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E�ective conservation of maritime environments and wildlife management of

endangered species require the implementation of e�cient, accurate and scalable

solutions for environmental monitoring. Ecoacoustics o�ers the advantages of

non-invasive, long-duration sampling of environmental sounds and has the potential

to become the reference tool for biodiversity surveying. However, the analysis

and interpretation of acoustic data is a time-consuming process that often

requires a great amount of human supervision. This issue might be tackled by

exploiting modern techniques for automatic audio signal analysis, which have

recently achieved impressive performance thanks to the advances in deep learning

research. In this paper we show that convolutional neural networks can indeed

significantly outperform traditional automatic methods in a challenging detection

task: identification of dolphin whistles from underwater audio recordings. The

proposed system can detect signals even in the presence of ambient noise, at the

same time consistently reducing the likelihood of producing false positives and false

negatives. Our results further support the adoption of artificial intelligence technology

to improve the automatic monitoring of marine ecosystems.

KEYWORDS
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monitoring, spectrogram analysis, deep learning, VGG, PamGuard

1. Introduction

Systematic monitoring of marine ecosystems is a key objective to promote sustainability

and guarantee natural preservation. Developing and testing innovative monitoring systems is

thus rapidly becoming a priority in research agendas, and modern technologies have already

shown great potential to advance our understanding of marine communities and their habitat

(Danovaro et al., 2016).

Acoustic approaches are widely used to investigate underwater activity thanks to their

ability to detect and classify sensitive targets even in low visibility conditions; moreover, passive

acoustic technologies (e.g., hydrophones) allow to perform non-invasive continuous monitoring

without interfering with biological processes (Sousa-Lima et al., 2013). Notably, most species of

marine mammals are acoustic specialists that rely on sounds for communication, reproduction,

foraging and navigational purposes. Here we focus on the task of detecting whistles generated by

bottlenose dolphins (Tursiops truncatus), which can produce a remarkable variety of sound calls

for communication purposes (for a review, see Janik and Sayigh, 2013).

Traditional bioacoustic tools to detect odontocete vocalizations typically rely on template

matching or algorithmic analysis of audio spectrograms. For example, in the reference approach

pursued by Gillespie et al. (2013) three noise removal algorithms are first applied to the

spectrogram of sound data, and then a connected region search is conducted to link together
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sections of the spectrogram which are above a pre-determined

threshold and close in time and frequency. A similar technique

exploits a probabilistic Hough transform algorithm to detect ridges

similar to thick line segments, which are then adjusted to the

geometry of the potential whistles in the image via an active contour

algorithm (Serra et al., 2020). Other algorithmic methods aim at

quantifying the variation in complexity (randomness) occurring in

the acoustic time series containing the vocalization, for example by

measuring signal entropy (Siddagangaiah et al., 2020).

Nevertheless, automatic environmental monitoring can

nowadays be made much more efficient thanks to the deployment

of surveying techniques based on Artificial Intelligence. Indeed,

deep neural networks have demonstrated great potential in sound

detection (Müller et al., 2021) and underwater acoustic monitoring

(Testolin and Diamant, 2020; Testolin et al., 2020), and recent

work has shown that deep learning can identify signals in large

data sets with greater consistency than human analysts, leading to

significant advantages in terms of accuracy, efficiency and cost of

marine monitoring (Ditria et al., 2022). In particular, Convolutional

Neural Networks (CNN) (LeCun et al., 1995) have been applied to

detection of whales vocalizations, producing false-positive rates that

are orders of magnitude lower than traditional algorithms, while

substantially increasing the ability to detect calls (Jiang et al., 2019;

Shiu et al., 2020). Deep learning has also been used to automatically

classify dolphin whistles into specific categories (Li et al., 2021) and

to extract whistle contours by exploiting peak tracking algorithms

(Li et al., 2020) or by training CNN-based semantic segmentation

models (Jin et al., 2022).

Here we further demonstrate the advantage of deep learning

models over alternative algorithmic approaches by testing the

detection capability of convolutional neural networks on a large-scale

dataset of recordings, collected in a series of sea experiments and

carefully tagged by human experts. We show that the performance

of deep learning models dramatically exceeds that of traditional

algorithms, and we further show that transfer learning (Pan and Yang,

2009) from pre-trained models is a promising way to further improve

detection accuracy. The complete dataset of dolphin recordings

collected for this study is stored on a cloud server and made publicly

available to download (Dataset, 2022).

2. Methods

2.1. Dataset

We created a large-scale database of sound recordings by

exploiting a self-made acoustic recorder that comprised a Raspberry

Pi-Nano, a sound card sampling at 96 kHz@3B, a pre-amplifier, a

battery set, two GeospectrumM18 hydrophones, and a custom made

housing. The recorder was anchored by scuba divers at depth of 50 m

roughly 200 m from the dolphin’s reef in Eilat, Israel. Using floats,

the hydrophones were set to hang 1.5 m above the seabed. A picture

from the deployment is shown in Figure 1. The recorder was made to

continuously log flac files for 27 days during the Summer period of

year 2021: once recovered, the data passed a quality assurance (QA)

procedure to remove sporadic cut-offs and extensive noise periods.

The QA involved canceling of noise transients by wavelet denoising,

and identifying and discarding cut-off events by thresholding and

bias removal.

FIGURE 1

The deployed acoustic recorder with dolphins inspecting the

operation. Picture taken from the Eilat deployment site at depth of

50 m.

2.2. Data pre-processing and data tagging

The data passed through a bandpass filter of range 5–20 kHz

to fit most dolphins’ whistle vocalizations, and through a whitening

filter designed to correct for ripples in the hydrophone’s open circuit

voltage response and the sound card’s sensitivity. Recorded audio

files consisted of 2 channels, which were averaged before creating the

spectrograms in order to reduce noise (see example in Figure 2). Our

pre-processing pipeline also removed signal outliers based on their

length, using the quartiles-based Tukey method (Tukey, 1949). This

resulted in discarding signals longer than 0.78 s and shorter than

0.14 s.

Spectrograms of dolphin whistles were then created by

calculating the short-time fast Fourier transform of the signal using

MATLAB’s spectrogram function from the digital signal processing

toolbox, using a Blackman function window with 2,048 points,

periodic sampling and a hop size obtained bymultiplying the window

length by 0.8. Subsequent spectrograms were calculated by shifting

the signal window by 0.4 s. Spectrogram images were finally produced

by applying a gray-scale colormap, converting the frequency to kHz

and the power spectrum density to dB and limiting the y-axis between

3 and 20 kHz to focus on the most relevant (dominant) frequency

range (Jones et al., 2020).

Spectrograms were then manually tagged by one human expert

in two phases: (1) marking tagging and (2) validation tagging. The

former involved accurate annotation of 5 s spectrograms over 10

days of data collection, in order to train a preliminary version of a

deep learning classifier that was then used to select new portions of

recordings containing putative dolphin sounds. This allowed to more

efficiently tag the remaining data during the validation tagging phase,

which only involved the verification of positive samples detected by

the preliminary deep learning classifier. Although the accuracy of the

preliminary classifier was not as high as that reported here for the

final classifiers, it nevertheless allowed to significantly speed-up the

labeling process by automatically selecting the portions or recordings

that most likely contained dolphin whistles.

The human expert was instructed to identify dolphin’s whistles as

curving lines in the time-frequency domain and to ignore contour

lines produced by shipping radiated noise. When discrimination
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FIGURE 2

Visualization of the spectrogram (Top) and raw audio data (Bottom) of a representative sample containing a dolphin whistle (curved line in the

time-frequency plots). Our detection system receives as input the average of the two recording channels.

was challenging, the expert directly listened to the recorded audio

track to identify whistle-like sounds. The tagging resulted in a binary

classification (whistle vs. noise) and a contour line marking the time-

frequency characteristic of the identified whistle. The latter was used

to explore the quality of the manual tagging by checking that the

bandwidth of the identified whistle met expected thresholds for a

dolphin’s whistle, namely between 3 and 20 kHz. A second quality

assessment was made by measuring the variance of the acoustic

intensity of the identified whistle along the time-frequency contour,

where we expect the acoustic intensity of a valid whistle to be stable.

2.3. Baseline detection method

As a benchmark detection method we used PamGuard (Gillespie

et al., 2013), which is a popular software specifically developed

to automatically identify vocalizations of marine mammals. The

working parameters of PamGuard were set as follows:

• The “Sound Acquisition” module from the “Sound Processing”

section was added to handle a data acquisition device and

transmit its data to other modules;

• The “FFT (spectrogram) Engine” module from the “Sound

Processing” section was added to compute spectrograms;

• The “Whistle and Moan Detector” module from the “Detectors"

section was added to capture dolphin whistles;

• The “Binary Storage” module from the “Utilities” section was

added to store information from various modules.

• The “User Display" module from the “Displays” section was

added to create a new spectrogram display.

Input spectrograms were created using the FFT analysis described

above, using the same parameters: FFT window length was set to

2,048 points, and the hop size was set to the length multiplied

by 0.8 using the Blackman window from the “FFT (spectrogram)

Engine" module in the software settings. The frequency range was

set between 3 and 20 kHz, and “FFT (spectrogram) Engine Noise

free FTT data” was selected as source of FFT data from the “Whistle

and Moan Detector” module in settings. While creating a new

spectrogram display, the number of panels was set to 2 to visualize

both channels. The PamGuard output was considered as a true

positive detection if the signal window identified by the software

overlapped with at least 5% of the ground truth signal interval.

Although this might seem a permissive criterion, it allowed to

consider many PamGuard detections that otherwise would have

been discarded.

2.4. Deep learning detection methods

We explored two different deep neural network architectures:

a vanilla CNN and a pre-trained CNN based on the VGG16

architecture used in object recognition (Simonyan and Zisserman,

2014). Note that the spectrogram images were resized to 224 x 224

and converted into 3D tensors in order to match the number of input

channels required by VGG. This was simply achieved by replicating
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FIGURE 3

Confusion matrices for the deep learning models (vanilla CNN and VGG with transfer learning) and for the PamGuard baseline.

the same image array across the 3 dimensions. Image pixels were

normalized by dividing each gray-scale intensity value by 255.

The vanilla CNN model included two convolutional layers

interleaved with max pooling layers (pool size = 2) and dropout

layers (dropout factor= 0.2). The convolutional layers used 16 and 32

kernels, respectively, with kernel sizes of (7.7) and (5.5), and a stride

value of 2. The last convolutional layer was then flattened and fed to

2 fully connected layers containing 32 and 16 nodes, respectively. All

layers used a ReLU activation function; only the output layer used a

softmax activation. The model was trained using the Adam optimizer

with an initial learning rate of 0.0001.

To implement the transfer learning architecture, the top layers of

a pre-trained VGG16 were replaced by 2 new fully connected layers

with size 50 and 20, respectively, and the trainable parameter was set

to “True.” This allowed the optimizer to jointly train all layers of the

VGGmodel, in order to also adjust low-level features to the new data

domain. A ReLU activation function was used in both fully connected

layers, while the output layer used a softmax activation. The model

was trained using the Adam optimizer with an initial learning rate of

0.00001.

In both cases, binary cross-entropy was used as a loss function

and overfitting was monitored by using an early stop criteria

(with patience parameter of 15 epochs) applied to a separate

validation set. Deep learning models were implemented using

Tensorflow (Abadi et al., 2016). All model hyperparameters were

automatically optimized using the Optuna framework (https://

optuna.org/), considering the following ranges:

• Number of convolutional layers of Vanilla CNN (min 2

to max 4).

• Number of dense layers of VGG and Vanilla CNN (min 1

to max 3).

• Learning rate (min 0.00001 to max 0.01).

• Number of units for dense layers (min 5 to max 100).

• Number of filters of convolutional layers for Vanilla CNN (min

8 to max 256).

• Filter size of convolutional layers for Vanilla CNN (min 3× 3 to

max 7× 7).

• Patience parameter for early stopping (min 5 to max 20.

FIGURE 4

Receiver Operating Characteristic (ROC) curves and corresponding

Area Under the Curve (AUC) values for both deep learning models.

• Dropout rate, if dropout added (min 0.1 to max 0.3).

2.5. Evaluation procedure

To guarantee a robust assessment of our detection method, the

dataset was split into separate training and test sets. The training

set only contained spectrograms obtained from audio files recorded

between July 24th and July 30th, while the test set only contained

spectrograms of audio files recorded between July 13th and July 15th.

This allowed to test the generalization performance of our models

using a completely different set of recordings, thus evaluating the

detection accuracy with variable sea conditions. Overall, the training

set contained 108,317 spectrograms, of which 49,807 were tagged as

noise and 58,510 as dolphin whistles. The test set contained 6,869

spectrograms, of which 4,212 were tagged as noise and 2,657 were

tagged as dolphin whistles. The training set was then randomly
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shuffled and further split into training and validation sets, using

5-fold cross-validation. Cross-validation was implemented using the

“StratifiedKFold” function from the scikit-learn library in order to

make sure that each validation set contained a balanced amount of

data from both classes. After cross-validation, all training data was

used to produce the final model.

Model performance on the separate test set was assessed

by computing mean detection accuracy and by visualizing

confusion matrices. True Positive rate and False Positive rate

were also computed in order to calculate Precision/Recall, produce

Receiver Operating Characteristic (ROC) curves and measure the

corresponding Area Under the Curve (AUC) (Davis and Goadrich,

2006):

Precision =
TP

TP+FP ;

Recall = TP
TP+FN ;

True Positive Rate = TP
TP+FN ;

False Positive Rate = FP
FP+TN

(1)

Where TP indicates True Positives, TN True Negatives, FP False

Positives and FN False Negatives.

3. Results

The vanilla CNN model achieved a remarkable mean detection

accuracy of 80.6%, significantly outperforming the PamGuard

baseline, which achieved 66.4%.Most notably, the performance of the

VGG model implementing the transfer learning approach was even

more impressive, achieving a mean detection accuracy of 92.3%.

The advantage of deep learning models is even more striking

when considering the confusion matrices: as shown in Figure 3,

although the amount of True Negatives (Label = 0) was comparable

across different methods, the number of True Positives was

remarkably higher for deep learning models, especially for the VGG

architecture. The low sensitivity of PamGuard was highlighted by

the very high number of False Negatives (n = 2,139), suggesting

that this method is not very effective in identifying dolphin

whistles when the level of signal to noise ratio makes detection

particularly challenging. The VGG model achieved much higher

performance also in terms of Precision (VGG = 90.5%; Vanilla

CNN = 70.7%; PamGuard = 75.5%) and Recall (VGG = 89.6%;

Vanilla CNN= 85.1%; PamGuard= 19.5%).

The ROC curves and AUC scores reported in Figure 4 allow

to further compare the performance of deep learning models. The

superior accuracy of the VGG architecture is evident also in this case,

approaching the performance of the ideal classifier.

4. Discussion

With the large increase in human marine activity, our seas have

become populated with boats and ships projecting acoustic emissions

of extremely high power that often affect areas of more than 20 km2.

The underwater radiated noise level from large ships can exceed 100

PSI with a clear disturbance impact on the hearing, self-navigation

and foraging capabilities of marine mammals and especially coastal

dolphins (Ketten, 2008; Erbe et al., 2019). Monitoring the marine

ecosystem and the sea life is thus a crucial task to promote

environment preservation.

Nevertheless, traditional monitoring technologies rely on sub-

optimal detection methods, which limit the possibility of conducting

long-term and large-scale surveys. Automatic detection methods

can greatly improve our surveying capability, however algorithmic

solutions do not achieve satisfactory performance in the presence

of high levels of background noise. In this paper we demonstrated

that modern deep learning approaches can detect dolphin whistles

with an impressive accuracy, and are thus well-suited to become the

new standard for the automatic processing of underwater acoustic

signals. Although further research is needed to validate thesemethods

in different marine environments and with different animal species,

we believe that deep learning will finally enable the creation and

deployment of cost-effective monitoring platforms.
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