
Vol.:(0123456789)1 3

Cognitive Computation
https://doi.org/10.1007/s12559-022-10085-5

A Developmental Approach for Training Deep Belief Networks

Matteo Zambra1,2 · Alberto Testolin1,3 · Marco Zorzi1,4

Received: 24 February 2021 / Accepted: 15 November 2022
© The Author(s) 2022

Abstract
Deep belief networks (DBNs) are stochastic neural networks that can extract rich internal representations of the environ-
ment from the sensory data. DBNs had a catalytic effect in triggering the deep learning revolution, demonstrating for the
very first time the feasibility of unsupervised learning in networks with many layers of hidden neurons. These hierarchical
architectures incorporate plausible biological and cognitive properties, making them particularly appealing as computa-
tional models of human perception and cognition. However, learning in DBNs is usually carried out in a greedy, layer-wise
fashion, which does not allow to simulate the holistic maturation of cortical circuits and prevents from modeling cognitive
development. Here we present iDBN, an iterative learning algorithm for DBNs that allows to jointly update the connection
weights across all layers of the model. We evaluate the proposed iterative algorithm on two different sets of visual stimuli,
measuring the generative capabilities of the learned model and its potential to support supervised downstream tasks. We
also track network development in terms of graph theoretical properties and investigate the potential extension of iDBN to
continual learning scenarios. DBNs trained using our iterative approach achieve a final performance comparable to that of
the greedy counterparts, at the same time allowing to accurately analyze the gradual development of internal representations
in the deep network and the progressive improvement in task performance. Our work paves the way to the use of iDBN for
modeling neurocognitive development.

Keywords Unsupervised deep learning · Computational modeling · Cognitive development · Hierarchical generative
models · Iterative learning

Introduction

Despite the fact that the most popular approach for training
deep neural networks is based on supervised learning [1], the
first demonstration of the potential of deep learning stemmed
from the discovery of efficient unsupervised learning meth-
ods for stochastic neural networks known as Deep Belief

Networks (DBNs) [2, 3]. Since their introduction, DBNs
have been successfully used in many challenging tasks, rang-
ing from computer vision [4] to acoustic modeling [5], traffic
flow prediction [6] and breast cancer classification [7]. These
energy-based models have some unique properties compared
to other unsupervised deep learning approaches, such as the
ability to represent compositional structure [8, 9] and the
possibility to be interpreted in terms of well-established
theoretical principles rooted in statistical physics [10].

The capability of learning deep generative models using
Hebbian-like mechanisms also makes DBNs particularly
relevant for cognitive modeling research [11]. Indeed, this
class of models offers a principled account for the func-
tional role of top-down processing supported by feedback
loops, at the same time providing a bridge to higher-level
descriptions of cognition in terms of Bayesian computa-
tions [12, 13]. Compared to shallow generative models,
hierarchical generative networks allow to study the emer-
gence of increasingly more complex representations of the
sensory signal, thus allowing to simulate a wide range

 * Alberto Testolin
 alberto.testolin@unipd.it

 * Marco Zorzi
 marco.zorzi@unipd.it

1 Department of General Psychology and Padova
Neuroscience Center, University of Padova, Via Venezia 8,
Padua 35131, Italy

2 Department of Electric and Mathematical Engineering, IMT
Atlantique, Brest, France

3 Department of Mathematics, University of Padova, Via
Trieste, 63, 35121 Padua, Italy

4 IRCCS San Camillo Hospital, via Alberoni 70, Venice Lido,
Italy

http://orcid.org/0000-0001-7062-4861
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-022-10085-5&domain=pdf

 Cognitive Computation

1 3

of high-level perceptual and cognitive functions, such
as numerosity perception [14–16], letter perception [17,
18], orthographic processing [19], development of object-
action associations [20] and the appearance of visual hal-
lucinations caused by damage in cortical areas [21]. Sparse
variants of DBNs have also been used to simulate physio-
logical properties of neurons in the primary and secondary
visual cortex [22]. Notably, inference algorithms for DBNs
can be implemented using biologically realistic sampling
schemes, which explain unique aspects of low-level brain
dynamics [23] and can be efficiently reproduced in spiking
models [24]. Finally, hierarchical generative models like
the DBN offer important insights into the functional role
of spontaneous brain activity, both in terms of top-down
predictive signals during task execution and in terms of
generative replays during rest [25].

However, learning in DBNs has traditionally relied on a
greedy, layer-wise training approach: the connection weights
of layer n are changed only after the layer n − 1 has been
fully trained. Moreover, the trained weights are frozen and
do not further change while learning takes place at higher
layers. Although efficient from a computational perspec-
tive, this learning modality is clearly implausible from a
biological standpoint. Indeed, the greedy approach implies
that information is not passed to any higher-order network
until learning at the lower level can be stopped because it
has reached a (somewhat arbitrary) criterion. Though brain
development shows variability across regions and may peak
at different times, synaptogenesis begins at about the same
time in distant regions such as the visual and the prefron-
tal cortex [26]. Moreover, a substantial degree of plastic-
ity is preserved in adulthood even in the visual cortex (see
[27], for review). Finally, spontaneous brain activity, which
is thought to be a manifestation of top-down dynamics of
generative models [25], is already structured into distinct
cortical networks at birth [28].

Besides these neurobiological considerations, another key
limitation of the greedy training approach is that it makes the
DBN unsuitable for modeling human development. Neural
network models are particularly attractive for understand-
ing developmental phenomena [29] because the trajectories
in task performance or in the emergence of internal repre-
sentations can be examined during learning and compared
to human empirical data. Moreover, learning trajectories in
neural network models can be analyzed as a function of ini-
tial starting conditions to study the emergence of develop-
mental disorders [30]. In the cognitive modeling literature,
however, simulations based on DBNs have focused on adult
performance (i.e., fully trained models) and developmental
investigations based on unsupervised learning have adopted
alternative learning paradigms based on deep autoencoders
[31] trained with error backpropagation [32] to circumvent
this problem.

In this work we propose a novel learning scheme for tun-
ing the entire hierarchy of connections in a DBN iteratively
(hereafter, iDBN), using a variant of the original Contrastive
Divergence (CD) learning algorithm [33]. Through exten-
sive simulations on two different sets of visual stimuli, we
demonstrate that the proposed approach can achieve the
same final accuracy of the greedy counterpart, at the same
time allowing for a precise tracking of the developmental
trajectory of the models. We further show that an alterna-
tive developmental scheme based on full-stack propagation
of top-down information does not converge to an optimal
solution, suggesting that recurrent processing between adja-
cent layers is a key ingredient to successfully drive learning
through local signals. In a first set of simulations we rely
on the popular MNIST data set of handwritten digits [34],
with the goal of validating the proposed iterative scheme
on a well-known benchmark. In this setup, we also show
that our developmental learning scheme can be extended to
continual learning scenarios [35], where the model exploits
interleaved learning to incorporate knowledge from another
domain (in our case, handwritten letters) without incurring
in catastrophic forgetting [36, 37]. Furthermore, we carry
out graph theoretical analyses to investigate how structural
properties of the network gradually emerge during learn-
ing. We finally consider a more recent data set consisting
of images containing a variable number of items, which has
been used to investigate the perception of visual numerosity
in humans and machines [14, 16], to demonstrate how the
iDBN can be used to simulate developmental trajectories in
the acquisition of cognitive skills.

Methods

In this section we will briefly review the theoretical foun-
dations of deep belief networks and describe their classi-
cal, greedy learning algorithm. We will then introduce our
iterative learning approach and describe the materials and
methods used in our simulations.

Deep Belief Networks

The building block of a DBN is the Restricted Boltzmann
Machine (RBM [38]; for a recent overview see [39]),
which is a bipartite network composed by two separate sets
of neurons: visible neurons, which constitute the interface
with the sensory environment and are thus usually clamped
to the input data, and hidden (equivalently called ‘latent’)
neurons that allow to capture high-order correlations in the
data distribution. Learning in RBMs consists in discover-
ing a set of latent features that can be used to compactly
describe the statistical regularities in the data distribution,
by creating an internal model of the environment that can

Cognitive Computation

1 3

be used to generate plausible activation patterns in the vis-
ible neurons. The lack of connections between neurons in
the same layer makes it easy to compute the data-depend-
ent and model-dependent statistics used in the Constrastive
Divergence (CD) algorithm [33], because units in the same
layer are conditionally independent given the activation of
the other layer. Deep belief networks are created by stack-
ing together several RBMs [2] (see Fig. 1a), thus allowing
to exploit hierarchical composition of the features learned
by the individual RBMs [40].

Greedy Layer‑Wise Learning

For the sake of our argument, it is useful to make an explicit
distinction between bottom-up recognition connections and
top-down generative processing (represented by green and
red arrows, respectively, in Fig. 1). During the recogni-
tion (also called “inference”) phase, the sensory pattern is
clamped on the visible neurons, and the hidden neurons are
activated in a bottom-up fashion in order to infer the most
likely configuration (i.e., activation pattern over the hidden

Fig. 1 Graphical representation
of the architecture of a 3-layer
Deep Belief Network and the
learning schemes implemented
in the present work. Green
arrows represent bottom-up
recognition connections, while
red arrows represent top-down
generative processing. Yellow
boxes enclose local computa-
tions. We consider the case of
CD1, CD-k can be recovered
by repeating the sampling steps
k times. v ∼ D identifies a data
instance sampled from the
training set and hi represents
the hidden activities of layer i.
In the greedy scheme a hidden
layers are trained sequentially,
from bottom to top, and input
signals are never projected
into layer l unless learning at
layer l - 1 is completed. In the
iterative scheme b input signals
are immediately propagated
through the entire deep network,
and top-down processing is
performed locally at each layer
to jointly learn all connec-
tion weights. In the full-stack
scheme c both feed-forward
propagation and top-down
processing occur over the entire
deep network

(a)

(b) (c)

 Cognitive Computation

1 3

neurons) that could have produced the observed data. During
the generation phase, the visible neurons are not clamped to
the data, and all neurons are activated in a top-down fashion
in order to produce a plausible activation pattern, that is, to
generate a sample from the internal model.

In the classical approach [2], the RBM constituting the
bottom layer of the DBN is initially trained using the input
data. Once this first layer has been fully trained, the weights
of the first RBM are “frozen” and the input data set is pro-
jected into the activation space of the hidden neurons, thus
creating a new training set that is used as input for the sec-
ond RBM (black arrows in Fig. 1a). Once training of the sec-
ond layer is completed, the data projection is made likewise
to create the training set for the third layer; the procedure is
repeated for all the layers constituting the DBN, as shown in
Fig. 1a. Note that the data patterns projected into the deeper
layers are created by computing the conditional probability
distribution of the hidden neurons given the activation of the
neurons observed in the layer below [41].

Iterative Joint Learning

In contrast to the greedy approach, the proposed iDBN
learning algorithm attempts to update at once all the param-
eters of the hierarchical generative model, regardless of the
depth of the respective layer (see Fig. 1b).

As noted before, in the greedy algorithm deeper layers
are trained sequentially, using as input the projection of
the data through the weights resulting from learning in the
previous layers. In our novel iterative algorithm, instead,
the training patterns for the deeper layers are immediately
created following each sensory experience, by propagat-
ing the input across the entire processing hierarchy (green
arrows in Fig. 1b). This process mimics the fast feed-forward
sweep observed in cortical circuits, where neuronal activ-
ity is rapidly routed to a large number of visual areas after
stimulus presentation [42, 43]. It should be noted that in
our algorithm the complete feed-forward sweep occurs even
during the initial learning phase, where all the connection
weights are randomly initialized, which makes learning of
the subsequent layers challenging since the data distribution
(i.e., hidden unit activation) is non-stationary. Concurrently
with the fast feed-forward sweep, top-down generative con-
nections are locally used to reconstruct the data representa-
tions at each level of the hierarchy (red arrows in Fig. 1b),
mimicking the kind of processing supported by recurrent
and horizontal connections within cortical areas [42, 44]1.

A schematic pseudo-code that illustrates the implementation details of our iterative

algorithm is reported below2.

Full‑Stack Joint Learning

An alternative way to jointly learn all weights of a DBN
could be to first propagate the input across the entire pro-
cessing hierarchy (as in the first phase of iDBN) and then
produce top-down reconstructions starting from the deepest
layer back to the sensory layer (see Fig. 1c). This processing
scheme is simpler to implement, but suffers from the vanish-
ing gradient problem encountered in standard deep learning
settings [45]. We use this full-stack developmental scheme
as a benchmark for our iterative developmental scheme.

Simulations

MNIST Data Set

The same DBN structure is used and held fixed during the
simulations for both greedy and iterative learning. In order
to allow for a fair comparison, we maintained the same
architecture and hyper-parameters of the original model [2],
which was composed of one visible layer with 784 neurons,
two hidden layers with 500 neurons each and a final hidden
layer with 2000 neurons (see Fig. 1a). Connection weights
are initialized with random values sampled from a Normal
distribution N(0, 0.01), while biases are intialized to zero.
We also tested an alternative initialization scheme known
as the Glorot initialization [47], in order to evaluate learn-
ing convergence under more advanced weight initialization
strategies. The weights matrices initialized with the Glorot

1 It should be noted that, following the initial feed-forward sweep,
the generative phases at subsequent levels of the hierarchy still occur
sequentially, because the model-driven activation of hidden neurons
at layer t should not interfere with model-driven activation of the

same neurons at layer t + 1 . Other families of generative models, such
as the Deep Boltzmann Machine [46], resolve this potential interfer-
ence by incorporating top-down influences during learning, but nev-
ertheless require a greedy training strategy.

Footnote 1 (continued)

Cognitive Computation

1 3

scheme are multiplied by a factor of 0.1 to make them com-
patible with the range observed in the Normal initialization.
The learning rate is set to � = 0.01 and the weight decay
coefficient is set to � = 0.0001 . The momentum parameter �
is set to 0.5 in the initial learning stage and then updated to
0.9 after 5 epochs of training. The loss is minimized using
standard stochastic gradient descent, implemented through
CD1 learning. The model is trained for 50 epochs. Further
tests, using both Normal and Glorot initialization schemes,
also included dropout regularization [48] with the probabil-
ity of unit presence set to p = 0.1.

The first quantity inspected to evaluate the quality of the
learned models is the accuracy of a linear readout at each
hidden layer: since in DBNs the input patterns are non-line-
arly transformed from one layer to the next one, the internal
representations are supposed to become more linearly sepa-
rable as we move up in the hierarchy [11]. The accuracy of a
simple Ridge classifier is used as a measure of separability.

The performance of the trained models is then assessed
in three image generation tasks: 1) reproduction of clean
images, 2) completion of partially occluded images and 3)
denoising of images corrupted by noise. In the second case,
an arbitrary number of subsequent rows in the image matrix
are set to zero (i.e., turned to black). In the latter case, all
values {Xij}

28

i,j=1
 (being 28 the number of side-pixel of the

images) are spoiled by adding Gaussian noise, that is
Xij ← Xij + � , � ∼ N(0, 0.5) . Images are fed to the visible
layer of the DBN, propagated through all its hidden layers
and then fed back to the visible layer through feedback con-
nections. In this way the noisy / corrupted samples can be
adjusted according to the internal model learned by the
DBN. Original samples and the corresponding reconstruc-
tions are quantitatively compared using mean squared error
(hereafter MSE) between input patterns and reconstruction.
For each case, the error is computed as ‖X0 − Xr‖ , where the
superscript 0 denotes the original sample and r means that
the image has been reconstructed (reproduced, recreated or
denoised) and ‖ ⋅ ‖ denotes an L2 norm. Model performance
is averaged over 10 model runs with different random ini-
tialization in order to assess the robustness of the analyses.
We also visualize the receptive fields of neurons at different
hidden layers to qualitatively assess the type of features (i.e.,
internal representations) learned by the DBNs.

Continual Learning

To further support the cognitive validity of our approach, we
investigate whether the proposed developmental algorithm
could effectively deal with a challenging continual learning
scenario, where the DBN should learn a generative model of
data distributions provided incrementally, without forgetting
knowledge obtained during the preceding stages. In such

scenario it is well known that neural networks suffer from
catastrophic forgetting, whereby knowledge learned during
the subsequent stages completely disrupts previously learned
information (for review, see [37]). Several solutions have
been proposed to mitigate this issue, and here we specifi-
cally consider one that can be readily implemented within
our framework: interleaved learning [49]. We consider a
somewhat simplified version of interleaved learning, where
unsupervised learning during a second training phase takes
advantage of both patterns from the new target distribu-
tion and patterns belonging to the previous data set. More
advanced implementations could exploit deep generative
replay [50] to directly sample previously learned patterns
from the hierarchical generative model, allowing to build
the mixed data set in a more data-efficient way.

Following the first stage of unsupervised learning on
handwritten digits, the DBN is exposed to a subset of hand-
written letters from the EMNIST data set [51]. In one setup
the DBN is trained sequentially, which means that only let-
ter patterns are used to train the network during the second
stage. In the interleaved setup, instead, during the second
stage the unsupervised training set includes both digits
and letters. In order to balance the number of patterns and
output classes, we randomly sample 20,000 digits from the
MNIST data set and we evenly sample 20,000 uppercase
letters from the first 10 EMNIST classes. Continual learning
performance is probed by monitoring both digit recognition
accuracy (using the readout classifier trained during the first
learning stage) and letter recognition accuracy (training a
new readout classifier on the EMNIST patterns).

Graph Analysis

Recent work has shown that graph theory can be success-
fully used to study deep learning models from a network
science perspective [52, 53]. In order to investigate how
topological properties of the graph derived from the DBN
might emerge during the course of unsupervised learning,
we thus performed a graph analysis on the structure of the
deep network during learning over the MNIST data set.

From the trained DBN we extract the weights matrices
and define a graph having the same architecture and con-
nections weights as the DBN. A methodological difficulty is
posed by the continuity of the connection weights: in order
to determine the nodes degrees, we thus prune the network
by binarizing the connections according to a suitably chosen
cutoff threshold. A sensible choice of the cutoff threshold
is a value that allows to remove redundant connections and
to keep those that contribute most to the signal propagation
through the network. Note that the concept of “redundant”
and “important” connections is largely arbitrary and not obvi-
ous to assess. For the sake of the structural analysis, how-
ever, this choice is based on the numerical magnitude of the

 Cognitive Computation

1 3

connections strengths. A range of such thresholds has been
set to {0.2, 0.4, 0.6, 0.8, 1, 1.25, 1.5} , and structural analysis
has been performed for each of these values. A cutoff thresh-
old of c discards the weights in the interval [−c, c] , while
those outside the interval are kept for the network analysis.

As customary in network science, the structural proper-
ties of the “real” networks (DBNs) are compared with the
same properties observed in a random counterpart. A ran-
dom “replica” of the network is generated according to its
architectural characteristics (such an number of nodes) and
its local properties (e.g., mean node degree or edge prob-
ability). The process is composed of two main steps: 1) gen-
erate a random replica of the real network and 2) perform
the structural analyses on both the instances. In our case,
the real network was compared with an analogous bino-
mial graph generated using the probability of edge exist-
ence, computed as the ratio between number of effective
edges and the maximum number of potential edges (which
depends of the number of node couples). This random rep-
lica is generated in such a way to have the same architecture
of the DBN, in particular it is a stack of bipartite binomial
graphs with the same number of nodes as the DBN layers.
Due to this architecture, the node connectivity is constrained
by the number of nearby layers. For example, one node of
the first layer is not allowed to be connected with one node
of the third layer or superior. Such graph structure poses a
problem in the characterization of the nodes degree distribu-
tion, which is used in network science to evaluate whether
a graph is random or derived from a real network. These
latter (might them be natural, biological, technological or
social networks) typically have a degree distribution well
described by a power-law [54], while random graphs have
a degree distribution that depends on the method they are
generated with. For example, binomial random graphs have
a degree distribution that follows, by design, the Binomial
distribution. In our setup, the constrained nodes connectivity
would lead the normalization of the degree distribution to
have such architectural bias. To mitigate this effect, we chose
to weight the degree of each node according to its potential
maximum degree, as described in detail in Appendix C.

Numerosity Data Set

The “numerosity” data set was first introduced by Stoianov and
Zorzi [14], who demonstrated that the approximate number
of objects in a visual scene can be estimated by a hierarchical
processing architecture that learns to extract increasingly more
abstract representations from the sensory input in a completely
unsupervised way (sample images are provided in Fig. 7 in
Appendix A). Here we focus on the development of “number
acuity” in the network, which has been recently investigated
using a developmental approach based on deep autoencod-
ers [31]. Number acuity can be measured using a numerosity

discrimination task, where the network is asked to classify any
image in terms of containing a larger or smaller number of
objects with respect to a given reference number. Also in this
case, to ensure a fair comparison with the original model [14],
we considered the same model architecture and task. The DBN
is composed by a visible layer composed of 900 visible neu-
rons, while the first and the second hidden layers have 80 and
400 neurons, respectively. We adopted a Normal initializa-
tion scheme, where weights are initialized with random values
sampled from N(0, 0.1). The learning rate and weight decay
are set to � = 0.1 and � = 0.0002 , respectively, and the initial
and final momentum are set to � = 0.5 and 0.9, again with a
momentum switch at epoch 5. The model is trained for 100
epochs.

To assess the number acuity of the network (also known
as “internal Weber fraction”), a linear classifier is applied to
the deepest layer of the model, with the goal of establishing
whether the hidden neurons’ activation correspond to an input
image containing a numerosity larger than a reference number
(i.e., 8 or 16). This task becomes trivial in the limit of the
difference between the given numerosity ni and the reference
number Nref being large. For example, it is easier to tell which
numerosity is smaller among 4 and 16, but it is harder for
15 and 16. For this reason, each reference numerosity has an
associated window of numerosities used for the comparison:
{5,… , 12} for Nref = 8 and {10,… , 24} for Nref = 16 , so that
the ratios ri = ni∕Nref yield the range [0.65, 1.25]. The percent-
age of correct classifications is analyzed as a function of these
numerical ratios: each value ri has associated the percentage
of correct classifications yi . This ensemble of points (r, y) is
used to fit a psychometric function corresponding to a logistic
curve, defined by

being Φ the cumulative distribution function of the Normal
distribution and w the Weber fraction.

Our interest is to compare the progressive refinement of the
Weber fraction during the unsupervised learning phase. The
final performance can be directly compared with the Weber
fraction achieved by a DBN trained using the greedy scheme
[14], while the developmental trajectories can be compared to
the learning curves recently reported for deep autoencoders [31].

Results

MNIST Data Set

Readout Accuracy and Reconstruction Error Trends

Results discussed in this section only refer to the DBN con-
figuration with Normal initialization and no dropout, since
it turned out that differences with Glorot initialization and

(1)y = 1 − Φ(� = r, � =
√
2w)

Cognitive Computation

1 3

inclusion of dropout are negligible. The reader may refer
to Appendix B for the complete results.

Figure 2a shows that the readout accuracy increases
with depth, suggesting that during the course of unsuper-
vised learning the internal representations became more
disentangled (i.e., linearly separable). The reconstruction
errors (MSE at each hidden layer) keep decreasing mono-
tonically and eventually converge (Fig. 2b). Not surpris-
ingly, results related to the first layer are almost perfectly
overlapping for the greedy and iterative learning schemes:
the activation of the visible layer corresponds to the raw
data in both cases, thus the learned weights do not depend
on the training modality. For the second and third layers,
instead, the greedy scheme achieves higher readout accu-
racy in fewer epochs: however, this effect is due to the
fact that the previous layers have been already completely
trained, thus providing a head-start for the upper layers.
At the end of training, the final accuracy is indistinguish-
able. Notably, the alternative developmental variant based
on full-stack propagation does not exhibit the same opti-
mal convergence, as highlighted by the poor reconstruc-
tion error measured in the first hidden layer (see Fig. 8 in
Appendix A).

Generative Capabilities

As shown in Fig. 2c, at the end of the learning phase the
greedy and iterative DBNs achieve equivalent generative
capabilities (samples of generated images are provided in
Fig. 9 in Appendix A). The completion task appears as the
more challenging, probably because when entire regions of
the images are corrupted it is difficult to generate plausible
completions. The full-stack developmental version does not
converge to a satisfactory generative model, as highlighted
by its poor capability in all generation tasks.

Emergent Internal Representations

Receptive fields are useful to qualitatively inspect what kind
of features are learned by the different layers of the hierar-
chical model during training. Such inspection is done by
visualizing the connection weights of a given neuron in the
input space [11]. The first hidden layer is easy to inspect,
since we just need to plot the weights matrix of the first layer
W1 . When it comes to neurons of the second hidden layer it
is necessary to compose the weights matrices, so that it is
still possible to represent the visualization in terms of the

Fig. 2 Performance of the
greedy vs. iterative learning
schemes during learning (top
and middle panels) and at the
end of the unsupervised learn-
ing phase (bottom panel). For
the latter case we also report
the generation capabilities of
the alternative developmental
scheme based on full-stack
propagation (a)

(b)

(c)

 Cognitive Computation

1 3

visible layer dimension. The weights matrices are simply
multiplied, thus producing a linear combination: we can sim-
ply plot some chosen rows of the product W2W1 to look at the
receptive fields of the second layer neurons, W3W2W1 for the
third layer, and so forth. As shown in Fig. 10 in Appendix A,
the greedy and iterative learning schemes developed quali-
tatively similar receptive fields across the entire processing
hierarchy.

Resilience to Catastrophic Interference

As clearly shown in Fig. 3, the sequential learning setup
(dashed lines) is dramatically affected by catastrophic inter-
ference: while the readout accuracy on the new letter data
set increases, the performance of the classifier trained on the
previous digits data set steadily drops as learning proceeds.
On the contrary, the interleaved learning setup (solid lines)
allows to easily incorporate knowledge from the new letter
data set, achieving the same accuracy of the sequential setup,
at the same time allowing to maintain previously learned
knowledge, as demonstrated by the preservation of the read-
out accuracy for the digit data set.

Emergence of Structural Properties During Learning

Typically, inspecting the degrees distribution of a given net-
work gives a first idea of the nature of the system, at least
to determine whether the network is random or real. Here,
our main focus is on how the structural properties (among
the other, also the mean degree) are affected by the learning
dynamics. The degree distribution itself is not informative
about the structural evolution that the network experiences
during training but still could give useful insights about the

structural differences of each network. We chose to track
other global properties, e.g., mean degree, mean geodesic
distance and number of connected components. Figure 4 dis-
plays these quantities, while Appendix C provides a broad
explanation on the degrees distribution and how to approach
its evaluation in this constrained-architecture setup.

Results suggest that the deep network undergoes a sub-
stantial transformation during unsupervised learning. A
major difference lays in the mean degree evolution during
training. Referring to Fig. 4a, non-trivial network properties
tend to emerge in later stages of learning, especially for the
greedy network. This suggests that the iterative implementa-
tion favors the development of complex circuits within the
network connections and eventually the emergence of larger
components. This applies both to the mean degree and to the
number of connected components (recall that an isolated
node itself is considered a component). The visualization of
the mean geodesic distance shows that the evolution of this
property is similar in both the greedy and iterative cases, in
particular we can observe a phase transition between an ini-
tial state in which all nodes are isolated (indeed an isolated
node is considered a component in which the geodesic dis-
tance is zero) to the emergence of some components. Once
the different component connect to each other and the con-
nections strengthen, the mean geodesic distance decreases.

The second set of results, in Fig. 4b, displays the evolu-
tion of the same properties in the binomial replicas. The
names “binomial greedy” and “binomial iterative” mean that
the binomial counterparts are obtained using the probabili-
ties of edge existence derived from the real greedy and itera-
tive networks, in the epochs considered. The main difference
is that both the greedy and iterative instances display the
same overall behavior. Unsurprisingly, the visualizations of
mean degree and connected components practically overlap.
This expected results are given by the fact that there is no
such thing as the effect of a learning dynamics that shapes
the networks internal structure. In addition, the bottom
panels (connected components) show that in random net-
works the formation of only one giant component is strongly
encouraged. Note further that mean degree and mean geo-
desic distances attain larger values in binomial networks.
This is indeed what one could expect: random networks do
not have hubs, i.e., nodes with a larger degree with respect
to the vast majority of the other nodes, which are instead a
characteristic of real scale-free networks. The absence of
few super-connected nodes implies a larger mean degree.

The results discussed above refer to the evolution of
global network properties. As mentioned before, in net-
work science it is well known that real networks exhibit
a power-law degree distribution. As a further comparison
between the real networks and their binomial counter-
parts, we thus choose to also inspect the degree distribu-
tion in both the greedy and iterative cases. For this test,

Fig. 3 Readout accuracy in the continual learning scenario. The
sequential learning regimen is strongly affected by catastrophic for-
getting, while interleaved learning incorporates information from the
new distribution (Letters) while preserving previous knowledge (Dig-
its). Classifiers are evaluated at 10 regularly spaced intervals during
each unsupervised learning epoch

Cognitive Computation

1 3

we analyze the networks at the end of training and we also
include the results obtained with the implementation of
dropout, to see if the sparsity induced by dropout changes
the network structure. Figure 5 shows the visualization
of the degree distributions for real and binomial graphs
for the case of Normal initialization, both with and with-
out dropout. The effect of the architectural bias discussed
above is particularly clear on the two leftmost upper and
lower panels, despite the implementation of the modified
degree distribution that accounts for the maximal potential
connectivity for each node. This result suggests that the

modified degree distribution should be further refined in
order to model more accurately the distribution of nodes
degrees; still, the degrees distributions show qualitatively
different shapes, suggesting that learning dynamics in
DBNs characterizes the derived network as a non-random
graph. Interestingly, the effect of dropout is to make ran-
dom replicas more structurally similar to real networks.
The top and down right panels of Fig. 5 show that a larger
connectivity for a small number of nodes is tolerated also
in binomial graphs.

Fig. 4 Contour plots of mean
degree, mean geodesic distance
and number of connected
components for the case of
Normal initialization without
dropout. Note that while the
iterative iDBN algorithm allows
to analyze the entire network
since earliest learning stages, in
the greedy case the upper layers
remain untouched by the update
rule until the lower layers are
fully trained. This motivates the
visualization choice of the right
column: the dashed line repre-
sents the subdivision between
layers, so that to display the
trend of change in the whole
network during the true learning
time-span

(a)

(b)

 Cognitive Computation

1 3

Numerosity Data Set

As shown in Fig. 6a the psychometric function observed at
the end of the unsupervised learning phase is well aligned
with the results obtained by Stoianov and Zorzi using the
greedy training scheme [14]. The authors reported a Weber
fraction value of 0.15, while we obtained a value of 0.17.

Concerning the developmental trajectory, as shown
in Fig. 6b the Weber fraction trend displays a significant
decrease during the learning period, especially at the early
stages of development. This trend is similar to that observed
during human development [55, 56]. Note that our curve has
been obtained by averaging 20 model runs, training 5 dif-
ferent classifiers for each data point to collect more reliable
statistics. Thus, the average values account for a population
of 100 data points for each sample epoch. It is interesting to
note that in the early stages the network might yield a wors-
ening of the performance, and hence highly varying values
of w. The behavior stabilizes to an asymptotic value in more
advanced learning stages.

Figure 6c and d display the same data points, along with
a power-law fit obtained using the method proposed by Tes-
tolin et al. [31]. Due to the initial zero value of the epoch
time stamp, the basic functional form is actually a modified
power-law [21]:

The parameters a, b and s are fitted to the data points
describing the progressive development of the Weber fraction.
The resulting parameters are reported in Table 1: the fit closely
follows the trajectory of Weber fraction, hence describing sat-
isfactorily well the development of the number sense across
the learning period of our networks.

(2)y = a(1 + s x)b

Discussion

Our simulations demonstrate that deep belief networks can be
trained iteratively, by jointly adjusting all the weights of the
model hierarchy following observation of each sensory pattern
(or minibatch of patterns). This innovative learning algorithm
can be used in place of the traditional greedy, layer-wise learn-
ing algorithm in order to accurately track the developmental
trajectory of the model. This allows to study how global prop-
erties of the network can gradually emerge during the course
of learning, at the same time enabling a systematic comparison
with biological developmental trajectories observed in empiri-
cal studies.

The proposed algorithm was first evaluated on the popular
MNIST benchmark, where DBNs trained using the greedy
algorithm have traditionally achieved very good performance.
We showed that the DBN trained using our iterative algorithm
was able to achieve a performance comparable to the greedy
counterpart, both in terms of readout accuracy from the inter-
nal representations and in terms of reconstruction capabilities.
We also probed the final models on a variety of generative
tasks, which assessed the DBN ability to reproduce, complete
and denoise corrupted input images. Also in this case, we did
not observe significant differences between the greedy and
iterative versions of the learning algorithm. On the contrary,
the attempt to implement joint training of all weights by simply
propagating signals across the full stack both in the bottom-up

Fig. 5 Degrees distributions
with cutoff threshold set to 0.4.
The networks analyzed for this
figure have been initialized
with the Normal distribution;
the case of Glorot initialization
does not display significant
differences

(a) (b)

(c) (d)

Table 1 Fitted parameters as
in Eq. 2 for both the w values
scaled, respectively, according
to the method of S & Z [14] and
TZM [31]

a b s R
2

S & Z 0.61 0.59 0.13 0.9
TZM 0.86 0.59 0.13 0.9

Cognitive Computation

1 3

and top-down learning phases led to poor convergence and
unsatisfactory results. This reveals that, subsequently to the
feed-forward propagation across the entire DBN hierarchy
(which resembles the fast feed-forward sweep observed in
cortical circuits [42, 43]), neurons’ activation at the deepest
layer cannot be fed all the way back to the visible layer in
a (symmetrical) fast feedback sweep but need to be locally
processed at each layer to compute the learning signals (as
implemented in the iDBN). Notably, the latter scheme is also
consistent with local recurrent processing supported by recur-
rent and horizontal connections within cortical areas [42, 44].

To further support the cognitive plausibility of the
proposed developmental scheme, we also implemented a
straightforward interleaved training approach to tackle con-
tinual learning tasks, demonstrating that the iDBN can be
also extended to challenging scenarios that require to incre-
mentally incorporate new knowledge in the deep network.
This paves the way to the investigation of more plausible
continual learning schemes that exploit the top-down gen-
erative properties of the DBN to sample the stimuli that are
needed for interleaved training [57]. Moreover, we carried
out an extensive analysis on the progressive development of

structural properties in the DBN, by investigating the emer-
gence of a variety of graph theoretical properties, such as
degree, geodesic distance and connected components. Our
iterative learning approach allowed to emphasize the gradual
refinement of these properties at the global level, thus open-
ing the possibility to more systematically study the topologi-
cal development of such complex hierarchical systems.

We finally evaluated our iterative approach on a data set
that has been recently exploited in a variety of cognitive
models to simulate the perception of visual numerosity. Also
in this case, the iDBN achieved a final accuracy comparable
to the greedy counterpart, at the same time allowing for a
precise tracking of the progressive development of the inter-
nal representations of the model. Behavioral performance,
supported by a linear readout from the internal represen-
tations, can also be continuously tracked to monitor skill
acquisition. Indeed, the learning curves resulting from our
approach closely resemble the learning curves reported in
experimental studies with human children, and also overlap
with those reported in a recent developmental model based
on deep autoencoders.

Fig. 6 Final number acuity and
developmental trajectories of
the DBN. Panel 6a reports the
psychometric curve obtained
from the numerosity dis-
crimination task at the end of
unsupervised iDBN learning.
The Weber fraction measures
the steepness of the curve, here
w = 0.17 . Panel 6b reports the
trend of decay of the Weber
fraction during unsupervised
learning. The solid curve
represents the average w values
obtained in different simula-
tion runs, while the shaded
area represents the standard
deviation. Panels 6c and 6d
show the power-law fit accord-
ing to Eq. 2. The dashed lines
represent reference values for
the final w from [14] and [31]
respectively

(a) (b)

(c) (d)

 Cognitive Computation

1 3

of widespread learning disabilities such as dyscalculia, for
which we are still lacking a computational characterization
[30]. It would also be useful to explore whether the proposed
iDBN approach could be applied in other cognitive domains
involving unsupervised deep learning. This would be valu-
able not only from a machine learning standpoint, but also
from a cognitive modeling perspective: Indeed, our iterative
algorithm allows to create developmental models that can
be quantitatively validated against empirical data collected
on humans. Similarly, the proposed graph analysis could be
applied in developmental physiology to better understand
how structural and functional properties of self-organizing
networks might gradually emerge from unsupervised learn-
ing dynamics.

Conclusion

The scope of the present work was twofold. On the one hand,
we presented a novel unsupervised learning algorithm for
deep belief networks that allows to accurately track the
progressive development of the internal representations of
the model. We validated our algorithm on two prototypical
benchmark domains, achieving results comparable to the
state-of-the-art. On the other hand, we demonstrated that
our iterative learning algorithm can be extended to more
realistic learning scenarios, at the same time supporting the
psychometric analysis of progressive changes in behavioral
performance and the study of the gradual development of
network properties from the point of view of network theory.

Future studies might take advantage of the proposed itera-
tive algorithm to investigate how the emergence of develop-
mental disorders can be related to impairments in both the
initial conditions of the system and the subsequent learning
phases. This would be particularly relevant for the study

Fig. 7 Samples from the Numerosity data set, which contains 51200
images featuring a variable number of white rectangles drawn on a
black background. Numerosity ranges from 1 to 32 and objects have

variable position and dimension (see [14] for further details). The
corresponding numerosity is reported on top of each image

Fig. 8 Reconstruction error trend of the first hidden layer for the iter-
ative (iDBN) vs. full-stack developmental schemes. We verified that
convergence for the full-stack scheme did not improve even after pro-
longing learning for 100 epochs

Appendix A: Supplementary Figures

Cognitive Computation

1 3

Fig. 9 Examples from the
image generation tasks. First
row: original data. Second row:
reproduction of the original
data. Third row: Partially
observed data. Fourth row:
completion of partially observed
data. Fifth row: noisy data.
Sixth row: denoised data

Fig. 10 Emerging receptive
fields for the Normal ini-
tialization. Top row: Greedy
algorithm. Bottom row: Iterative
algorithm

(a) (b) (c)

(d) (e) (f)

 Cognitive Computation

1 3

Appendix B: Robustness of the Iterative
Learning Scheme Results

Results discussed in the main text about the equivalence in
terms of performance between greedy and iterative training
were focused on the Normal initialization configuration, with
no dropout. To assess the robustness of our analyses, here we
show that the same results are found when the weights are sam-
pled Ã la Glorot and when dropout is added as a regularizer.

Glorot Initialization and Dropout

Figure 11 reports the readout and reconstruction profiles
obtained with the Glorot initialization. The results show con-
sistency with those presented in the main text. As mentioned
before, the weight matrices are down-scaled by a factor 0.1
in such a way to bring these weights values in a range similar
to the weights of Normal initialization.

We also evaluated the effect of dropout on our training
scheme. Dropout is an effective regularization method that
can be applied to RBMs [48]. The idea is to randomly silence
some neurons during training, in such a way to prevent con-
nections to over-learn. This can yield improved generalization
capability, though in some cases it might also hinder learning
performance. Bottom panels in Fig. 11 shows that also in this
setup the overall performance of the model is not affected.

Appendix C: Graph Analysis in Depth

In “Graph analysis” we discussed the critical choice of
the cut-off threshold and displayed aggregated data of the
emerging global structural properties. Here the degrees
distributions are discussed in finer-grained detail, since the
graph structure extrapolated from a DBN poses some case-
specific problems. Indeed, it is not straightforward to choose
a model distribution to fit the emergent weights configura-
tion, since during learning some connection strengths are
significantly increased, leading to long-tail frequency distri-
butions. Rather than searching or producing an ad-hoc prob-
ability distribution for the learned weights and then pruning
the network according to some distribution-specific values
(e.g. quantiles), an heuristic choice is rather to prune the
network based on a user-defined cut-off threshold. In “Graph
analysis”, a set of such meta-parameters is used jointly with
the reference epochs to draw mean degrees, distances and
connected components maps. Here the focus is on the degree
distribution for a given cut-off threshold, which has differ-
ent characteristics in random graphs and real networks [58].

Degrees Distribution

Real networks typically exhibit a degree distribution than
follows a power-law, expressed by:

Fig. 11 a, b Performance of
the greedy vs. iterative schemes
during learning, for the Glorot
weights initialization. c–e Gen-
erative accuracy of the greedy
vs. iterative schemes at the end
of learning, for combinations of
Glorot initialization and dropout

(a)

(b)

(c) (d) (f)

Cognitive Computation

1 3

where k represents the degree, � is the decaying exponent
and a is a constant. Results in Fig. 5 were obtained by
eliminating all the weights in the interval [−0.4, 0.4] , thus
excluding the majority of connections. The power-law fit
performs poorly for these DBN-like networks and the shape
of the distribution deviates from the linear trend typical of
scale-free networks, creating issues with the empirical way
of computing the degrees distribution. Typically, one would
count all the nodes having degree k, call this quantity Nk .
The fraction of such nodes is:

where N is the number of nodes in the network and Nk is the
fraction of nodes having degree k. This expression identifies
a legitimate probability mass function, since

∑
k pk = 1 . The

network architecture poses a subtle problem: while in real
networks any node could be connected to virtually any other,
here each node can be connected to all and solely those
belonging to neighboring layers. Thus, each node should be
associated with a potential maximum degree. This quantity
is used to correct the degrees distribution, by penalizing a
node depending on its maximum allowed connectivity, thus
smoothing the resulting distribution. The nodes fraction is
set to:

where � is the indicator function. This distribution is nor-
malized computing the normalizing function numerically as
C =

∑
k p̃k . Assume that node i has degree k. Its relevance

in the number of nodes Nk is weighted with its potential
maximum degree, computed as the sum of the row i of the
adjacency matrix A. The aim of this model is to normal-
ize the nodes degrees according to the potential maximum
degree of each node.

Binomial Replicas

To make the analysis more robust, we experiment a compari-
son with a synthetic null model having the exact same archi-
tecture as the DBN, created as a Binomial Random Graph
(also known as Erdős-Renyj model, ER hereafter, [59]). The
comparison between the degrees distributions of real network
and binomial replicas is displayed in Fig. 5 in the main text. To
generate the random network counterparts G(N, p), the same
architecture of the real network is used. The probability of edge
existence p is then computed as the ratio between the number
of the actual edges (once the network has been pruned) and the
total number of connections (given by the architecture), p =

m

M

(3)pk = a k−�

(4)pk =
Nk

N

(5)p̃k =
Nk

N

N�

i=1

�ki=k

1
∑N

j=1
Aij

[60]. The same probability is used to generate random links
between all the four layers of nodes of the random network
produced. The resulting replicas are random, but not strictly
binomial: the degree distribution inevitably deviates from the
Poissonian trend, and this is not (only) due to the fact that the
number of nodes is relatively small (3784 nodes), but rather
to the network bipartite structure.

Correction of Degrees Distribution

Due to architectural constraints, it is not possible to observe
the idealized power-law and binomial degrees distributions
for our networks. Binomial networks have a binomial degrees
distribution and the probability mass function is expressed by:

which means that a given node has k links with probability p,
out of a total of N − 1 links it could have if the network was
fully connected, i.e. p = 1 . The number of connections of a
given node ranges between virtually zero and its potential
maximum degree, which is the total number of neurons of
the neighboring layers.

We propose a correction to normalize the node degrees in
such a way to correct the architectural bias. The strategy cho-
sen for generating the results in the main text is that of Eq. 5,
however the choice of this model is not unique. For example,
we could choose a model that sets the fraction of nodes hav-
ing degree k to the corrective factor previously multiplied by
Nk∕N:

again being A the full-graph adjacency matrix. This frac-
tion can be computed easily, then the actual distributions are
computed normalizing the raw fractions p̃ and q̃ as follows:

The two model distributions have been chosen performing
some observation on completely random graphs, completely
independent of the probabilities of edge existence of the real
network. The first synthetic graph GN(p) shares the same
architecture of the DBN, with tunable probability of exist-
ence p, chosen small. A second test case involves a bipartite
random graph with the same number of nodes N on both
sides. The third test case involves a bipartite graph having
N and M nodes on the two sides. The goal is to compare
qualitatively both the distributions P and Q on these three
test cases to check whether one or the other model distribu-
tions perform better. Figure 12 displays the results of these

(6)P(k) =

(
N − 1

k

)
pk (1 − p)N−1−k

(7)q̃k =

N�

i=1

�ki=k
wi =

N�

i=1

�ki=k

1
∑N

j=1
Aij

(8)Pk =
p̃k∑
k p̃k

Qk =
q̃k∑
k q̃k

 Cognitive Computation

1 3

simulations. The experiments reveal that P adheres better to
the Poissonian trend, thus motivating the choice of the model
distribution P for the analyses presented in the main text.

Acknowledgements We are grateful to Michele De Filippo De Grazia
for support with the simulations related to continual learning, and to
Ivilin Stoianov for useful discussions about the iterative version of the
developmental algorithm presented in this paper.

Author Contributions A.T. and M.Zo. contributed to the study con-
ception and design. Computational simulations, data collection and
analysis were performed by M.Za. The first draft of the manuscript
was written by M.Za. and A.T. All authors commented on previous
versions of the manuscript, and all authors read and approved the final
manuscript.

Funding This work was supported by a Cariparo Excellence Grant
2017 (project “Numsense”) to M.Zo.

Data Availability The complete source code of the iterative learning
algorithm and additional data related to the analyses discussed in the
current study are freely available through the following repository:
https:// github. com/ CCNL- UniPD/ iDBN.

Declarations

Ethics Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Conflict of Interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. LeCun Y, Bengio Y, Hinton GE. Deep learning, Nature. 2015:521.
 2. Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for

deep belief nets. Neural Comput. 2006;18(7):1527–54.
 3. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of

data with neural networks. Science. 2006;313(5786):504–7.
 4. Lee H, Grosse R, Ranganath R, Ng AY. Convolutional deep belief

networks for scalable unsupervised learning of hierarchical rep-
resentations. In: Proceedings of the 26th Annual International
Conference on Machine Learning; 2009. p. 609–616.

 5. Mohamed AR, Dahl GE, Hinton G. Acoustic modeling using
deep belief networks. IEEE Trans Audio Speech Lang Process.
2011;20(1):14–22.

 6. Huang W, Song G, Hong H, Xie K. Deep architecture for traf-
fic flow prediction: deep belief networks with multitask learning.
IEEE Trans Intell Transp Syst. 2014;15(5):2191–201.

 7. Abdel-Zaher AM, Eldeib AM. Breast cancer classification using
deep belief networks. Expert Syst Appl. 2016;46:139–44.

 8. Du Y, Mordatch I. Implicit generation and generalization in
energy-based models. 2019. arXiv preprint arXiv: 1903. 08689.

 9. Tubiana J, Monasson R. Emergence of compositional repre-
sentations in restricted boltzmann machines. Phys Rev Lett.
2017;118(13).

 10. Melko RG, Carleo G, Carrasquilla J, Cirac JI. Restricted boltz-
mann machines in quantum physics. Nat Phys. 2019;15(9):887–92.

Fig. 12 Experiments on the
null models GNN(p) , GNM(p)
and GN(p) . The value of the
probability p is kept to 0.01,
while N = 1000 for GNN(p) ,
M = 2000 for GNM(p) and GN(p)
retains the structure of the DBN

(a) (b) (c)

(d) (e) (f)

https://github.com/CCNL-UniPD/iDBN
http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1903.08689

Cognitive Computation

1 3

 11. Zorzi M, Testolin A, Stoianov IP. Modeling language and cogni-
tion with deep unsupervised learning: a tutorial overview. Front
Psychol. 2013;4:515.

 12. Friston K. The free-energy principle: a unified brain theory? Nat
Rev Neurosci. 2010;11:127–38.

 13. Testolin A, Zorzi M. Probabilistic models and generative neural
networks: Towards an unified framework for modeling normal
and impaired neurocognitive functions. Front Comput Neurosci.
2016;10:73.

 14. Stoianov I, Zorzi M. Emergence of a visual number sense in hier-
archical generative models. Nat Neurosci. 2012;15:194–6.

 15. Zorzi M, Testolin A. An emergentist perspective on the origin of
number sense. Philosophical Transactions of the Royal Society B:
Biological Sciences. 2018;373(1740):20170043.

 16. Testolin A, Dolfi S, Rochus M, Zorzi M. Visual sense of num-
ber vs. sense of magnitude in humans and machines. Sci Rep.
2020;10(1):1–13.

 17. Testolin A, Stoianov I, Zorzi M. Letter perception emerges from
unsupervised deep learning and recycling of natural image fea-
tures. Nat Hum Behav. 2017;1(9):657–64.

 18. Sadeghi Z, Testolin A. Learning representation hierarchies by
sharing visual features: a computational investigation of persian
character recognition with unsupervised deep learning. Cogn Pro-
cess. 2017;18(3):273–84.

 19. Di Bono MG, Zorzi M. Deep generative learning of location-
invariant visual word recognition. Front Psychol. 2013;4:635.

 20. Grzyb BJ, Nagai Y, Asada M, Cattani A, Floccia C, Cangelosi A.
Children’s scale errors are a natural consequence of learning to
associate objects with actions: A computational model. Dev Sci.
2019;22(4):e12777.

 21. Reichert DP, Series P, Storkey AJ. Charles bonnet syndrome: evi-
dence for a generative model in the cortex? PLoS Comput Biol.
2013;9(7).

 22. Lee H, Ekanadham C, Ng AY. Sparse deep belief net model for
visual area v2. In Adv Neural Inf Process Syst; 2008. p. 873–880.

 23. Buesing L, Bill J, Nessler B, Maass W. Neural dynamics as sam-
pling: a model for stochastic computation in recurrent networks
of spiking neurons. PLoS Comput Biol. 2011;7(11).

 24. O’Connor P, Neil D, Liu S-C, Delbruck T, Pfeiffer M. Real-time
classification and sensor fusion with a spiking deep belief net-
work. Front Neurosci. 2013;7:178.

 25. Pezzulo G, Zorzi M, Corbetta M. The secret life of predic-
tive brains: what’s spontaneous activity for? Trends Cogn Sci.
2021;25:730–43.

 26. Huttenlocher PR, Dabholkar AS. Regional differences in
synaptogenesis in human cerebral cortex. J Comp Neurol.
1997;387:167–78.

 27. Castaldi E, Lunghi C, Morrone MC. Neuroplasticity in adult
human visual cortex. Neurosci Biobehav Rev. 2020;112:542–52.

 28. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lager-
crantz H, øAden U. Resting-state networks in the infant brain.
Proc Natl Acad Sci. 2007;104:15531–6.

 29. Elman JL, Bates E, Johnson MH. Rethinking innateness: A con-
nectionist perspective on development. MIT Press; 1996.

 30. Zorzi M, Testolin A. Computational models of typical and atypical
development of reading and numeracy, in The Cambridge Handbook
of Dyslexia and Dyscalculia. Cambridge University Press; 2022.

 31. Testolin A, Zou WY, McClelland JL. Numerosity discrimina-
tion in deep neural networks: Initial competence, developmental
refinement and experience statistics. Dev Sci. 2020;e12940.

 32. Rumelhart DE, Hinton GE, Williams RJ. Learning representations
by back-propagating errors. Nature. 1986;323(6088):533–6.

 33. Hinton G. Training products of experts by minimizing contrastive
divergence. Neural Comput. 2002;14:1771–800.

 34. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning
applied to document recognition. Proc IEEE. 1998;86(11):2278–324.

 35. Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. Continual
lifelong learning with neural networks: A review. Neural Netw.
2019;113:54–71.

 36. McCloskey M, Cohen NJ. Catastrophic interference in connec-
tionist networks: The sequential learning problem. Psychol Learn
Motiv. 1989;24:109–65.

 37. French RM. Catastrophic forgetting in connectionist networks.
Trends Cogn Sci. 1999;3:128–35.

 38. Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for
boltzmann machines. Cogn Sci. 1985;9(1):147–69.

 39. Zhang N, Ding S, Zhang J, Xue Y. An overview on restricted
boltzmann machines. Neurocomputing. 2018;275:1186–99.

 40. Hinton G. Learning multiple layers of representation. Trends Cogn
Sci. 2007;11:428–34.

 41. Hinton GE. A Practical Guide to Training Restricted Boltzmann
Machines. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012.
p. 599–619.

 42. Lamme VA, Roelfsema PR. The distinct modes of vision offered
by feedforward and recurrent processing. Trends Neurosci.
2000;23(11):571–9.

 43. VanRullen R. The power of the feed-forward sweep. Adv Cogn
Psychol. 2007;3(1–2):167.

 44. Kreiman G, Serre T. Beyond the feedforward sweep: feed-
back computations in the visual cortex. Ann N Y Acad Sci.
2020;1464(1):222.

 45. Bengio Y, Simard P, Frasconi P. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Trans Neural Netw.
1994;5(2):157–66.

 46. Salakhutdinov R, Hinton G. Deep boltzmann machines, in Artifi-
cial intelligence and statistics. PMLR; 2009. p. 448–455.

 47. Glorot X, Bengio Y. Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statis-
tics; 2010. p. 249–256.

 48. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R. Dropout: A simple way to prevent neural networks from overfit-
ting. J Mach Learn Res. 2014;15:1929–58.

 49. Kumaran D, Hassabis D, McClelland JL. What learning systems
do intelligent agents need? Complementary learning systems
theory updated. Trends Cogn Sci. 2016;20:512–34.

 50. Shin H, Lee J, Kim J, Kim J. Continual learning with deep genera-
tive replay. In Adv Neural Inf Process Syst. 2017;30.

 51. Cohen G, Afshar S, Tapson J, Van Schaik A. EMNIST: Extending
MNIST to handwritten letters. In: International Joint Conference
on Neural Networks; 2017. p. 2921–2926.

 52. Testolin A, Piccolini M, Suweis S. Deep learning systems as com-
plex networks. J Complex Networks. 2019;8:06.

 53. Zambra M, Maritan A, Testolin A. Emergence of network motifs
is deep neural networks. Entropy. 2020;22.

 54. Barabási AL, Albert R. Emergence of scaling in random networks.
Science. 1999;286:509–12.

 55. Halberda J, Feigenson L. Developmental change in the acuity of
the number sense: The approximate number system in 3-, 4-, 5-,
and 6-year-olds and adults. Dev Psychol. 2008;44(5):1457.

 56. Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S,
Lucangeli D, Dehaene S, Zorzi M. Developmental trajectory of
number acuity reveals a severe impairment in developmental dys-
calculia. Cognition. 2010;116(1):33–41.

 57. Calandra R, Raiko T, Deisenroth M, Pouzols FM. Learning deep
belief networks from non-stationary streams. In International Con-
ference on Artificial Neural Networks. 2012. p. 379–386.

 58. Barabási AL, Pósfai M. Network Science. Cambridge University
Press; 2016.

 59. Newman ME. The structure and function of complex networks.
SIAM Rev. 2003;45(2):167–256.

 Cognitive Computation

1 3

 60. Latora V, Nicosia V, Russo G. Complex Networks: Principles,
Methods and Applications. Complex Networks: Principles, Meth-
ods and Applications, Cambridge University Press; 2017.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A Developmental Approach for Training Deep Belief Networks
	Abstract
	Introduction
	Methods
	Deep Belief Networks
	Greedy Layer-Wise Learning
	Iterative Joint Learning
	Full-Stack Joint Learning

	Simulations
	MNIST Data Set
	Continual Learning
	Graph Analysis
	Numerosity Data Set

	Results
	MNIST Data Set
	Readout Accuracy and Reconstruction Error Trends
	Generative Capabilities
	Emergent Internal Representations
	Resilience to Catastrophic Interference
	Emergence of Structural Properties During Learning

	Numerosity Data Set

	Discussion
	Conclusion
	Acknowledgements
	References

