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Abstract
Both humans and nonhuman animals can exhibit sensitivity to the approximate number of items in a visual array or events in a
sequence, and across various paradigms, uncertainty in numerosity judgments increases with the number estimated or produced.
The pattern of increase is usually described as exhibiting approximate adherence to Weber’s law, such that uncertainty increases
proportionally to the mean estimate, resulting in a constant coefficient of variation. Such a pattern has been proposed to be a
signature characteristic of an innate “number sense.”We reexamine published behavioral data from two studies that have been
cited as prototypical evidence of adherence to Weber’s law and observe that in both cases variability increases less than this
account would predict, as indicated by a decreasing coefficient of variation with an increase in number. We also consider
evidence from numerosity discrimination studies that show deviations from the constant coefficient of variation pattern.
Though behavioral data can sometimes exhibit approximate adherence to Weber’s law, our findings suggest that such adherence
is not a fixed characteristic of the mechanisms whereby humans and animals estimate numerosity. We suggest instead that the
observed pattern of increase in variability with number depends on the circumstances of the task and stimuli, and reflects an
adaptive ensemble of mechanisms composed to optimize performance under these circumstances.
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A key finding in numerical cognition is that humans and non-
human animals are able to make approximate judgments of
numerosity, an ability often called “the number sense”
(Dehaene, 2011). This phenomenon has been mostly investi-
gated using discrimination or comparison tasks (Price,
Palmer, Battista, & Ansari, 2012): If the number of items in
two visual displays is very different, humans and animals can
determine which display has more items with high accuracy,

but accuracy decreases as difference in number decreases.
Holding difference constant, accuracy also decreases as the
number of i tems in the two displays increases .
Discriminability of two numerosities can therefore often be
characterized, at least approximately, as a function of their
ratio (Dehaene, 2003; Gallistel & Gelman, 2000) or, equiva-
lently, by the idea that uncertainty (as reflected in the standard
deviation of the noise or variability in the representation of the
number) is an approximately constant fraction of its magni-
tude, a relationship often expressed asWeber’s law (Halberda,
2011). Similar findings have been observed in adaptation
(Burr & Ross, 2008) and match-to-sample (Ditz & Nieder,
2016; Merten & Nieder, 2009) studies.

A different approach is taken in estimation paradigms,
where subjects are required to explicitly estimate the
numerosity of items in a display (Izard & Dehaene, 2008;
Revkin, Piazza, Izard, Cohen, & Dehaene, 2008) or in pro-
duction studies, were subjects are required to produce a spec-
ified number of responses without counting (Platt & Johnson,
1971; Sella, Berteletti, Lucangeli, & Zorzi, 2015). With train-
ing or calibration, mean estimates can increase approximately
linearly with the value being estimated (Izard & Dehaene,
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2008), and estimation variability grows with number of items,
often approximately proportionally to the mean (Whalen,
Gallistel, & Gelman, 1999). In these paradigms it is common
to measure adherence to Weber’s law by computing the coef-
ficient of variation (CV), which corresponds to the standard
deviation of the response values divided by the mean, and
which should be constant if responses follow Weber’s law.

The finding that uncertainty in the representation of the
number of items increases in proportion to the number itself
has been taken as a signature characteristic of the so-called
approximate number system (Dehaene, 2003; Gallistel &
Gelman, 2000), and has been used to support claims of onto-
genetic and phylogenetic continuity of numerosity perception
(Feigenson, Dehaene, & Spelke, 2004). According to this
view, the ability to estimate number enhances individual fit-
ness, and natural selection led to its early emergence and pres-
ervation across much if not all of the animal kingdom
(Butterworth, 1999; Cantlon & Brannon, 2007; Ferrigno &
Cantlon, 2017; Nieder, 2005; Wynn, 1998).

In this article, we revisit some of the evidence relevant to
whether adherence to Weber’s law—or equivalently a con-
stant CV—is a robust and universal characteristic of
numerosity judgments, ultimately considering estimation,
production, and discrimination tasks. As we will see, empiri-
cal findings do not always follow this pattern. We also con-
sider the recent proposal that the observed departure from
Weber’s law in numerosity discrimination tasks could be at-
tributed to the existence of two separate mechanisms, one
based on pure numerosity, which follows Weber’s law and
operates over relatively sparse visual displays, and another
based on texture information, which does not follow
Weber’s law and prevails for denser stimuli (Anobile,
Cicchini, & Burr, 2014; Pomè, Anobile, Cicchini, & Burr,
2019).

We focus on two studies that have been often cited as
supporting adherence to Weber’s law in the case of stimuli
with relatively sparse numerosities. First, we consider the
numerosity estimation results reported by Revkin et al.
(2008). In this study, participants estimated the numerosity
of displays containing 1 to 8 dots in one session and estimated
the numerosity of displays containing 10 to 80 dots in a dif-
ferent session. The authors concluded that the data from the
larger range were consistent with Weber’s law, attributing the
apparent deviation from this pattern (see Fig. 1) to edge ef-
fects, which reduce variability for judgments at both ends of
the range. However, the decrease seems to start already from n
= 40, suggesting that other factors might be contributing to the
observed trend. In conjunction with this, we also consider an
experiment by Newman (1974) investigating numerosity dis-
crimination over the same range, using a method that is free
from the range restriction effects influencing the study by
Revkin et al. (2008). Second, we consider the animal data
originally published by Platt and Johnson (1971), which has

been analyzed and presented by Gallistel and Gelman (2000)
as a textbook case for perfect adherence to Weber’s law. This
experiment has also been considered important because a con-
stant CV pattern has been sometimes observed in human stud-
ies (Whalen et al., 1999); a similar pattern in rodents therefore
serves to support the view that numerosity production taps a
primitive, phylogenetically preserved mechanism with the
same signature characteristic as that purported to hold for per-
ception of the numerosity of dots. In all three cases, we care-
fully reexamine the pattern of behavioral responses, to test the
hypothesis that the distributions of numerosity estimates
might not have a constant CV.

Deviations from conformity to the “signature
characteristic”

Human numerosity estimation

As noted above, Revkin et al. (2008) tested adults with
numerosities in the ranges 1 to 8 and 10 to 80. Participants
were restricted to using the responses 1 to 8 in the first condi-
tion and the decadal responses 10 to 80 in the second condi-
tion. In both tasks, there were calibration trials not used for
analysis prior to the trials included in the analysis, and
throughout the experiment, the correct numerosity was pro-
vided as feedback if the response was incorrect. Numerosity
estimation responses were fast and virtually error-free for n =
1 to 4, while estimates were slower andmuchmore errorful for
larger numerosities. The means and distributions of responses
for each numerosity are displayed in the upper panels of Fig.
1, while the corresponding CVs are shown in the lower panels.

Fig. 1 Human numerosity estimation data. Upper panels show mean
responses, where the gray shading indicates response frequency in
relation to the total number of responses given for each numerosity (see
scale with percentages on the right). Lower panels show the estimated
coefficient of variation. Reprinted from Revkin et al. (2008)
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We focus on the CV over the 10–80 range, which, as men-
tioned above, exhibited an inverted U-shape trend that the
authors attributed to range restriction effects. While we agree
that range restriction is necessarily in play (responses could
not go outside the 10–80 range), modeling the effect of range
restriction seems necessary to determine whether the underly-
ing CV is in fact constant over the indicated range.

Modeling the behavioral data

We estimated the mean estimation response for each
numerosity, as well as the CV and standard error of the CV
from Fig. 3 of Revkin et al. (2008), using computer graphics
software.1 To determine whether the observed variation in the
CV with numerosity for n in the range from 10 to 80 could be
attributed to range restriction effects, we implemented com-
puter simulations that allowed us to compare different models
describing the relationship between the numerosity estimate
and the CV. The crucial question was whether the overt pat-
tern of CV estimates could be based on an underlying CV that
is a constant function of the underlying mean estimate, or
equivalently, whether the standard deviation of underlying
estimates, sd(n), is a scalar function of the mean underlying
estimate, mu(n), that is sd(n) = ssd ×mu(n). We call models
with this feature “scalar variability” models. Alternatively,
we consider the possibility that the standard deviation of un-
derlying estimates might better be explained by assuming that
they increased according to a power function of the mean of
the underlying estimate.

To explore this, we examined a set of four nested models,
in which numerosity estimates were simulated by assuming
participants derived underlying estimates of numerosity on
each trial that were drawn from a Gaussian distribution whose
mean depended on the actual presented numerosity n and
whose standard deviation depended on the mean for the given
value of n. Our approach allows the mean to be fitted by a
fairly general monotonic increasing function:

mu nð Þ ¼ smu � npmu þ off : ð1Þ

With sd following the functional form:

sd nð Þ ¼ ssd � mu nð Þpsd ; ð2Þ
where smu and ssd represent scaling factors, pmu and psd repre-
sent power exponents, and off is an additive offset. This gen-
eral formulation allows us to explore the possibility that both
the mean and the standard deviation could follow scalar or
power trends by imposing specific constraints on the fitting
procedure:

& pmu = psd = 1 results in a “linear mean, scalar variability”
model;

& pmu = 1 results in a “linear mean, power variability”
model;

& psd = 1 results in a “power mean, scalar variability”model;
& with no constraints, we obtain a “power mean, power var-

iability” model.

We also considered two additional models that tested the
hypothesis that for displays above a certain density, response
variability decreases as a square root of numerosity, reflecting
a shift to using texture information to judge numerosity, with
the standard deviation of texture estimation assumed to follow
a square root law (Anobile et al., 2014; Pomè et al., 2019). It
should be noted that these models require that the density of
the displays increases with numerosity in the experiment by
Revkin et al. (2008). However, information presented in the
article and personal correspondence with authors of the paper
failed to resolve the question of whether in fact density in-
creased with numerosity in all of the displays used in the
study: density may have been approximately constant in
one-half of the displays, but not the other half (see p. 609,
col 2, lines 200–22, in Revkin et al., 2008). Despite this am-
biguity, it seemed worthwhile to consider whether these
models could help explain the observed pattern of the data.
In this case, the sd equation includes an additional parameter
ksd:

sd nð Þ ¼ min ssd � mu nð Þpsd ; ksd �
ffiffiffi
n

p� �
: ð3Þ

In principle, also for the density regimen, the sd could be
parameterized on the actual mean mu rather than on the true
numerosity n. We explored this alternative, which produced
qualitatively similar results to those obtained using the true
numerosity; here, we report the original approach to maintain
full compatibility with the model proposed by Burr and col-
leagues (Anobile et al., 2014). As we shall see, fits to the mean
estimates were excellent under the power meanmodel variants
of the first four models, so in this case we did not consider the
linear mean model variants. The two variants considered were
thus sparse versus dense regimen, scalar variability and sparse
versus dense regimen, power variability.

For a given model variant and set of parameter values, the
mean and CV of the observed responses relied on the estimat-
ed mean and standard deviation of the underlying Gaussian
distribution for each presented numerosity, subject to restric-
tions imposed by the eight response categories used in the
experiment (10, 20, 30, 40, 50, 60, 70, 80). The underlying
assumption was that participants in Revkin et al. (2008) had
placed response boundaries along their subjective numerosity
continuum halfway between the available category labels. The
probability of a response falling into a given response catego-
ry was determined using the cumulative density function of

1 We reached two authors of the study (M. Piazza and V. Izard) to obtain the
relevant data of the target paper. Unfortunately, neither author was able to
retrieve the original data. Our digitally measured data is reported in the
Appendix for reproducibility.
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the Gaussian for the presented numerosity, using the mid-
points between the eight response categories as boundaries
(15, 25, 35, 45, 55, 65, 75).2

The best fitting values for the free parameters were found
by minimizing the sum squared error (SSE) between the em-
pirical data and the model predictions both for the mean esti-
mates and the CV. To compare the goodness of fit among the
models to the observed data, we also report log likelihood
(LL) values, along with a distribution of log likelihood values
based on 1,000 simulated data sets generated from each model
using its best fitting parameter values. This allowed us to
calculate an index p that indicates the probability that the log
likelihood of the empirical data could have been observed if
the data had been generated from the model using these pa-
rameters (for details, see the Appendix).

Results and discussion

The resulting parameters and goodness of fit statistics for all
models are reported in Table 1. The trend of mean estimates is
very well captured by power mean models, as indicated by the
smaller SSE for mu and by the curves shown in top panels of
Fig. 2. The inverted U-shape trend of the CV is approximately
captured by all models; however, the fit is acceptable only for
the models including sparse and dense regimens, which in-
deed obtain smaller SSE (and higher LL) for the CV. In fact,
only these models could produce samples with LL values
reliably falling in the range of the empirical data, as indicated
by values of p greater than zero.

We now consider what these results have to tell us
about the variability in participants’ underlying estimates
of numerosity. In one way, the superior fit of the sparse
versus dense regimen models indicates that numerosity
estimates may not rely on a variable reflecting scalar var-
iability throughout the range from 10 to 80. Instead,
numerosity estimates in part of this range might actually
be based on an estimate of density, which is subject to a
different pattern of variability. Such a situation is far

different from the one envisioned by, for example, Izard
and Dehaene (2008), in which estimates are always con-
sidered to be based on numerosity per se. However, there
remains the possibility, defended by Anobile et al. (2014),
that there is still a pure numerosity system exhibiting ad-
herence to Weber’s law, which determines responses in
the range up to the point where reliance on density results
in less variabil i ty of estimates than reliance on
numerosity. Our simulations do not rule out this possibil-
ity. However, it should be noted that we obtained a better
fit to the CV data in the sparse vs. dense regimen model
under the power variability variant than under the scalar
variability variant (SSE = .011 for scalar variability, .005
for power variability; also compare blue and red curves to
the black curve in Fig. 2, bottom-right panel), suggesting
that even in the sparse regime scalar variability might not
adequately characterize the underlying variability in par-
ticipants numerosity estimates. A further caveat is that
density may have increased with numerosity only for half
of the stimuli, making the applicability of the sparse ver-
sus dense regimen to the data less than fully clear. We
therefore considered it useful to examine another data set
free from this ambiguity, and also free from the range
restriction effects influencing the estimation judgments
in Revkin et al. (2008).

Relevant data from a discrimination paradigm

The additional relevant evidence is provided by an earlier
experiment by Newman (1974), where participants carried
out a numerosity discrimination task in which dots of
uniform size were placed at random within a rectangular
space of fixed size independent of n (subject only to the
constraint that the dots not touch or overlap each other or
the rectangle bounding the space). In this case, density
increases with n, allowing an assessment of the models
in a regime where the assumptions of the sparse versus
dense regimen account apply. We thus considered the CV
values reported by Newman and implemented a maximum
likelihood estimation approach to fit the different models

2 For the lowest numerosity, the bin ranged over the interval [0, 15], while for
the higher numerosity the bin ranged over the interval [75, 1000].

Table 1 Parameters and goodness of fit statistics for the models describing the data from Revkin et al. (2008)

Model type smu pmu off ssd psd ksd SSE mu SSE CV LL p

Linear mean, scalar variability 1.00 1 0.62 0.24 1 – 16.10 0.0041 12.46 0.00

Linear mean, power variability 1.01 1 0.26 0.32 0.91 – 23.51 0.0026 18.39 0.00

Power mean, scalar variability 1.66 0.89 −2.58 0.24 1 – 1.56 0.0039 12.37 0.00

Power mean, power variability 1.69 0.89 −3.13 0.33 0.91 – 2.27 0.0030 17.27 0.00

Sparse vs. dense regimen, scalar variability 1.73 0.88 −2.97 0.26 1 1.76 1.65 0.0011 24.05 0.25

Sparse vs. dense regimen, power variability 1.56 0.90 −1.51 0.12 1.25 1.76 2.15 0.0005 24.96 0.64

Note.The SSE is reported separately for themean and for the CV (the lower the better). The last two columns report log likelihoods (the higher the better)
and the related proportion p of simulations in the range of empirical data, estimated using the simulation procedure described in the Appendix
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described above to the empirical data. The log likelihood
for each model was defined as for the data from Revkin
and colleagues (see the Appendix), considering as the
scaling factor s the values of the standard deviation of
CV estimates reported by Newman, divided by the
squared root of the number of participants. Because in
this case there are no mean numerosity estimates provid-
ed, we only consider models in which CV is dependent on
the true numerosity n. This leaves four models: The sim-
ple scalar variability model, the simple power variability
model, and the two models featuring the sparse versus
dense regimens.

As shown in Fig. 3, the data reported by Newman
(1974) is clearly inconsistent with the simple scalar

variability model, which predicts a flat CV, invariant with
n. Indeed, Newman’s own analysis showed a highly sig-
nificant linear trend, ruling out the simple scalar variabil-
ity model. We find that the data are best fit by the two
models featuring power variability. The power variability
model with sparse versus dense regimen achieved a near-
perfect fit to the actual data points (see Table 2). The
scalar variability model with the sparse versus dense reg-
imen fits slightly less well than the two power models, but
cannot be ruled out by our modeling approach. The pat-
tern from this analysis is similar to the pattern observed in
our simulations of Revkin et al. (2008): The simple scalar
variability model can be ruled out; the power variability
model with sparse versus dense regimen produces the

Fig. 2 a Predicted mean responses for each numerosity category
considered in the Revkin et al. (2008) study. The original empirical curve
is shown in black. b Predicted coefficient of variation (CV) trend. The
empirical curve is shown in black (the standard error for n = 10 is not
visible in the original figure, so we considered it being equal to that of n =

80 because the authors reported that variability was very small for these
extreme values). In all panels, the blue and red curves correspond, respec-
tively, to simulations with a response model featuring scalar variability
(constant CV) or power variability. (Color figure online)

Table 2 Parameters and goodness of fit statistics for the models describing the data from Newman (1974)

Model type ssd psd ksd SSE CV LL p

Scalar variability 0.12 1 – 6.44e-4 11.97 0.01

Power variability 0.22 0.85 – 0.97e-4 19.60 0.71

Sparse versus dense regimen, scalar variability 0.13 1 0.99 1.26e-4 19.31 0.61

Sparse versus dense regimen, power variability 0.18 0.90 1.02 0.01e-4 20.91 0.99
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closest fit; and models with either power variability, or
scalar variability with the sparse versus dense regimen
fit slightly less well. It is worth noting that for the study
of Revkin and colleagues, the fit for the power variability
model with sparse versus dense regimen resulted in psd >
1, allowing the estimated CV to be smaller than it would
otherwise be for small numbers. Although this makes
sense in terms of the fit to the data, further research will
be required to better characterize the factors underlying
this trend: Details of visual stimuli likely play a critical
role, since they also contribute in defining the transition
point where density information becomes dominant.

Animal numerosity production

Turning to production studies, a relevant experiment was con-
ducted by Platt and Johnson (1971) and later discussed by
Gallistel and Gelman (2000). In the original study, two rats
were rewarded for pressing a counter lever at least a target
number of times before pressing a second lever. If the press
on the second lever occurred too soon, the lever press count
was reset to zero.3 Figure 3 from their paper (reprinted here as
Fig. 4a) shows the proportion of trials for each target number
in which the animal made each possible number of presses on
the counter lever before pressing the second lever. Figure 4b
shows the results from the second rat as presented by Gallistel
and Gelman (2000), along with their estimated means and
standard deviations (middle panel) and CVs (bottom panel).
As can be seen, the figure portrays the CV as approximately
constant across all values of the target number of required
lever presses.

Modeling the behavioral data

We estimated the relative frequency of trials on which each
animal made exactly nr responses in each target numerosity nt
condition of the Platt and Johnson (1971) study using com-
puter graphics software.4 We converted the relative frequen-
cies to absolute frequencies by multiplying the relative fre-
quencies by 400, the number of trials at each value of nt used
in the Platt and Johnson study, and considered the sum of
these frequencies to be the total number m of trials for each
target numerosity nt.

5 For reanalysis of the data, the models we
considered are specified by the same equations defined above
for the underlying mean and standard deviation of the human
data, allowing us to describe both mean estimates and the
corresponding variability either as scalar or power-law func-
tions. In this case, we did not consider the two-regimens
models, because it is not immediately clear what would cor-
respond to a “density” variable for the Platt and Johnson ex-
perimental setting, in which the animal is freely producing
responses rather than experiencing an external input that has
both density and numerosity characteristics. We adopted a
maximum-likelihood estimation approach for estimating the
optimal parameters, maximizing the sum of the probabilities
of the nr values over the set of m trials for each target

Fig. 3 Predicted coefficient of variation (CV) trend of the various models
for the data reported by Newman (1974). The empirical curve is shown in
black. The error bars represent the standard error of the estimate of the
CV, determined by dividing the standard deviation of each CV as

reported by Newman (1974) by 8, the square root of the number of
participants. In the right panel, dashed lines represent the estimated CV
trend for the density regimen.

3 In addition to resetting the count, the second (but not the first) rat experienced
a time-out, further discouraging undercounts.

4 We contacted J. Platt to obtain the relevant data of their original paper, but he
reported that the data were no longer available. We also contacted C. R.
Gallistel, who kindly provided the data for the second animal reprinted in
Gallistel and Gelman (2000). Our estimates for the standard deviation (SD)
values obtained both from our measurements from Fig. 3 in Platt and Johnson
(1971) or from the data points Gallistel provided were quite different from
those reported in Gallistel and Gelman (e.g., the SD computed for n = 24 is
around 5, while they report a value of about 10). We discussed this issue with
Gallistel, but the discussion did not converge on an understanding of the
reason for the discrepancy.
5 The total number of responses m generated for each numerosity were, re-
spectively, 396, 368, 358, 382 for the first rat and 379, 397, 353, 301 for the
second rat: Shortfall in trials is likely due to trials in which the animals failed to
perform the trial at all.
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numerosity nt (4, 8, 16, 24). The negative log-likelihood for
each target numerosity was defined as:

NLL nrf g;mu; sdð Þ ¼ m
2
log 2πsd2
� �

þ ∑m
i nr ið Þ−muð Þ2

2sd2

 !
; ð4Þ

where {nr} is the set of numbers of responses made on the m
trials for the target numerosity, mu is the model-derived esti-
mate of the mean of the animal’s numerosity distribution for
the given value of nr, and sd is the model-derived estimate of
the standard deviation of the numerosity distribution. Along
with LL values, we also report values for the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion
(BIC), defined as:

AIC ¼ 2*k–2*LL; ð5Þ
BIC ¼ log mð Þ*k–2*LL; ð6Þ
where k is the number of parameters used to model the stan-
dard deviation of the responses and m is the number of data
points being estimated. Because the BIC imposes the greater
penalty for added parameters, we concentrate on the BIC
values in comparing the goodness of fit. To better evaluate
the relative performance of the scalar variability models com-
pared with the power variability models, we also quantified
the relative likelihood by computing e(BICscalar – BICpower)/2, as
also discussed in Noorbaloochi, Sharon, and McClelland
(2015).

Results and discussion

As reported in Table 3, the models with power variability
provide a much better account for the data, which is also
evident from the fitted curves superimposed over the original
data points in the top panels of Fig. 5 (note that plots only
show the models featuring linear mean, since the discrepancy
with power mean models was minimal). Support in favor of
the power variability models is further provided by the ex-
tremely large values of the relative likelihoods (for the first
rat: 8.30 × 1082 in the case of linear mean and 2.72 × 1085 in
the case of power mean; for the second rat: 2.33 × 1037 in the
case of linear mean and 4.68 × 1038 in the case of power
mean). Interestingly, this pattern is exactly what one would
expect if behavior in these tasks is based on summation of
independent and identically distributed noisy increments.
We discuss this finding in more detail below.

General discussion

Our reanalysis of published data from numerosity estimation
studies indicates that estimates of numerosity are distributed
around the mean, and that variability tends to increase with
numerosity, but not always in strict accordance with the idea
that variability is a constant function of the mean estimate.
Rather, in two studies previously thought to support a constant
coefficient of variation we find that the CV tends to decrease
with numerosity. We have also reconsidered the data from the
discrimination study of Newman (1974), whose own statisti-
cal tests also observed a decreasing CV as a function of

Fig. 4 a Numerosity estimation data for two rats from the production
study considered in our analysis. Reprinted from Platt and Johnson
(1971). b Data for the second rat (top panel) along with mean, standard

deviation (SD), and coefficient of variation (CV) as estimated by Gallistel
and Gelman (2000). Note that values in the x-axis in the bottom panel are
not linearly spaced. Reprinted from Gallistel and Gelman (2000)
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numerosity. This evidence demonstrates that adherence to
Weber’s law is not an invariant property of representations
underlying either perception or production of approximate
numbers. In further support of this conclusion, it is worth
mentioning another study that is inconsistent with the princi-
ple of a constant CV in numerosity perception. In this study
(Burgess & Barlow, 1983), individual data from two partici-
pants performing numerosity estimation with numerosities
spanning the range from 10 to 400 were well fit by the model
we have called the “simple power variability model,” with
estimates of the exponent equal to .75 ± .09 for one participant
and .71 ± .05 for the other.

We stress that variability in estimates of numerosity may
sometimes exhibit consistency with Weber’s law—it is not
our claim that they never to. As one example, the data from
Pomè et al. (2019) appears largely consistent with a constant
coefficient of variation over the range n = 8 to ~80. The study
by Whalen et al. (1999) provides an example from a human
production study. Thus, it appears that the parametric form of
the relationship between numerosity and variability in esti-
mates of numerosity is something that can vary from experi-
ment to experiment.

These observations are consistent with the finding that
numerosity judgments are often affected by various perceptual
factors other than numerosity (Clayton, Gilmore, & Inglis,
2015; Gebuis, Cohen Kadosh, & Gevers, 2016; Gebuis &
Reynvoet, 2012), thus calling into question the existence of
a “pure” system, specifically evolved to represent numerosity.
Interestingly, in our analysis of the data presented in Revkin

et al. (2008) and Newman (1974), the best fitting models
indeed assume that estimations of the larger numerosities
might have been carried out by relying on density rather than
numerosity, a variable whose response variability decreases as
a square root of numerosity (Anobile et al., 2014; Pomè et al.,
2019). Our simulations cannot rule out the possibility that a
pure numerosity system exhibiting the scalar variability pat-
tern is relied on for smaller numerosities, as advocated by
Anobile et al. (2014). However, two considerations make us
pessimistic about the prospects for this simple two-process
account. First, our estimates of the likelihood that the observed
data from either Revkin et al. (2008) or Newman (1974) are
consistent with these models may be overgenerous, as they
fail to take into account within-subject individual differences
as a source of variability. Without the full data set for the
individual participants, our models cannot capture this source
of variability, which could substantially reduce uncertainty
about the trend in the CV data. Second, the findings of
Burgess and Barlow (1983), where estimates spanning a wide
range of numerosities could all be characterized with a simple
power variability model, do not seem easy to reconcile with
the scalar variability plus sparse versus dense regimen
account.

It should also be noted that explicit calibration or feed-
back after each trial is commonly used in empirical stud-
ies (Halberda & Feigenson, 2008; Izard & Dehaene, 2008;
Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Revkin
et al., 2008). Similarly, reinforcement signals given in
animal studies (Platt & Johnson, 1971) provide a

Table 3 Parameters and goodness of fit statistics for the models describing the data from Platt and Johnson (1971)

Model type Subj smu pmu off ssd psd LL AIC BIC k

Linear mean, scalar variability Rat 1 1.04 1 0.42 0.21 1 −3452 6,911 6,927 3
Rat 2 0.93 1 1.91 0.25 1 −3511 7,028 7,043

Linear mean, power variability Rat 1 1.08 1 0.12 0.66 0.48 −3258 6,524 6,545 4
Rat 2 0.99 1 1.38 0.70 0.55 −3421 6,851 6,872

Power mean, scalar variability Rat 1 1.40 0.91 −0.42 0.21 1 −3449 6,906 6,928 4
Rat 2 0.59 1.14 2.86 0.24 1 −3507 7,021 7,043

Power mean, power variability Rat 1 1.68 0.87 −1.32 0.66 0.47 −3249 6,508 6,534 5
Rat 2 0.56 1.17 2.66 0.70 0.54 −3414 6,838 6,864

Note. The last column reports the number k of free parameters for each model

Table 4 Empirical data digitally measured from Fig. 3 in Revkin et al. (2008)

N 10 20 30 40 50 60 70 80

Mean response 10.05 23.01 32.90 43.01 51.97 60.26 67.10 71.61

Mean CV 0.18 0.27 0.28 0.26 0.24 0.21 0.16 0.11

CV SE 0.009 0.018 0.018 0.018 0.011 0.010 0.018 0.009
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fundamental cue that is used for optimal calibration of the
responses. Such feedback signals might significantly alter
the distribution of responses that would be observed in
more ecological settings, thus raising further uncertainty
about the natural existence of behavioral patterns strictly
following Weber’s law. One can, in fact, imagine that
numerosity information is encoded in the brain using var-
ious representations, which are flexibly deployed depend-
ing on the context and task demands (Siegler & Opfer,
2003) and tuned by signals that support optimization of
the use of these representations.

We observed a particularly striking deviation from the
scalar variability pattern in the data from the study of Platt
and Johnson (1971). There, the data from two rats seemed
more consistent with a square-root law variability pattern
– a pattern we would expect if each response contributed
an independent noisy estimate to a summed estimate of
variability. Future research should consider what condi-
tions might promote such a pattern of responding, as op-
posed to one in which variability in estimates increases
closer to linearly with the mean.

In conclusion, we believe that a deeper understanding of
numerosity perception will require considering alternatives to
the search for evidence of adherence to idealized, essential char-
acteristics: We should also strive to define what could be the
underlying mechanisms giving rise to the complex behavioral

patterns observed in these studies. Promising results in this direc-
tion have been recently achieved by connectionist modeling—
for example, by showing how approximate adherence to
Weber’s law can emerge in generic neural networks that learn
the statistics of their visual environment (Stoianov & Zorzi,
2012; Zorzi&Testolin, 2018), or howdevelopmental trajectories
of numerical acuity in children can be simulated by progressive
deep learning (Testolin, Zou, & McClelland, 2020). Further re-
search is required to explore these issues more fully, keeping in
mind that we must be prudent when characterizing the actual
patterns observed in the empirical data. In the context of
numerosity estimation, idealizations such as scalar variability
and ratio dependence should be conceived as potentially useful
descriptive abstractions, without necessarily reflecting an essen-
tial characteristic of numerosity judgments.
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Appendix

Summed squared errors (SSE) optimization

The MATLAB function fmincon was used to minimize the
following SSE objective:

SSE mu;mupred;CV ;CVpred; n
� �

¼ ∑
n

mupred nð Þ−mu nð Þ� �2
þ w∑

n
CVpred nð Þ−CV nð Þ� �2

; ð7Þ

where mu and CV represent the empirical data measured from
Figure 1, whilemupred and CVpred represent the corresponding
values predicted by the model. A weighting factor w = 10,000
was included to balance the relative contribution of the mean
and CV terms, since these quantities are expressed in a differ-
ent scale.

Log-likelihood estimation

In order to consider the actual variability in the estimates of the
empirical CV (provided by the error bars in Fig. 1) when

judging the goodness of fit, in the case of CV data we also
calculated the models’ log likelihood, which was formulated as:

LL CV ;CVpred ; n; s
� � ¼ 1

2
log 2πs2
� �

þ CVpred nð Þ−CV nð Þ� �2
2s2

 !
; ð8Þ

where s represents the scaling factor.
The LL values reported in Table 1 have been calculated by

considering as scaling factor the standard errors measured from
Fig. 1.However, thisLLestimatemight not be fully justified from
a theoretical point of view, sowe also implemented an alternative
method toassesswhether thedeviationbetween theempiricaldata
and themodel is greater thanwewould expect by chance (also see
Gao,Tortell,&McClelland,2011).Theunderlying idea is to sam-
ple synthetic data from each model, and compare the LL of the
synthetic data to the LL of the empirical data. To this aim, we
generated1,000simulateddatasets,eachonecontainingsimulated
responses of 16 “pseudoparticipants” for 20 trials of each
numerosity (note that the number of participants and the number
of trials were chosen to match those in Revkin et al., 2008).
Responseswere generated according to themu and sd parameters
definingeachmodel.Foreachpseudoparticipant,we thenestimat-
ed the CVby fitting the cumulative response distribution for each
numerosity with the cumulative of a Gaussian distribution func-
tion, as in Revkin et al. (2008). We then averaged the estimates
across participants to get amean estimate of theCValongwith an
estimate of the standard error of the estimates. This allowed to

Fig. 6 Histograms of the log likelihood of the 1,000 simulated data sets for each model. The vertical dashed line represents the log-likelihood value for
the empirical data under each model
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estimate the log likelihood of each simulated data set using theLL
equation reportedabove,usingas scaling factor themeanstandard
error of the simulated CV values. We finally generated LL histo-
grams for each model (shown in Fig. 6), and compared the LL
distribution with the LL value from the empirical data (vertical
lines in Fig. 6). The index p reported in Table 1 measures the
proportion of simulations producing larger LL values than the
value obtained from the fit to the experimental data.
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