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Abstract
Subsea navigation by autonomous underwater vehicles (AUVs) is a demanding task that involves the integration of inertial
sensors, gyrocompasses, Doppler velocity loggers, and reference from acoustic beacons. In this paper, we propose to augment
this information by providing an external measurement of heading change. We rely on the direction of sand ripples, which are
abundant on the seabed near the shore and whose direction is, locally, constant. Thus, any apparent change in their directivity,
as detected by the AUV, would reflect as a change in the vehicle’s heading. Considering this, we developed a mechanism
that detects regions of interest (ROIs) containing sand ripples within a synthetic aperture sonar (SAS) image, segments the
ROI into highlight and shadow, and evaluates the angle difference between ROIs within two consecutive SAS images. For
detection of sand ripples and estimation of angle difference, we employ two deep neural networks, while for segmentation
we formulate a fuzzy-logic clustering. Taking advantage of a transfer learning approach, we trained the deep networks on
simulated SAS images and on a large database of 2088 real SAS images, which we share for reproducibility. Results from
real SAS images from three different sites show a good trade-off between precision and recall for sand-ripple detection, and
an error of a few degrees in the heading change estimation, which well exceeds a geometrical-based benchmark. We also
show performance from a real-time experiment for which we implemented our method on an AUV and estimated its heading
change on-the-fly.

Keywords Underwater navigation · Sand ripples · Synthetic aperture sonar · Heading change · Deep neural networks ·
Segmentation

1 Introduction

Navigating underwater is a demanding task that involves
integrating information from inertial sensors, compasses and
gyrocompasses, Doppler velocity loggers, and acoustic bea-
cons (Stutters et al., 2008; Paull et al., 2014). In addition,
template matching to navigate - based on cues on the ground
such as rock or infrastructures (Fallon et al., 2013), or by
depth maps (Rupeng et al., 2020; Fezzani et al., 2019)— are
also used, either directly or by means of simultaneous local-
ization and mapping (Norgren & Skjetne, 2018). One of the
key challenges in underwater navigation is to keep track of
heading changes. Indeed, as we showed in an earlier work
(Klein & Diamant, 2018), in such scenarios observability is

B Roee Diamant
roee.d@univ.haifa.ac.il

1 Deptartment of Marine Technologies, University of Haifa,
Haifa, Israel

2 Deptartment of Mathematics and Deptartment of General
Psychology, University of Padova, Padua, Italy

low and errors in the heading estimation propagate rapidly.
To assist in estimating the heading change, in this paper we
present a novel method that allows to evaluate the angle of a
heading change in shallow water using cues from the seabed.

For estimating directional angles of motion while being
surveyed, principle component analysis has been adopted
to find the most dominant axes within a 3-D accelerome-
ters data framework (Kunze et al., 2009; Deng et al., 2015).
Another option is to model the forward and lateral accelera-
tions, such that the heading angle is found to be the one that
maximizes the correlation of the estimated acceleration and
the pre-determined model (Combettes & Renaudin, 2015).
Alternatively, frequency analysis of inertial signals could
find the direction that maximizes the spectral density of the
accelerometer and gyroscope signals’ energy (Han & Ortiz,
2014; Kourogi & Kurata, 2014). For underwater navigation,
heading direction can be estimated by path following (Fossen
et al., 2015), modeling of motion (Putri et al., 2017), and the
prediction of directional angles by neural networks (Song et
al., 2020) or by tracking (Wang et al., 2019). Another option
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Fig. 1 Example of an apparent
shift in the orientation of the
sand ripple as a result of an AUV
maneuver. Left panel: Image 1,
heading 89.8deg. Middle panel:
Image 2, heading 15.6deg. Right
panel: Track of the AUV

is to use visual feedback to estimate the heading direction by
calculating changes in the angle-of-observation (Khan et al.,
2017), or by fusing velocity sensors and Earth-positioning
sensors (Costanzi et al., 2017).

While the above approaches rely on instruments onboard
the submerged vehicle — which are prone to drift and errors
due to the platform’s movements in all directions, or visual
aid approaches that require the submerged vehicle to remain
close to the seabed — we propose a method based on exter-
nal information from the environment. Our method is based
on the nominal direction of sand ripples, which remains con-
stant within a wide area. Abundant in shallow areas (<40m
depth), sand ripples are causedby the force ofwind-generated
waves that displace patches of soft sand composites on the
seabed. The result is small (∼ 20cm), sandy hills with a
periodic pattern, whose frequency depends on the nominal
swell (Heathershaw, 1982). Due to the visible distinction
between the highlight (hill-top) and shadow (hill-bottom)
regions, these hills are well observed by sonar systems like
synthetic aperture sonar (SAS) or multibeam. Sand ripples
have a unique direction, determined by the dominant direc-
tion of the waves. As a result, on a regional scale, all sand
ripples will point in the same direction. We utilize this char-
acteristic to learn about changes in the AUV’s direction.

While without a reference heading direction we cannot
directly estimate the direction of the sand ripples, we can
evaluate apparent changes in this direction, i.e., changes
caused by a shift in the heading direction of the submerged
vehicle. An example of two SAS images observed at dif-
ferent angles is shown in Fig. 1. As a result, analyzing two
sequential sonar images to find a shift in the observed direc-
tion of sand ripples allows a direct measurement of a heading
change. This process is illustrated in Fig. 2. Feeding the esti-
mated heading change to the vehicle’s navigation system as
external information would thus improve accuracy.

To estimate the apparent changes of sand ripples between
two sonar images, we designed and implemented a system
comprised of the following components:

Fig. 2 Illustration of the process of estimating the AUV’s heading
change by cues from sand ripples

1. A deep neural network (DNN) set to find regions of
interest (ROIs) consisting of sand ripples within a sonar
image.

2. A clustering method that distinguishes between the high-
light and shadow of sand ripples within the ROI, yielding
a binary ROI.

3. A second DNN, whose objective/purpose is to estimate
angle differences between two binarized ROIs.

To train and test our DNNs, we exploited an SAS simula-
tor that produced images of different seabed backgrounds
obtained at different angles of observation. Taking a trans-
fer learning approach, we then refined the resulting networks
with a magnitude of 80,000 tagged sand-ripple regions orig-
inating from 2088 SAS images that we collected in three sea
expeditions using the SAS system of our own autonomous
underwater vehicle (AUV).To train and test our secondDNN,
we analyzed results from over 80,000 pairs of ROIs obtained
in three designated sea experiments, including deliberate
heading changes of the AUV.We share this database with the
research community. Finally, we implemented our solution
on the AUV and tested our approach in real-time in a fourth
designated sea experiment to evaluate the practicality of our
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approach. The results show a trade-off between precision and
recall for the sand-ripple classification that exceeds a geomet-
rical benchmark, and an error of a few degrees in estimating
the heading change of an AUV in real sea experiments. We
therefore conclude that our approach can contribute valuable
information to improve future undersea navigation systems.

The remainder of this paper is organized as follows. In
Sect. 2, we present the state-of-the-art in machine learning
approaches for the analysis of sonar images. In Sect. 3, we
introduce our system’s model and assumptions. Section 4
describes the SAS simulator and the way we formed our
database. In Sect. 5, we explain the details of the two DNN
models and the clustering method. Section 6 contains the
evaluation and testing results for the tagged data set and
for the real-time sea experiment. Conclusions are drawn in
Sect. 7.

2 Approaches for analysis of SONAR Images

Detection of sand ripples and their orientation measure in
SAS imagery has been explored in Williams and Coiras
(2010), where the scene is filtered to explore repetitions or
ripplicities for several highlight-shadow pairs. Normalized
by the difference between the upper and lower bounds for
ideal and random ripplicity indication, respectively, allows
for the setting of an a-priori threshold. The orientation is
determined relative to the surveying AUV as the direction
repetitions are most dominant. Similarly, sand ripples can be
identified by setting a threshold on the connection between
the observed crest orientation and the backscatter variance
in an ROI (Crawford & Skarke, 2014); the orientation of the
ripple is found as the angle in which the greatest variation
is observed in the backscatter. Another possible modeling
approach for sand-ripple identification is to measure the
local grazing angle and to relate it to the global grazing
angle and the Lambert coefficient for evaluation of the rip-
ple surface (Tang et al., 2009b). While tested over real SAS
images, the results highly depend on the ripples’ homogene-
ity, whereas - as the non-Gaussian model in Tang et al.
(2009a) and as the examples in Fig. 1 show - the highlight-
shadowstructuremaybreak throughout theROI. Sand ripples
can also be identified and their orientation estimated by
feature-based detection (Williams, 2015), where centriods
of ellipse-bounding shadow regions, mapped to angle and
length features, are used to identify ripples by the density
and orientation homogeneity of shadows. The positive results
over a large number of real SAS images supports extending
the feature-based approach towards machine learning classi-
fiers. A first step in this direction is to formalize the task as
an optimization problem, and the statistical search for detec-
tion thresholds (Klemm et al., 2015). However, the recent
advances in image processing using deep learning models

highlight the potential for further improvement. For example,
convolutional neural networks have been successfully used
to estimate image orientation (Fischer et al., 2015), and have
been exploited in underwater scenarios to classify targets in
SAS images (Williams, 2016) or to detect moving objects
from SONAR measurements (Testolin & Diamant, 2020;
Testolin et al., 2020). Deep learning architectures based on
Siamese networks have proven particularly useful for tasks
requiring the comparison of two image patches (Zagoruyko
& Komodakis, 2015; Zbontar & LeCun, 2016), which corre-
sponds to the scenario discussed in the present paper.

3 Systemmodel

3.1 Setup and assumptions

Our setup includes an AUV scanning of the seabed with
an SAS system, while performing a mission. While sub-
merged, the AUV continues to update its navigation solution
using internal sensors (e.g., accelerometers, gyrocompasses,
barometric pressure, etc.) and external positioning-aid infor-
mation (e.g., acoustic beacons, Doppler velocity loggers, or
bathymetric maps). The motion is mostly in straight lines;
however, occasionally, the AUV performs heading changes
as part of its mission or to correct for water current-based
drifts. The AUV periodically produces SAS images that are
available for analysis onboard the AUV. Given two such
sequentially collected SAS images, our goal is to evaluate
whether a heading change has been made and, if so, at which
angle. In turn, this information is then fed back to the nav-
igation system as another source of information to improve
navigation accuracy.

The evaluation for heading change requires the appearance
of sand ripples in the two analyzed SAS images. We assume
that, during the collection of the two explored images, the
AUV did not make changes to its pitch, yaw, or depth. We
also assume that the sand ripples in the two explored images
are aligned to the same (unknown) direction, such that any
apparent change in the sand ripples’ direction is translated
directly to a heading change of the surveying vehicle. Since
the distance traveled by the AUV during the processing of
each SAS image is on the order of 50 m, while changes in
the direction of sand ripples is generally over a much larger
scale (an area of hundreds of meters and more (Schnipper et
al., 2008) — we argue that the latter assumption is weak.

We note that our approach is opportunistic by nature. That
is, if theAUV is scanning an area that includes sand ripples, it
can use these for its navigation. As such, we avoid directing
the AUV towards a better scan of sand ripples. Still, since
a SAS often includes many patches of sand ripples, local
changes in the direction of the sand ripple are averaged out.
This is performedby calculating themeanof the angle change
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over all pairs of sand ripple patches between two adjacent
SAS images.

3.2 Preliminaries: origin of sand ripples

Sand ripples are abundant in the sandy sea beds of any con-
tinental shelf characterized by directional flow such as an
estuary, a coastline, or a tidal channel. Derived by the oscil-
latory force of the surface waves and water current, sand
ripples show large bed roughness and are thus resistant to
flow, are influenced by wave dissipation, and are enhanced
by sediment transport (Soulsby et al., 2012). Sand ripples also
lead to suspension, burial, and fatigue damage of submerged
pipes, and migrating sandwaves have been shown to cause
the collapse of drilling platforms (Cong et al., 2019). They
are, therefore, the focus of a large body of literature exploring
the mechanics of their formation and their characterization.

The periodicity, height, and direction of sand ripples are
determined by the nominal wave and current characteristics,
the water depth, and the sea-bed material. As a function of
their magnitude, sand ripples are classed as mega-ripples,
dunes, and sandwaves, characterized as either rolling-grain
ripples with no flow separation behind the crest, or vortex
ripples that include vortex shedding at the crest (Stegner
& Wesfreid, 1999). As the response time of sand ripples
decreases with the strengths of the waves and currents, the
ripples becomemore homogeneous in deeper water (Soulsby
et al., 2012), and our common practice is to find sand-ripples
of up to 40 m depth. Reaching to a few meters in height and
to hundreds of meters in wave length (Cong et al., 2019), the
ripples are well observed by high resolution sonar like SAS,
where the crest is observed as the highlight and the soft sand
at the bottom of the hills as shadow.

4 Description of database

To properly train our deep learning models, we first created a
large number of training images. We take a transfer learning
approach, starting from synthetic SAS images produced by
a designated simulator, and then fine-tuning the models on
real SAS images collected in multiple experiments with our

own AUV. A description of the simulator and the collected
images is given in this section.

4.1 Description of the SAS simulator

Our SAS simulator is based on statistical models of SAS
image pixels (Cobb et al., 2010) , which we implemented
to yield synthetic SAS images of a given size and seabed
type. The seabed texture models are based on the assump-
tion that SASpixels are identically independently-distributed
(i.i.d). The pixel’s statistical model is given by the product
of a complex Gaussian component with a correlated Gamma
function. The statistical differences between seabed textures
are the number of components in the statistical models and
its parameters. For sea-grass, rock, and sand ripples, a total
of five components were used, while for sand, only three
components were used. Figure 3 introduces three synthetic
SAS images of sand, sand ripples, and sea-grass textures,
and Fig. 4 shows a real SAS image with sand-ripple forma-
tions sideways to an output of sand-ripple texture from the
simulator.While apparent differences are shown between the
real SAS image and the simulated one, the basic shape of the
ripple is still visible in the simulated image. For the task of
sand-ripple classification, we generated a data set of 3000
synthetic images, divided into 1500 images of sand ripples
and 1500 images of sand or seagrass texture.

For the task of angle difference estimation, we obtained a
data set of roughly 20,000 pairs of sand-ripple images with
angle difference randomly uniformly generated in a range of
[−90, 90] degrees. To this end, we modified the simulator
to generate sand-ripple textures at different angles. Specif-
ically, the covariance of the simulated sand-ripple textures
is composed of a mixture model of gamma function com-
ponents. Each component is shifted by a rotation angle, θi ,
along the x-axis. Formally, let parameters lxi and lyi define
the major and minor axes of the ellipse that represents the
intensity of the i th component in the covariance model of the
gamma noise, and βx , βy defines the vertex and co-vertex of
the ellipse. The covariance of the gamma function mixture
with N components is given by

ρg(x, y) = 1

ν

N∑

i=1

ηi · exp
[

− 1

2
(x y)Σ−1

i (x y)T + R2
h(x, y)

]
,

(1)

Fig. 3 Simulated SAS textures.
a sand; b sand ripples; c
sea-grass
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Fig. 4 a Example of SAS image with sand ripples. b Output from the
SAS simulator for sand ripple background

where

R2
h(x, y) = exp

[
− x2

4β2
x

− y2

4β2
y

]
, Σi = ΨiΓiΨ

T
i ,

and

Γi =
[
l2xi 0
0 l2yi

]
, Ψi =

[
cosθi sinθi
−sinθi cosθi

]
.

4.2 Process of data collection

To complement the synthetic images, we analyzed real SAS
images. The imageswere obtained by our ECARoboticsA18
5.5 m AUV and its two-sided Kraken MINSAS 120 SAS,
whose center frequency is 337 kHz. The obtained resolution
is 3 cm per pixel, and the range covered is a rectangle of
170×50m2.We analyzed a set of 2088 SAS images obtained
at three locations near the shores of the Israeli coast. Since
the database was collected near shore sites, we found sand
ripples in nearly 60% of the tagged images. We share this
database in Diamant (2022).

We manually tagged the database of SAS images to a
binarymask, indicating places with andwithout sand ripples.
This process included the following steps:

1. We start by separating the port and starboard sides of the
SAS image, and converting the raw measured values in
dB scale into a linear scale saved in a standard image
format.

2. Using the VGG open-source image annotator (Dutta et
al., 2016), we had an expert manually tag the images into
polygon boarders in Cartesian coordinates around areas
with sand ripples.

3. Based on the tagged locations, we form a binary mask
over the image,withwhite areas representing sand ripples

Fig. 5 Example of the process of sand-ripple tagging. Upper-middle
image shows the original SAS image; Bottom-middle image shows the
tagging mask; Left images are two examples of resulting ROIs with
sand ripples; Right images are two examples of resulting ROIs without
sand ripples

and black areas representing areas with no sand ripples.
An example of such a mask is presented in Fig. 5.

4. Setting a threshold over the number ofwhite pixelswithin
a binary mask, the corresponding SAS image is split into
windows of areas with sand ripples and without sand
ripples.

For the labeling of angle changes between pairs of SAS
images, we divided the ROIs that were labeled to include
sand-ripple pairs, each member taken from a different SAS
image. The result was a large data set of more than 80,000
pairs of ROIs. Since each SAS image can be related to the
AUV’s heading direction, relative to the north, as was logged
upon obtaining the image, the angle change for a pair of ROIs
was calculated as the difference between the two heading
directions.

5 Sand-ripple Identification and angle
estimation

The full process leading to heading estimation is illustrated in
the block diagram in Fig. 6. For a given pair of SAS images,
the process begins with the division of each SAS image into
ROIs using a sliding window approach, and an analysis is
individually performed for each ROI. The potential ROIs are
of 128×128 pixels, whereas the full SAS images is on the
order of 4000×6000 pixels. Next, each ROI is identified as
either containing or not containing sand ripples. If such ROI
are identified, a clustering algorithm is used to segment each
ROI to highlight and shadow yielding a binary ROI. Then,
for all combinations of ROI pairs, where each member of the
pair must be from a different SAS image, we estimate the
degree of angle change in the direction of the sand ripples.
Finally, the heading direction is calculated as the median of
all angle change estimations obtained from all ROI pairs. In
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Fig. 6 Block diagram of the
process for head change
estimation

Table 1 Resulting hyperparameters for the sand-ripple classification network

Layer Input size Filters Kernel size Stride Padding Output size

Input – – – – – 128 × 128

Conv2D, ReLU, BatchNorm, MaxPool (H=29) 128 × 128 13 (27,27) (1,1) (0,0) 13 × 29 × 29

Conv2D, ReLU, BatchNorm, MaxPool (H=27) 13 × 29 × 29 24 (21,21) (1,1) (0,0) 24 × 27 × 27

Conv2D, ReLU, BatchNorm, MaxPool (H=18) 24 × 27 × 27 29 (21,21) (1,1) (0,0) 29 × 18 × 18

Flatten 29 × 18 × 18 – – – – 9396

Linear, ReLU, Dropout (p=0.7) 9396 – – – – 9396

Linear 9396 – – – – 1

the following, we describe the details of each of these three
components.

5.1 Sand-ripple classification

The main challenge in classifying sand ripples is a non-
homogeneous seabed, which may contain patches of sand
ripples, rocks, grass, and sand in the same SAS image. An
example of this is shown in Fig. 5, where - in the same
SAS image - rocks, sand ripples, and sand exist. Therefore,
to identify sand ripples, we employed a two-dimensional
Convolutional Neural Network (LeCun et al., 1998). This
architecture has a basic deep learning structure which is
compatible with 2D data such as images, where nearby val-
ues (pixels) are usually related to one another. Convolutional
neural networks use this assumption and learn weights and
biases, which are shared with different areas of the image,
assuming the same geometric features are relevant to several
image areas.

Following common practice, in the proposed network
architecture each convolutional layer is followed by a layer
of rectified linear units (ReLU) (Agarap, 2018), a layer
of batch normalization which helps in regularize training
and preventing overfitting, and a max pooling layer which
allows to reduce the spatial size of the representation, thus
requiring fewer parameters and speeding up the computa-

tion. All network’s hyperparameters were optimized using
the Optuna toolbox (Akiba et al., 2019), which is an open
source hyperparameter optimization framework to automate
hyperparameter search. In particular, Optuna enables users
to adopt state-of-the-art Bayesian algorithms for sampling
hyperparameters and pruning unpromising trials, greatly
improving over more traditional hyperparameter optimiza-
tion techniques based on grid search or random search. The
resulting optimal configuration is reported in Table 1. Learn-
ing was carried out using the Adam optimizer (Zhang, 2018)
for 100 epochs, using an initial learning rate of 0.001, and a
batch size of 200.

We started from the simulated database. The data was
divided into proportions of 80%, 10%, 10% for network’s
training, validation, and testing, respectively, while balanc-
ing the same number of samples per class. The results of
the binary classification into “with sand ripples” or “with-
out sand-ripples” classes led to an accuracy of 98%. While
this is a great result, we were suspicious about the extent
to which the simulation reflects classification performance
for real sonar images; and indeed, results show that, for
real SAS images, classification accuracy reduces to roughly
75%. Hence, the results called for further training on real
SAS images. Yet, since the majority of our SAS images had
no sand-ripple areas, causing imbalanced data, we turned
to transfer learning to augment the model learned from the
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simulation data with real SAS images. We opted for a sim-
ple transfer learning approach, where the search for the best
hyperparameters starts from those determined from the syn-
thetic data. During the transfer learning, all weights and
biases remain unfixed, so they can be further customized
to real data samples. As for the synthetic data set, the data
set of real SAS images was randomly uniformly divided into
80%, 10%, and 10% for training, validation and test sets,
respectively.

5.2 Highlight/shadow clustering

The separation between the highlight and shadow of the sand
ripple is performed using a binary fuzzy-based clustering
that generates the degrees of membership, uki . That is, the
probability that the label of pixel i belongs to the k-th cluster,
either highlight, {H or shadow, S}. The full details of this
clustering are given in Abu and Diamant (2020), and are
summarized here for completeness.

Our fuzzy clustering is obtained by the optimization prob-
lem

(U , V ) = argmin
uki ,Vk

Jm(U , V ) (2)

s.t
c∑

k=1

uki = 1, ∀i ,

where c is the number of clusters. The objective function is
defined by

Jm(U , V ) =
N∑

i=1

c∑

k=1

umki ‖ Φ(̂xi ) − Φ(Vk) ‖2

+
N∑

i=1

c∑

k=1

umki ‖ Φ(xi ) − Φ(Vk) ‖2

+
N∑

i=1

c∑

k=1

umki ‖ Φ(̃xk) − Φ(Vk) ‖2 + Gki , (3)

where Gki is referred to as the fuzzy factor (Krinidis &
Chatzis, 2010), x̂i is the sonar image, Φ(xi ) − Φ(Vk) is a
local second moment term in the kernel space and xi is given
by

xi = 1

|Ni |
∑

j∈Ni

y2j , (4)

where Ni is the local window of size (2β + 1)2 centered
at pixel i ,

{
Vk

}c
k=1 are the center of the clusters. The term

Φ(̃xk)−Φ(Vk) is a between-cluster term in the kernel space
that represents the error between the fuzzy prototypes and the

empirical cluster centers, and x̃k is the average of all pixels
assigned to the kth cluster, such that

x̃k = 1

nk

∑

{ j |l j=k}
y j , (5)

where nk is the number of pixels with an assigned label that
equals the kth cluster.

5.3 Evaluation of AUV heading change

Given two binarized ROIs, the estimation of the angle change
is carried out by another convolutional neural network.As for
the classification of sand ripples, we took a transfer learning
approach, starting from the synthetic data set and fine-tuning
the model using the real SAS images. As before, during the
first stage, weights and biases are let free to change rather
than fixed, such that customization for real data samples is
possible. The input for the network consists of two bina-
rized ROIs, and the output is the angle change. We chose a
Siamese architecture that successfully worked for stereo data
(Zagoruyko & Komodakis, 2015; Zbontar & LeCun, 2016),
where the training phase alternates between:

1. Convolution layers applied on first ROI
2. Convolution layers applied on second ROI
3. Concatenation of features extracted from both ROIs.
4. Linear layers.
5. Backwards step on the result of phase 4.

As for the classification task, the convolutional layers
included an ReLU activation function, batch-normalization,
and max-pooling, and the hyperparameters were optimized
usingOptuna. The resulting network architecture, after trans-
fer learning, is displayed in Table 2.

6 Results

The results of our deep learning method are compared with
two geometrical approaches: the method in Williams and
Coiras (2010), referred to as Geometric1, and the method
in Williams (2012), referred to as Geometric2. Both bench-
marks identify sand ripples by detecting periodicity in the
highlight-shadow relationship. To show the need for transfer
learning, we also consider another configuration of the DNN,
one that is produced after training on the synthetic data only,
referred to as DNN no transfer learning. Both versions of
the DNN schemes and both geometric schemes receive as
input the outcome of the clustering solution (see Sect. 5.2).
All four methods are given the same manually-tagged ROIs.

Arguing that the images produced by the SAS simulator
cannot effectively capture the complexity of the real under-
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Table 2 Resulting hyperparameters for the angle difference regression network

Layer Input size Filters Kernel size Stride Padding Output size

Input – – – – – 128 × 128

Conv2D, ReLU, BatchNorm, MaxPool (H=29) 128 × 128 11 (17,17) (1,1) (0,0) 11 × 29 × 29

Conv2D, ReLU, BatchNorm, MaxPool (H=21) 11 × 29 × 29 20 (17,17) (1,1) (0,0) 20 × 21 × 21

Flatten 2 × 20 × 21 × 21 – – – – 17640

Linear, ReLU, Dropout (p=0.3) 17640 – – – – 17500

Linear 17500 – – – – 1

water scene, we show evaluation and testing results for the
2088 SAS images we collected with our own Eca Robotics
A18-D AUV. The AUV is equipped with a Kraken-based
Miniature INterferometric SAS, which, during the making
of the SAS image, corrects for orientation angles (pitch, yaw
and roll) as long as these are below 3 degrees. We report
that this limitation was kept during our data collection. The
map in Fig. 7 shows the locations of the four experiments and
details the number of SAS images collected at each site. Dur-
ing the four experiments, the sea level was 1. Further, since
the carrier frequency of our SAS system is around 300 kHz,
the quality of the SAS image is not effected by sediments that
exists in thewater column. For ground truth, in all four exper-
iments we used the AUV’s navigation solution. This solution
fusesDVL and a strategic-level inertial unit. The short dive to
depth of 10–20 m until the DVL data is available ensures that
the dead-reckoning drift from the GPS position is limited. In
addition, in our trials we usedUSBLfixes from a surface ves-
sel. Due to these fixes, we report that in all our experiments
the navigation error, as measured when the vehicle surfaces,
was smaller than 20 m albeit surveys of sometimes 10 hours.

6.1 Data set results of SAS images

We start by exploring the performance of the sand-ripple
classification. The results in Fig. 8 show the precision-recall
trade-off of the sand-ripple classification task. Here, DNN
evaluation refers to the results during the evaluation step.
We observe that the DNN obtains better results than the two
Geometric benchmarks, especially in terms of the recall. This
means that while the two Geometric schemes are able to rule
out non-relevantROIs, relative to theDNN, theymiss patches
of sand ripples. A similar conclusion is drawn when compar-
ing the classification accuracyofDNNand the twoGeometric
schemes, i.e., the percentage of correct classification of any
type to the overall number of ROIs. Here, for a choice of
threshold set at the ’knee’ point of the two precision-recall
curves, the DNN obtained 95% accuracy while the Geomet-
ric schemes obtained 83% accuracy.We also observe that the
difference between the evaluation and testing results of DNN
are small. This reflects the ability of the DNN, which after

Fig. 7 A map showing the locations of the experiments made, and the
number of SAS images collected at each site. A picture of the AUV
during one of these experiments is also included

Fig. 8 Precision versus Recall for sand-ripple classification. Results
are shown for 2281 ROIs including sand ripples and 9177 ROIs of type
’other’
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Fig. 9 Empirical CDF for absolute error of angle prediction. Evaluation
performedover 18,000pairs ofROIs.Testingperformed for 14,400pairs
of ROIs

training, was also able to capture robust parameters for dif-
ferent seabed types. Comparing the performance of the two
DNN configurations, we observe a slight advantage for the
transfer learning approach. This advantage increases for the
angle estimation problem, as we show next.

Next, we explore performance in terms of angle estima-
tion. Here, since the SAS simulator may effectively capture
the angle shift observed for the sand ripple, and since the data
from the real SAS images is ground-truthed by the reported
heading of the AUV itself and may thus include errors, we
also show prediction results of the numerical investigation.
The input for the two schemes are pairs of ROIs, including
only sand ripples that were randomly uniformly shifted in
angle between 0 degrees and 45 degrees, to yield a Monte-
Carlo set of 18,000 and 14,400 pairs of synthetic ROIs for
evaluation and testing, respectively. Results in Fig. 9 are
shown in terms of the empirical cumulative density func-
tion (CDF) of the absolute angle estimation error. In over
more than 50% of the explored data set, the results of the
two Geometric benchmarks are more than an absolute error
of 5 degrees. In contrast, performance of the DNN shows an
error on the order of a few degrees. For example, in 90% of
the explored cases, the errorwas less than 2 degrees. A signif-
icant advantage is shownwhen using transfer learning, which
reflects on the difference between the synthetic data and the
real SAS images. Also notable is the almost exact match
between the evaluation and testing results, which reflects the
robustness of the DNN.

Figure 10 shows the results of the angle prediction for
real SAS images. These results are obtained after the transfer
learning stage for a training set of 88,000ROI pairs and a test-
ing set of 70,400ROIs pairs.We obtained such a large data set
by analyzing, for each pair of SAS images, all possible com-

Fig. 10 Empirical CDF for absolute error of angle prediction for three
sea experiments. Testing performed for 350 SAS images. Classification
threshold set on 0.5

binations of the identified sand rippleROI pairs. Then, results
are obtained by taking the median out of the outcomes of all
ROI pairs. To comment on the sensitivity to seabed type, we
separate the testing results for the three sea experiments, each
performed with a different seabed type. Specifically, Exper-
iment 1 (Exp1) was performed on a sandy seabed at a depth
of 30 m across Ashdod, Israel. Experiment 2 (Exp2) was per-
formed along a rocky seabed at a depth of 40 m across Haifa,
Israel. Experiment 3 (Exp3) was performed on a reef envi-
ronment at a depth of 25 m across Acre, Israel. Results were
obtained for the full analysis, including both the sand ripple
ROI identification and the prediction of the angle difference.
Classification thresholds for the DNN and the twoGeometric
schemes were obtained at the ’knee’ point of the precision-
recall trade-off curves in Fig. 8. The precision and recall for
each method and for each experiment appears in the legend
in Fig. 10. We observe a notable advantage of the DNN over
the two Geometric benchmarks, which is even larger than
that observed for the synthetic database. Moreover, in terms
of robustness to seabed environment as reflected by compar-
ing the results from the three experiments, we also observe
an advantage of the DNN approach. We explain this by the
non-homogeneity of the seabed, which is reflected as spatial
differences of the sand-ripple pattern, even within the ROI.
Comparing the results of the three different experiments, we
note that the results deteriorate as the seabed becomes more
complex. This is expected, since a complex seabed including
more than sand ripples may confuse the network predictions.
As a result, in absolute numbers, the error in angle difference
estimation is roughly twice that shown for the synthetic data
set.

In terms of the angle estimation, the performance differ-
ence between the DNN and the two benchmark schemes
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may be explained by the fact that the two benchmarks are
aimed to find the angle of the sand ripple while the DNN
is trained to find differences between angles, much like a
change detector which is arguably an easier task. Yet, also in
terms of detection and false alarm rates we observe a signif-
icant improvement of our scheme over the benchmark. We
thus claim that, at least for our datasets, the complexity of the
sand ripples is hard to manage using a geometrical approach,
while its features are well captured by the neural network.

6.2 Results of the real-time demonstration

In this section, we explore the performance of our heading
change estimation scheme in a realAUVmission. This analy-
sis tests the applicability of our approach in terms of real-time
capability and as a whole system: starting from sand-ripple
detection, following with highlight-shadow clustering, and
ending with angle difference estimation. To this end, we
implemented the two DNN schemes and the clustering algo-
rithmover ourAUV.TheDNNswere implemented inPython,
and the clustering algorithm in Julia. The softwarewere oper-
ated by a bash script, running on a designated Jetson board
Tx2 controller that was connected to the AUV main frame
via ethernet, and was able to pull SAS images once they were
formed. In particular, an SAS image is formed every 50 m
the vehicle passed, which is roughly every Δt = 25 s. For a
given pair of SAS images, obtained at time instances t − Δt
and t , the software was able to produce an angle difference
estimation before the next image was received, i.e., in 25 s.
That is, the system operated in real-time (Fig. 11).

Our trail was conducted southwest of the shores of Acre,
Israel, at a water depth of approximately 25 meters. The bot-
tom type was sandy with some rocky patches. Two examples
of obtained SAS images are shown in Fig. 12.We let theAUV
travel in a spiral-like motion, where every 100 m the heading
angle changed by 10/deg. The result was a sequence of 32
SAS images, of which each pair corresponds to no heading
change or to a heading change of 10/deg. This was verified
using the AUV’s Doppler velocity logger (DVL) system. We
analyzed the results for forward and backward run. The for-
mer relates to analysis of images in a sequence from outside
the spiral to its inner side, while the backward run performs
the analysis in a reverse order. Since, from the perspective
of the DNN, the angles in both directions are different, the
results are not symmetric. The results of the heading change
estimation for this run are shown in Fig. 11, with numbers
marked in black and red indicating the angle error relative
to the vehicle log in the forward and backward directions,
respectively. We observe that results were not obtained for
each image pair. This is because a necessary condition is the
evaluation ofROI containing sand ripples in each image pair -
a condition that was not alwaysmet in the explored sand-rock
seabed environment. Still, out of the explored 31 image pairs,

Fig. 11 Track of the AUV in the real-time experiment. Arches show
the borders between pairs of SAS images with numbers indicating the
absolute error of the heading change estimation, relative to theAUV log.
Empty groups indicate pairs where no sand ripples were detected. Num-
bers marked in black and red indicate results for forward and backward
run, respectively (Color figure online)

22 yielded a heading change estimation. The results show a
minimum absolute error of 1.04/deg and 0.83/deg; a maxi-
mum absolute error of 3.07/deg and 3.02/deg; and a mean
absolute error of 1.88/deg and 1.68/deg for the forward and
backward directions, respectively. While these errors may
seem high, we argue that they are comparable to the errors
of compass or gyro-compass that are less than a strategic
level. Further, the heading change prediction obtained from
the structure of the sand ripples is not effected by calibration
errors nor to proximity to ferromagnetic materials: interfer-
ence sources that significantly impact the performance of a
compass. The external information about the AUV’s heading
change can be used to either bound the navigation solution or
to improve it by adding the information about the estimated
heading change within the tracking filter. Furthermore, the
results are scalable. That is, in contrast to the estimation of
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Fig. 12 Examples of SAS
images from the real-time sea
experiment a Organized sand
ripples. b Patches of sand
ripples

an inertial system, ours is not affected by the magnitude of
the performed heading change, and the results are expected
to remain similar for both a small or large heading change.

7 Conclusions

In this paper, we explored the estimation of sand-ripple
direction to evaluate a heading change of a surveying AUV
in near-shore environments. In particular, assuming that on
a small scale of several kilometers, the nominal direction
of sand ripples is homogeneous, an observed change in
the direction of sand ripples between two consecutive SAS
images reflects a change in the AUV heading. Using a com-
bination of deep learning and fuzzy-logic clustering, we
detected ROIs including sand ripples, segmented them into
highlight and shadow, and estimated a change in sand-ripple
direction between two consecutive SAS images.Results from
a large set of 2088 SAS images obtained in three different sea
environments, and results from a real-time analysis, demon-
strate that ourmethod obtains high accuracy in detecting sand
ripples, and accuracy of a few degrees in the estimation of
heading change.

An interesting venue for future research would be to
investigate the performance of other recent deep learning
architectures specifically tailored for change detection tasks,
such as those based on dual attention mechanisms (Chen et
al., 2020). Future work should also integrate data from other
sea environments as well as demonstrate how to use the extra
information about the heading change within the navigation
solution, and eventually extend the proposed approach to
incorporate a simultaneous localization and mapping frame-
work.
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