perception. Moreover, a rather consistent finding
when visual working memory is loaded is the suppression of activity in temporoparietal areas
[22, 25, 27], which occurs at early stages during working memory encoding [22]. An fMRI
study in right parietal stroke patients [13] showed reduced activation in right primary visual
areas (left hemispace) following increased attentional load at fixation, thereby calling for the
presence of an early-gating neural mechanism.

Electrophysiological studies investigating how and when attentional load modulates ERPs
have provided a complex picture and somehow contradictory findings, probably due to the
close dependence of early components on the specific characteristics of the manipulation per-
formed. For instance, it has been shown that increased task load can produce opposite effects
depending on whether the peripheral stimuli are relevant or irrelevant for the task. More spe-
cifically, increased amplitudes were observed for peripheral stimuli presented as targets (i.e.,
task-relevant), whereas decreased amplitudes were observed for peripheral stimuli presented as
distracters (i.e., task-irrelevant) [28]. The timing of the effect of load, that is, at which process-
ing stage it can modulate the ERPs, is a hotly debated issue. Studies using task-irrelevant
peripheral distracters have reported that the amplitude of the early positive component appear-
ing around 100 ms after stimulus presentation (P1) decreases with increasing attentional load
at fixation [29]. Using multiple, peripheral, task irrelevant distracters, some studies have shown
that attentional load can even influence the first sweep of visual processing, as revealed by the
C1 component [30–32]. However, also contrasting results have been reported [33–35]. Some
authors have concluded [35] that attentional load does not exert its influence on P1 but only at
later stages.

Load effects have been more consistently described for the N1 (around 200 ms post-stimu-
lus) and for later components/higher level processes [36,37], which are known to depend on
attentional deployment [38,39]. It is worth noting that most, if not all, the studies focusing on
the effects of non-spatial load manipulations adopted stimuli that were visual in nature and
therefore spatially characterized [36,38]. To the best of our knowledge, all previous studies that
manipulated spatial monitoring difficulty through the addition of a concurrent task with a dif-
ferent nature focused on the factors affecting multisensory integration [40].

A recent ERP investigation with healthy participants addressed the role of visual load at fix-
ation (rapid serial visual presentation of a stream of alphanumeric stimuli) on the detection of
peripheral targets [41]. Participants performed either a single-feature (low load) or a conjunc-
tion search (high load; further details in [41]) and they also responded to peripheral targets
presented for 400 ms. The typical N1 enhancement for contralateral visual stimulation [42]
was reduced under high load over the occipital and the inferior parietal regions of the right
hemisphere. Another ERP study on load effect in healthy participants focused on the interac-
tion between task load and spatial attention [36]. It showed the modulation of N1 component
in an oddball task in which attentional selection was performed on the basis of spatial or color
features of stimuli [36]. Visual load level was bottom-up manipulated by varying the similarity
between a standard and a target stimulus, whereas type of load (always in the visual modality)
was manipulated by changes in the feature that had to be processed (either color or position).
Load increase similarly affected the difference waveforms between attended and unattended
stimulus dimensions in both position-based and color-based tasks.

In the present study, we exploited the sensitivity of ERPs to investigate how the neural
dynamics of visuospatial monitoring are influenced by concurrent task demands. The
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unparalleled temporal resolution offered by ERPs is particularly valuable when the time-course
of the neural effects of top-down attention needs to be established [43]. Moreover, the study of
ERPs is particularly appropriate for manipulations implying a constant sensory stimulation
and only a change in task instructions (The Hillyard Principle, see [44] p. 68). Indeed, we
investigated for the first time the effect of top-down, multi-modal manipulations of attentional
load in healthy participants using the same type of experimental paradigm that induced severe
contralesional awareness deficits in right brain damaged patients [15]. The fact that our para-
digm requires an overt response to the lateralized stimuli constitutes a first important differ-
ence with respect to most previous studies on the neural correlates of attentional load [13, 26,
30, 32], which might be important for predicting the impact of attentional load in settings
where peripheral stimuli may have ecological relevance. A second important characteristic of
our method is that the dual-tasking procedure is implemented by asking participants not only
to monitor one additional aspect of the stimuli but also to provide a second response. A third
crucial feature is that it includes a concurrent task that is neither spatial nor visual in nature,
thereby assessing the effect of cross-modal load on visuospatial processing.

In summary, we aimed to determine when and how an increase in attentional load through
a dual-task manipulation modulates electrophysiological markers of visual processing of task-
relevant stimuli and to what extent the effect of load is modality-specific (visual vs. auditory).
Based on the findings of O’Connell et al. (2011), who implemented a detection task while load
was manipulated within the visual modality, we expected a significant reduction of the contra-
lateral N1 amplitude under load. We predicted similar effects of visual and auditory load on
the basis of our previous clinical finding: in the presence of brain damage spatial awareness was
modulated by dual-tasking regardless of the nature (i.e., sensory modality) of the stimuli that
had to be concurrently processed [19]. While we had no a-priori hypothesis regarding earlier
P1 and late N2 components, the present paradigm offers a new way to address the issue of
whether these components are modulated (or not modulated, [35,41]) by attentional load.

Materials and Methods

Participants
Fifteen undergraduates (8 males; mean age: 22.3 years) were tested at the Department of Gen-
eral Psychology of the University of Padova. All participants were right-handed (average
score> 80%, according to the Edinburgh Handedness Inventory [45]) and had normal or cor-
rected-to-normal vision. All participants were more than eighteen years old and gave their
written informed consent to take part in the experiment, according to the Declaration of Hel-
sinki. The experimental procedure was approved by the Ethics Committee of the Department
of General Psychology, University of Padova.

Stimuli, tasks, and procedure
Participants sat at a distance of about 60 cm from a 38 x 30.5 cm computer monitor. The task
was programmed and administered using E-Prime (Psychology Software Tools, Pennsylvania,
USA, http://www.pstnet.com).

There were three experimental tasks (Fig 1): one single-task condition and two dual-task
conditions (visual vs. auditory). Each trial started with a black screen (1000 ms). A black back-
ground was present through the whole experiment. Then, a white fixation cross was centrally-
presented for 1000 ms. A white dot target (approximately 0.8° of visual angle) was then pre-
sented, in equal proportion, on the left side, on the right side, or bilaterally for 17 ms, at a lateral
distance of about 16° of visual angle from the centre of the screen. Therefore, either a single
target (left-sided or right-sided) or bilateral targets (left- and right-sided) were presented.

ERPs of Spatial Monitoring under Load

PLOS ONE | DOI:10.1371/journal.pone.0136719 September 3, 2015 4 / 21

http://www.pstnet.com/


Synchronously with the lateral target(s), a geometric shape (square, circle, or diamond, in
equal proportion, about 1.1° of visual angle) was presented at fixation and a pure tone (high

Fig 1. Trial structure of the Single task (top panel) and of Dual tasks (bottom panel). Across all tasks several stimuli were presented: lateralized dot(s), a
central form and a binaurally presented sound. In the Single task participants only had to report the position of the dot. In Dual tasks after the response to dot
(s) position, participants had to report the identity of the central shape (Visual Dual-task: left side, bottom panel) or the pitch of the sound (Auditory Dual-task:
right side, bottom panel).

doi:10.1371/journal.pone.0136719.g001
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frequency� 800 Hz, medium� 450 Hz, or low� 255 Hz, in equal proportion) was binaurally
presented by means of earphones. After the offset of sound (100 ms), a blank screen was pre-
sented. Then, different characteristics of stimuli had to be reported according to the to-be-per-
formed task.

In the Single task, participants had to report the position of the target(s) (i.e., “right”, “left”,
or “both” sides), while ignoring the central shape and the auditory tone. Participants were
required to respond as fast and as accurately as possible by means of three response keys (left
index for left target, right index for right target). For bilateral targets, either a response with left
or right thumb (counterbalanced between participants) was requested. Absence of response at
the end of the trial (2 sec) was considered an omission. In both Dual tasks, the display and the
sequence of events were identical to that of the Single task. In the Visual Dual task, participants
had to respond (using the keyboard) to the position of the lateral visual target(s) and then ver-
bally classify the centrally presented shape. In the Auditory Dual task, participants had to
respond (keyboard) to the position of the lateral visual target(s) and then to verbally classify
the sound pitch as high, medium or low. The experimenter coded participants’ oral responses
to the identity of the centrally presented shape (in the Visual Dual task) or to the sound pitch
(in the Auditory Dual task).

Each task comprised 108 trials, equally distributed in two blocks (2 repetitions x 3 sounds x
3 shapes x 3 spatial positions), for each task. Participants performed the Single task first, and
then the Dual tasks (Visual vs. Auditory) in a counterbalanced order. We decided to avoid full
counterbalancing because it could have resulted in potential carry-over effects. Indeed, when
presenting the single task after the dual task(s) participants would have had to ignore both con-
current stimuli (form and sound) shortly after they were task-relevant in the dual-task(s). The
importance of maintaining gaze at fixation was stressed before each block.

Data acquisition and analysis
EEG cortical activity was recorded by 32 tin electrodes, 30 mounted on an elastic cap (Electro-
Cap) according to the International 10–20 system [46], and the other two applied on mastoids
(M1, M2). Eye movements were recorded from two additional electrodes placed below the
right eye (Io1) and on the left canthium (F9), respectively. The electro-oculogram (EOG) was
therefore recorded with a bipolar montage. All cortical sites were on-line referred to M1. Data
were stored using the Micromed software (System Plus, Micromed, Mogliano Veneto, Italy).
Data were recorded with a 0.2–30 Hz bandwidth; the sampling rate was set at 512 Hz and the
impedance was kept below 5 kO.

EEG was continuously recorded in the AC mode and stored for later analysis. Data were
off-line re-referenced to the average reference (including the activity of both mastoids). Signal
analyses were carried out using the Brain Vision Analyzer system (Brain Products GmbH, Ger-
many). Eye movement artifact components (i.e., vertical and horizontal movements, and blink-
ing) were corrected by applying the Independent Component Analysis (ICA) transformation
to the EEG signal. Raw data were therefore segmented in epochs of 1.5-s intervals, including
0.5 s before and 1 s after target onset, and a 100-ms baseline preceding target onset was sub-
tracted from the whole trial epoch. Each trial was then visually inspected for any residual arti-
facts (e.g., head movements or muscular activity), and trial corresponding to wrong responses
to either target position, form/sound type or both, were discarded. All accepted trials within a
specific experimental condition (on average, 63.1%, with no differences between conditions)
were averaged. Thus, this rate of averaged epochs included all artifact-free trials for which par-
ticipants provided correct responses to both the target and, for Dual tasks only, the secondary
task (shape or sound classification).
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On the basis of grand-mean waveforms (Figs 2 & 3), we analyzed the time-windows cen-
tered on P1, N1 and N2 peaks (i.e., 105–115 ms, 165–185 ms and 240–350 ms, respectively).
The Kolmogorov-Smirnov test was applied to ensure that every ERP component was normally
distributed (all ds� 0.23642, ps> 0.20). For statistical analysis, electrodes were clustered into
four quadrants/regions of interest: Central Left (CL: F3, FC3, C3), Central Right (CR: F4, FC4,
C4), Posterior Left (PL: P3, P7, O1) and Posterior Right (PR: P4, P8, O2). The mean amplitude
values of the potentials measured in sites of the same polarity were used: thus, for P1 and N1
components only posterior electrodes were considered, whereas for the late N2 components
separate analyses have been carried out on central and posterior sites.

Since the responses to bilateral targets were executed by half of the participants with the left
and by half of the participants with the right thumb, the analyses of the late event-related
component (i.e., the N2) would require to consider separately these two subgroups, at least on
central sites corresponding to response-related contralateral negativity. This would yield an
insufficient number of participants for performing reliable statistical analysis. We therefore
deemed it as more appropriate to focus only on the ERP components evoked by unilateral (i.e.,
left-sided or right-sided) dots, for which data from all participants were available, on posterior
regions and, limited to late N2 component, on central sites.

Fig 2. Left Visual Field: Grandmean average potential and splinemaps. P1 (left side), N1 (horizontal) and N2 (right side) components of LVF stimuli
during Single (dashed green lines), Visual Dual (full red lines) and Auditory Dual task (dotted blue lines) are represented. Negativity is shown upwards.

doi:10.1371/journal.pone.0136719.g002
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In addition to standard behavioral and ERP analysis we used sLORETA/eLORETA (stan-
dardized/exact Low Resolution Electromagnetic Tomography; [47]) to compute the smoothest
possible 3D-distributed current source density solution constrained to grey matter. This
approach was particularly suited for our analysis given that, due to the smoothness constraint,
it does not need an a priori number of known sources. Finally, to focus specifically on load
effects, we performed, separately for each component, a cost analysis by subtracting the activa-
tion found in the single-task from the activation found under dual-tasks.

Results
Both behavioral and ERP data were analyzed using repeated measures analysis of variance
(ANOVA). The Greenhouse-Geisser (GG) correction was applied in the case of violation of
sphericity (in these cases, we report uncorrected degrees of freedom, epsilon values, and cor-
rected probability levels). Post-hoc comparisons were computed using the Newman-Keuls test
(p< 0.05). All analyses have been carried out using the Statistica software (Statsoft Italy, 6.1
version). Only significant main effects or interactions are reported.

Fig 3. Right Visual Field: Grandmean average potential and splinemaps. P1 (left side), N1 (horizontal) and N2 (right side) components of RVF stimuli
during Single (dashed green lines), Visual Dual (full red lines) and Auditory Dual task (dotted blue lines) are represented. Negativity is shown upwards.

doi:10.1371/journal.pone.0136719.g003
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Behavioral Results
Reaction times were analyzed by means of a two-way ANOVA with Task (three levels: Single
vs. Visual Dual vs. Auditory Dual) and Target Position (two levels: Left Visual Field [LVF] vs.
Right Visual Field [RVF]) as within subjects factors. RTs (Table 1) were faster in the Single task
(415.7 ms) compared with those measured in both Dual tasks (Visual: 481.8 ms, Auditory:
462.2 ms; all ps< 0.01; Task main effect: F(2,28) = 12.13, p< 0.001, GG ε = 0.79). Cohen’s d
values (from now on reported as "d") were 1.03 and 0.73, respectively. No other effect was sig-
nificant (Target position: F(1,14) = 1.78, p = 0.20).

Accuracy data were analyzed by fitting a generalized-linear mixed effects model with the
logit as link function, using R [48] and the lme4 library [49]. The model had Task and Target
Position as within subject predictors; statistical significance was assessed using likelihood ratio
tests. This analysis did not reveal any significant effect (interaction between Task and Target
Position: χ2(2) = 3.43, p = 0.18; Task main effect χ2(2) = 1.41, p = 0.49; Target Position main
effect χ2(2) = 0.55, p = 0.46).

ERP results
We performed separate three-way ANOVAs on P1, N1 and N2 time-intervals with the follow-
ing factors: Task (three levels: Single vs. Dual Visual vs. Dual Auditory), Target position (two
levels: LVF vs. RVF) and Laterality (two levels: Left vs. Right hemisphere).

P1 component (posterior sites). The ANOVA carried out in the early time interval corre-
sponding to the P1 component (105–115 ms after target onset) revealed a significant interac-
tion between Target Position and Laterality (F(1,14) = 7.61, p< 0.01). LVF targets elicited
larger right than left positivity (p< 0.01, d = 0.48), whereas RVF targets evoked similar, bilat-
eral, activation (d = 0.08; Fig 4A). When considering within-hemispheres differences, greater
positivity was measured, in the left hemisphere only, for RVF than for LVF targets (p< 0.05,
d = 0.27; Fig 4A).

In addition, the significant main effect of Task (F(2,28) = 3.55, p< 0.01, GG ε = 0.99)
indexed greater positivity under dual tasking (Visual Dual task: 4.67 μV, d = 0.42; Auditory
Dual task: 4.36 μV, d = 0.24) than in the Single task (3.87 μV, p< 0.05 and p = 0.07, respec-
tively; Fig 4B). It should be noted that this increased amplitude under load occurred concur-
rently with a posterior-to-anterior shift of the component generator (see Fig 4C and the Source
Analysis below). No other main effect or interaction was significant.

N1 component (posterior sites). The ANOVA carried out in the time interval corresponding
to the N1 component (165–185 ms after target onset) showed a significant Target Position by
Laterality interaction (F(1,14) = 4.59, p = 0.05), with increased amplitude for contralateral tar-
gets in the absence of any significant main effect (LVF target d = 0.14; RVF target d = 0.21;
Fig 5A). No other main effect or interaction was significant.

Table 1. Behavioral data. Mean and Standard Deviations (SD) of Response Times (RTs) and Accuracy as a function of Target position and load condition.

Target position Task RTs Accuracy

(ms ± SD) (% ± SD)

LVF

Single 412 (± 31) 98.1 (± 2.5)

Visual Dual 471 (± 74) 98.6 (± 1.9)

Auditory Dual 452 (± 74) 98.3 (± 3.6)

RVF

Single 420 (± 45) 98.4 (± 2.2)

Visual Dual 492 (± 97) 98.1 (± 2.8)

Auditory Dual 472 (± 96) 99.4 (± 1.2)

doi:10.1371/journal.pone.0136719.t001
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N2 component (central sites). The ANOVA carried out in the time interval corresponding
to the late N2 component (240–350 ms after target onset) showed a significant Target Position
by Laterality interaction (F(1,14) = 100.22, p< 0.001): significant greater negativity was found
contralateral to the side of target presentation, in a symmetric fashion (i.e., LVF targets elicited
larger right than left negativity [p< 0.001, d = 1.05], whereas RVF targets evoked greater left
than right negativity [p< 0.001, d = 1.42]; Fig 6A). No other main effect or interaction was
significant.

N2 component (posterior sites). The ANOVA carried out in the time interval corresponding
to the late N2 component (240–350 ms after target onset) showed a significant Target Position

Fig 4. P1 component elicited on posterior sites. (A) Target Position by Laterality interaction, (B) Task main effect and (C) sLORETA source analyses of
LVF and RVF stimuli during Single (left panel) and both Dual tasks collapsed (right panel). The white dot (on the left or on the right) indexes target position.
* significant post-hoc comparisons. ^ p = 0.07. LH = Left Hemisphere; RH = Right Hemisphere.

doi:10.1371/journal.pone.0136719.g004
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by Laterality interaction (F(1,14) = 9.89, p< 0.01). LVF targets elicited larger right vs. left nega-
tivity (p< 0.01, d = 0.49), whereas RVF targets evoked bilateral activation (d = 0.05, Fig 6B).
With respect to within-hemisphere differences, greater right negativity was measured for RVF
compared with LVF targets (p< 0.05, d = 0.32; Fig 6B).

In addition, a significant main effect of Task emerged (F(2,28) = 10.67, p< 0.001, GG ε =
0.83). In contrast to the absence of load effect for central sites, for posterior sites the Visual
Dual task elicited greater negativity (-0.64 μV) than both the Single task and the Auditory Dual
task (1.30, d = 0.77, and 1.11 μV, d = 0.78, respectively; all ps< 0.001; Fig 6C). Interestingly,
the two-way interaction Task by Target Position was significant (F(2,28) = 3.49, p< 0.05, GG
ε = 0.96), indexing different effects of the dual task manipulation depending on target position.
Indeed, significant greater negativity was elicited by LVF vs. RVF targets (p< 0.01, d = 0.32)
selectively in the Visual Dual task, whereas neither in the Single nor in the Auditory Dual task
significant LVF/RVF differences were found, d = 0.01 and 0.11, respectively; Fig 6D). Further-
more, the Visual Dual task showed the greatest negativity for both target positions when com-
pared with the other two tasks (all p< 0.001, LVF target d = 0.89 and d = 0.92; RVF d = 0.62
and 0.60). No other main effect or interaction was significant.

Source analyses
The distributed source solution of every task-related component was computed by sLORETA/
eLORETA separately for each condition. On the basis of ERP analyses, to localize the effect of
load, we compared only significant sLORETA/eLORETA sources obtained in Single and Dual
tasks collapsed (P1 component), all tasks collapsed (N1 component) and Single, Visual Dual, and
Auditory Dual tasks (N2 component). We carried out separate t-tests by contrasting the P1, N1
and late N2 intervals (105–115, 165–185 and 240–350 ms after target onset, respectively) with an
interval with no active visuo-perceptual processing (10-ms, 20-ms and 110-ms baseline prior to
target onset, respectively). All results are reported in Talairach coordinates [50].

sLORETA/eLORETA analyses carried out on all participants revealed significant activity in
the P1, N1 and late N2 intervals (all p< 0.01). Source analyses carried out separately on Single

Fig 5. N1 component elicited on posterior sites. (A) Target position by Laterality interaction and (B) sLORETA source analyses of LVF and RVF stimuli
collapsed across all tasks. The white dot indexes target position (left vs. right). LH = Left Hemisphere; RH = Right Hemisphere.

doi:10.1371/journal.pone.0136719.g005
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and Dual tasks collapsed located the cortical generator of the P1 component in the right and
left Supramarginal Gyrus (Table 2 and Fig 4C). In addition, the prominent and significant
occipital activation present during the Single task was not visible (and it was not statistically
significant) under load (see Fig 4C, back view). The disappearance of occipital components
under dual-tasking suggests that attentional load can already affect the first stages of visual pro-
cessing and possibly transform target detection into a more effortful task.

The cortical generators of N1 component elicited during all tasks collapsed were located in
right Superior Parietal Lobule (approximate coordinates for LVF targets: 36, -41, 46) and left
and right Supramarginal Gyri as well as in left Inferior Parietal Lobule (approximate coordi-
nates for RVF targets: -19/20, -33/-27, 37/38 and -35, -37, 39; Table 2 and Fig 5B).

Interestingly, the cortical generators of the late N2 component were located in different por-
tions of right/left Precentral Gyrus, depending on the position of the targets, for all tasks (see
Table 2 for approximate coordinates). The only exception was the Visual Dual task, which
mainly activated the right Supramarginal Gyrus when LVF targets were presented (approxi-
mate coordinates: 41, -35, 59; Fig 6E).

Cost analyses
Finally, to focus specifically on load effects, we carried out an additional ANOVA on P1, N1
and N2 components of Dual task minus Single task activity. This allowed us to directly com-
pare the costs of intra-modal load (Visual Dual task minus Single task) and cross-modal load
(Auditory Dual task minus Single task). Thus, separate ANOVAs on P1, N1 and N2 time-inter-
vals were performed including Task (two levels: Visual Dual vs. Auditory Dual), Target Posi-
tion (two levels: LVF vs. RVF) and Laterality (two levels: Left vs. Right hemisphere) as factors.

No significant effect was found in the analysis of the P1 component, confirming the previ-
ous analyses and suggesting that both visual and auditory dual tasks elicited greater positivity
than the single task. With respect to N1 component, notwithstanding that the Task by Target
Position interaction was significant (F(1,14) = 4.70, p< 0.05), post-hoc comparisons showed
distributed effects, since no differences between tasks and target position reached significance.
Also the analysis of the late N2 component revealed no effects on central sites. In contrast, cost
analysis on posterior regions showed a significant Target Position by Laterality interaction (F
(1,14) = 4.55, p = 0.05). Regardless of task, LVF targets elicited the same cost levels on both left
and right posterior sites (d = 0.04), whereas RVF targets mainly activated left rather than right
cluster (p< 0.01, d = 0.32; Fig 7A). With respect to within-hemisphere differences, greater
right negativity was measured for LVF compared with RVF targets (p< 0.01, d = 0.24), sug-
gesting higher costs for targets presented in the LVF under high load.

On posterior sites, however, regardless of the laterality distribution of N2 component, the
effect of load was significantly different between intra-modal and cross-modal conditions
(Task main effect: F(1,14) = 23.48, p< 0.001): the Visual Dual task elicited greater costs than
the Auditory Dual task (d = 0.82; Fig 7B). In addition, the Task by Target Position interaction
(F(1,14) = 7.01, p< 0.05) revealed greater costs during intra-modal load (Visual Dual task)
with respect to cross-modal load (Auditory Dual task) for both LVF and RVF (all ps< 0.001,
d = 0.98, and 0.63, respectively; Fig 7C). Furthermore, within the Visual Dual task, LVF targets
elicited greater costs than RVF ones (p< 0.01, d = 0.41). No other main effect or interaction
was significant.

Fig 6. N2 component. Target Position by Laterality interaction on (A) central and (B) posterior sites. On posterior sites only, Task main effect (C) and Task
by Target Position interaction (D) were significant. (E) sLORETA source analyses of LVF and RVF stimuli during Single (left panel) and Visual Dual tasks
(right panel). The white dot indexes target position (left vs. right). * significant post-hoc comparisons. LH = Left Hemisphere; RH = Right Hemisphere.

doi:10.1371/journal.pone.0136719.g006
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To determine whether the increased N2 activation for the Visual Dual task, and particularly
for LVF targets, was functional or dysfunctional for task execution, we carried out a Pearson’s
correlation between electrophysiological and behavioral cost measures. Participants’ RT cost
for LVF targets, obtained by subtracting mean RTs in the Single task from mean RTs in the
Visual Dual task, was correlated with the individual N2 cost over right posterior sites. As can
be seen in Fig 7D, the smaller the RT cost in the behavioral responses to LVF targets, the larger
the N2 cost (r(13) = 0.57, p< 0.05), suggesting that the increased activation (load cost) is func-
tional to a more efficient processing of LVF targets under intra-modal load.

Discussion
The present study focused on the electrophysiological correlates of those situations where the
peripheral space has to be continuously monitored, while participants allocate additional atten-
tional resources either in the visuo-spatial or in the auditory domain. This condition mimics,
in a controlled environment, a number of everyday life contexts whereby spatial processing is
performed under multitasking. In this condition spatial attention is not only deployed in the
foveal space to efficiently process visual items, but it has also to continuously monitor the

Table 2. Source Analysis. The cortical sources found with sLORETA/eLORETA are reported in Talairach coordinates, together with other significantly
active cortical areas separately for P1, N1 and P2 components and for target side.

P1 component Task Structure name BA x y z t14
LVF Single right SMG 40 29 -29 21 3.82**

right LG 18/17 15/20 -97/-92 -4/0 3.01/2.96**

right MOG 18/19 30 -92 0/14 2.90/2.87**

Cuneus 17 0 -97 1 2.76*

both Dual right SMG 40 35 -28 38 2.85**

right IPL 40 40 -32 34 2.77**

RVF Single left SMG 40 -29 -39 21 3.80**

left LG 18 -10 -97 -4 2.84**

Cuneus 17 0 -97 1 2.79**

left/right MOG 18 -25/25 -92 5/9 2.71/2.70**

left MOG 19 -25 -87 9 2.69*

both Dual left SMG 40 -19 -33 37 3.70**

left IPL 40 -35 -37 39 3.20**

N1 component Task Structure name BA x y z t14
LVF All right SPL 40 36 -41 46 2.94**

RVF All left/right SMG 40 -19/20 -33/-30 37/40 3.47/3.26**

left IPL 40 -35 -37 39 3.33**

N2 component Task Structure name BA x y z t14

LVF

Single right PrG 6 58 5 35 3.98**

Visual Dual right SMG 40 40 -35 33 2.84**

Auditory Dual right PrG 6 49 -3 38 2.65**

RVF

Single left PrG 6 -35 -11 59 3.87**

Visual Dual left PrG 6 -58 0 29 2.96**

Auditory Dual left IFGtr/PrG 44 -53 17 11 2.84**

** p < 0.01

* p < 0.05, two-tailed.

BA = Brodmann area; SMG = supramarginal gyrus; LG = lingual gyrus; MOG = middle occipital gyrus; IPL = inferior parietal lobule; SPL = superior parietal

lobule; PrG = precentral gyrus; IFGtr = inferior frontal gyrus–triangular part.

doi:10.1371/journal.pone.0136719.t002
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surrounding space, while being also flexible enough to effectively process and respond to infor-
mation from non-visual sensory channels. The electrophysiological correlates of multitasking
were investigated by comparing a condition where attention was only engaged to monitor
space for the appearance of relevant items, with other conditions where attention was also
deployed towards different stimuli and sensory channels to process, in parallel, either visual or
auditory information.

Participants visually monitored the surrounding visual space for the appearance of briefly-
presented lateralized targets, which were spatially categorized as left-sided or right-sided (all
tasks). In this regard, it is worth noting that the eccentricity of the spatial positions to be moni-
tored was relatively large, as opposed to the standard RSVP paradigm [51]. In addition, for
Dual tasks only, participants had to pay attention and to verbally classify either a centrally-pre-
sented shape (Visual Dual task) or a binaurally presented sound (Auditory Dual task). It is

Fig 7. Cost analysis. (A) Stimulus Position by Laterality interaction, (B) Task main effect and (C) Task by Target Position interaction. (D) Correlation
between behavioral (RTs) and electrophysiological costs for LVF targets in the Visual Dual task: the greater the increase of activation in posterior right sites,
the faster the RTs. * significant post-hoc comparisons. LH = Left Hemisphere; RH = Right Hemisphere.

doi:10.1371/journal.pone.0136719.g007
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important to point out that, together with the lateralized dot, the other two types of stimuli
(i.e., the central shape and the sound) were always presented in all conditions, even when they
were not task-relevant. This manipulation of task instructions allowed us to obtain a pure mea-
sure of the top-down attentional load induced by dual-tasking, without changes of the sensory
information available to the participants. The cross-modal load condition (i.e., Auditory Dual
task) included in our paradigm allows to disentangle visual load from a general effect on unspe-
cific task demands. Moreover, this condition is both non-spatial and non-visual, whereas other
studies have adopted as non-spatial conditions non-lateralized visual tasks that do not allow to
explore the effects of cross-modal load [36].

Participants’ RTs confirmed the effect of increased task demands, with slower responses to
targets in both Dual tasks in comparison to the Single task condition. Electrophysiological data
provided a wealth of additional information. The analysis of the first positive component (P1),
which is a marker of the allocation of spatial attention [52], revealed distinct patterns of poste-
rior activation as a function of target position. [It could be argued that our paradigm does not
allow to disentangle the ERP response to central vs. peripheral stimuli. Nevertheless, on the
basis of P1 component results, we are confident that the ERPs genuinely reflect the processing
of peripheral (target) stimuli. Indeed, regardless of load effects, the P1 component revealed sig-
nificant right lateralization for LVF stimuli and bilateral activation for RVF stimuli: if ERP
modulations were only the results of central stimulus processing, there would have been no
sign of laterality patterns]. That is, RVF targets elicited a similar activation across hemispheres,
whereas LVF targets showed reduced amplitude within the left and increased amplitude within
the right hemisphere. This pattern of activation is in agreement with the hypothesis that spatial
attentional orienting is a result of the interplay between attentional vectors and hemispheric
hyper/hypoactivity [53]. Indeed, according to Kinsbourne’s proposal, spatial attention orient-
ing results from the interaction of two antagonistic vectors, one for each hemisphere. Each vec-
tor implements spatial attentional orienting by means of a gradient that is characterized by
minimal processing of ipsilesional spatial information and maximal processing of contrale-
sional spatial information. After brain damage, the affected hemisphere is supposed to be no
longer able to effectively contrast the contralateral orienting effect exerted by the unaffected
hemisphere. Strong empirical evidence for this explanation arises from the beneficial effects
(i.e., improvements in contralesional spatial awareness) of inhibitory TMS over the left frontal
cortex of the contralesional hemisphere [54]. To explain the higher incidence of neglect after
right hemisphere lesions the model assumes that–already in intact cognitive architectures–the
two vectors are not equivalent, given that the right hemisphere creates a balanced gradient
whereas the left hemisphere would be more effective in processing contralesional items.

With regard to the effect of multi-tasking, a key finding of the present study is that the effect
of load was already visible about 110 ms after target onset, as indexed by increased P1 activa-
tion in context of higher processing demands (Dual tasks) regardless of the nature of the con-
current task. The effect of load on a component (i.e., the P1) known to be sensitive to the
automatic allocation of spatial attention is of paramount importance because it might represent
the first evidence of multimodal, top-down attention effects upon task-relevant targets. This
finding suggests that our multitasking manipulations successfully modulated attention at the
earliest phases of stimulus processing. It is worth noting that the administration of tasks in a
partially fixed sequence, with the Single task always performed before the Dual tasks, played
against the increase of P1 amplitude observed in the dual task conditions because repeated sti-
muli usually elicit a decrease in P1/N1 amplitude (repetition suppression [55]).

The source analysis located the main generators of P1 component in right and left SMG (for
LVF and RVF targets, respectively), in agreement with neuroimaging studies that highlighted a
key role of TPJ in the (re)orienting of spatial attention [56,57] and in mediating the imbalance
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between hemispheres [58]. In addition, the prominent occipital activation that was present
during the Single task (Table 2 and Fig 4C, back view) disappeared during both dual tasks, in
which only the Supramarginal Gyri and the Inferior Parietal Lobules were active. Thus, in the
Single task, the activation of Supramarginal gyri was associated with that of the extrastriate cor-
tices, indexing a distributed parieto-occipital pattern of cortical activation. In contrast, during
both dual tasks, the activation was mainly limited to the Supramarginal gyri, suggesting a sup-
pression of activity in the early, occipital, visual areas, in accordance to what have been sug-
gested by fMRI studies in healthy participants as well as in right brain damaged patients [26,
13]. The detrimental effect of load on primary sensory areas observed with the high temporal
resolution characterizing ERPs allows to rule out the possibility that previous fMRI findings
were only due to absence of feedback activation, which would have been erroneously consid-
ered as an early modulation due to the poor temporal resolution of the technique.

While multitasking affected the earliest positive ERP component, its effect was not evident
in the subsequent (but still rather early) component, the N1 (165–180 ms after stimulus onset),
which showed the standard enhancement for contralateral with respect to ipsilateral targets
[39]. Indeed, significant lateralized N1 negativity–contralateral to the side of target onset–was
present regardless of task condition. The source analysis located the main generators of N1
component in the right Superior Parietal Lobule (LVF targets) and in the left/right Supramargi-
nal Gyri and left inferior Parietal Lobule (RVF targets), in agreement with functional neuroim-
aging evidence [59–61].

The combined effects of target position and attentional load showed up in the late N2 com-
ponent. Inspecting the grand-mean waveforms (Figs 2 & 3) over the central sites, it can be
noticed that this later time interval corresponds to the preparation of motor response (see the
greater negativity/activation on right vs. left electrodes for LVF targets, and the reversed pat-
tern for RVF targets). At the same time, however, a concurrent negativity/activation appeared
on posterior sites. The statistical analysis carried out on this temporal window confirmed these
patterns: central sites showed greater activation for contralateral targets, regardless of the type
of task. At posterior sites, the asymmetric pattern of activation–already evident in P1 and N1
components (i.e., increased contralateral negativity/activation for LVF targets and bilateral
activation for RVF targets) continued at this later stage. Most notably, the Visual Dual task dif-
fered from both Single and Auditory Dual tasks, showing much greater activation as well as a
marked asymmetry in favor of LVF targets. Source analyses carried out on the late N2 compo-
nent located the cortical generator of this particular condition (i.e., LVF target processing in
the Visual Dual task) in the right SMG. The cortical sources of all other conditions were,
instead, located in different portions of the PrG (Table 2). These results suggest that the effect
of the visual load could be well appreciated on the right hemisphere, with increased activation
at posterior sites. In particular, the late activation of the right SMG could reflect the effort to
voluntarily allocate attention under visual load conditions. Accordingly, it is conceivable that
the significant correlation between increased N2 negativity/activation in right posterior sites
and smaller RT costs to LVF targets indexes the recruitment of neural resources that are func-
tional for a more efficient processing of the left hemispace under intra-modal load. This was
not the case for the cross-modal load condition, which implies attentional allocation to differ-
ent sensory channels, as attested by the lack of significant differences between Single task and
Auditory Dual task. Crucially, the latter finding does not stem from a different level of difficulty
or performance in the two types of dual task. Indeed, participants’ RTs and accuracy rates did
not differ between Visual and Auditory Dual tasks. It is also worth noting that the distinct
electrophysiological patterns elicited by Visual and Auditory Dual tasks rule out the hypothesis
that the effect of multi-tasking is aspecific and the possibility that it might simply reflect the
introduction of a second response as part of the task demands.
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The comparison of our investigation with the only previous ERP study that to our knowl-
edge employed peripheral, task relevant targets in the presence of variable attentional load at
fixation [41] reveals both commonalities and differences. Both studies found increased (cen-
tral) P1 following higher load at fixation. However, whereas the P1 modulation we found was
obtained under dual tasking (spatial monitoring + concurrent task) in [41] it occurred as a con-
sequence of increased load at fixation, in the absence of peripheral targets. In [41] the effects of
visual load extended to N1. However, any comparison should be cautious due to a number of
methodological differences in the spatial task to be performed (detection in their study vs.
localization in ours) as well as in the load manipulations (in their study: absence of an auditory
load condition, central stimulus never presented concurrently with targets, central task requir-
ing a yes/no response).

The increased P1 indexes that attentional orienting is more difficult under conditions of
high load, regardless of the sensory modality (i.e., intra- vs. cross-modal) of the concurrent
task, and requires, from very early phases of target processing, the recruitment of (right hemi-
sphere) posterior areas devoted to spatial attention. Indeed, fMRI evidence suggests that the
right hemisphere is crucial for maintaining attention to spatial locations over time [62]. In par-
ticular, the right TPJ has been conceived as a “circuit breaker” for the dorsal system [63]. The
“reorienting” response would result from the coordinated action of a right-hemisphere ventral
fronto-parietal network, that interrupts and resets ongoing activity, and a dorsal fronto-parietal
network, specialized for selecting and linking stimuli and responses. Therefore, our data might
be compatible with neuroimaging evidence of ventral network suppression to prevent reorient-
ing to distracting events under condition of attentional engagement [64], a mechanism that is
thought to be evolutionarily selected for preventing sensory overload. Source analyses showed
that, also at later stages (i.e., N2 component) left- and right-sided stimuli are processed differ-
ently, at least in the high-demanding condition of our experimental paradigm. Indeed, during
visual Dual task, right-sided targets elicited a contralateral activation of premotor areas,
whereas left-sided targets mainly activated the right SMG. The late recruitment of right-hemi-
sphere areas might be necessary for participants to comply with a high-demanding task requir-
ing the processing of multiple information sources within the visual modality. In contrast,
targets presented in the right hemifield recruited more consistently areas related to automatic,
effortless processing, such as the left Frontal Eye Fields (FEF). Also this finding is compatible
with TPJ suppression occurring at early stages of concurrent task encoding [22] and then
resolving at later stages. TMS studies which focused on the role of contralateral posterior cortex
in visual perception confirm the key top-down modulation deriving from parietal cortex
described in brain-damaged patients with fMRI [13]. Visual cortical excitability is increased by
TMS over unilateral posterior parietal cortex (PPC) but it can be abolished by bilateral PPC
stimulation [65]. Crucially, in right-hemisphere-damaged patients, extinction at double stimu-
lation can be reduced when contralesional TMS is applied [52]. Both findings confirm that the
two hemispheres compete for attentional, top-down, modulation upon spatial processing and
awareness, at the top of the functional asymmetry (left hemisphere mainly controlling contra-
lateral space) highlighted by early components independently of task load. The influential
model of Corbetta and Schulman [7] suggests that the core deficits leading to neglect are not
uniquely spatial, as often assumed, but also non-spatial. The dual-tasking approach we have
implemented might, in the future, also be helpful for better determining the degree of overlap
between attention and working memory-related processes [66].

In summary, the present study focused on the ERP correlates of increased task demands
upon spatial monitoring, using a paradigm that, in right-hemisphere-damaged patients, was
shown to induce a severe disruption of spatial awareness for contralesional hemispace [15].
Though the behavioral performance of the healthy participants was affected by concurrent task
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performance only in terms of slower responses to the peripheral targets, without any interac-
tion with target side, ERP revealed differences between hemispaces as well as between within-
and cross-modal load. Modality-independent effects were found for the P1 component, where
both visual and auditory load modulated this early component and suppressed the signal in the
early visual areas. Modality-specific effects were found for the N2 component, and were more
marked in the right hemisphere. These results suggest that the right hemisphere is particularly
affected by load manipulations, in agreement with its crucial role in subtending automatic ori-
enting of spatial attention. The load-dependent (and modality-independent) modulation of
early components might be the substrate on which deficits for contralesional hemispace emerge
under heterogeneous, attention-demanding conditions in right hemisphere-damaged patients.
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