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Abstract
Deep belief networks (DBNs) are stochastic neural networks that can extract rich internal representations of the environ-
ment from the sensory data. DBNs had a catalytic effect in triggering the deep learning revolution, demonstrating for the 
very first time the feasibility of unsupervised learning in networks with many layers of hidden neurons. These hierarchical 
architectures incorporate plausible biological and cognitive properties, making them particularly appealing as computa-
tional models of human perception and cognition. However, learning in DBNs is usually carried out in a greedy, layer-wise 
fashion, which does not allow to simulate the holistic maturation of cortical circuits and prevents from modeling cognitive 
development. Here we present iDBN, an iterative learning algorithm for DBNs that allows to jointly update the connection 
weights across all layers of the model. We evaluate the proposed iterative algorithm on two different sets of visual stimuli, 
measuring the generative capabilities of the learned model and its potential to support supervised downstream tasks. We 
also track network development in terms of graph theoretical properties and investigate the potential extension of iDBN to 
continual learning scenarios. DBNs trained using our iterative approach achieve a final performance comparable to that of 
the greedy counterparts, at the same time allowing to accurately analyze the gradual development of internal representations 
in the deep network and the progressive improvement in task performance. Our work paves the way to the use of iDBN for 
modeling neurocognitive development.

Keywords Unsupervised deep learning · Computational modeling · Cognitive development · Hierarchical generative 
models · Iterative learning

Introduction

Despite the fact that the most popular approach for training 
deep neural networks is based on supervised learning [1], the 
first demonstration of the potential of deep learning stemmed 
from the discovery of efficient unsupervised learning meth-
ods for stochastic neural networks known as Deep Belief 

Networks (DBNs) [2, 3]. Since their introduction, DBNs 
have been successfully used in many challenging tasks, rang-
ing from computer vision [4] to acoustic modeling [5], traffic 
flow prediction [6] and breast cancer classification [7]. These 
energy-based models have some unique properties compared 
to other unsupervised deep learning approaches, such as the 
ability to represent compositional structure [8, 9] and the 
possibility to be interpreted in terms of well-established 
theoretical principles rooted in statistical physics [10].

The capability of learning deep generative models using 
Hebbian-like mechanisms also makes DBNs particularly 
relevant for cognitive modeling research [11]. Indeed, this 
class of models offers a principled account for the func-
tional role of top-down processing supported by feedback 
loops, at the same time providing a bridge to higher-level 
descriptions of cognition in terms of Bayesian computa-
tions [12, 13]. Compared to shallow generative models, 
hierarchical generative networks allow to study the emer-
gence of increasingly more complex representations of the 
sensory signal, thus allowing to simulate a wide range 
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of high-level perceptual and cognitive functions, such 
as numerosity perception [14–16], letter perception [17, 
18], orthographic processing [19], development of object-
action associations [20] and the appearance of visual hal-
lucinations caused by damage in cortical areas [21]. Sparse 
variants of DBNs have also been used to simulate physio-
logical properties of neurons in the primary and secondary 
visual cortex [22]. Notably, inference algorithms for DBNs 
can be implemented using biologically realistic sampling 
schemes, which explain unique aspects of low-level brain 
dynamics [23] and can be efficiently reproduced in spiking 
models [24]. Finally, hierarchical generative models like 
the DBN offer important insights into the functional role 
of spontaneous brain activity, both in terms of top-down 
predictive signals during task execution and in terms of 
generative replays during rest [25].

However, learning in DBNs has traditionally relied on a 
greedy, layer-wise training approach: the connection weights 
of layer n are changed only after the layer n − 1 has been 
fully trained. Moreover, the trained weights are frozen and 
do not further change while learning takes place at higher 
layers. Although efficient from a computational perspec-
tive, this learning modality is clearly implausible from a 
biological standpoint. Indeed, the greedy approach implies 
that information is not passed to any higher-order network 
until learning at the lower level can be stopped because it 
has reached a (somewhat arbitrary) criterion. Though brain 
development shows variability across regions and may peak 
at different times, synaptogenesis begins at about the same 
time in distant regions such as the visual and the prefron-
tal cortex [26]. Moreover, a substantial degree of plastic-
ity is preserved in adulthood even in the visual cortex (see 
[27], for review). Finally, spontaneous brain activity, which 
is thought to be a manifestation of top-down dynamics of 
generative models [25], is already structured into distinct 
cortical networks at birth [28].

Besides these neurobiological considerations, another key 
limitation of the greedy training approach is that it makes the 
DBN unsuitable for modeling human development. Neural 
network models are particularly attractive for understand-
ing developmental phenomena [29] because the trajectories 
in task performance or in the emergence of internal repre-
sentations can be examined during learning and compared 
to human empirical data. Moreover, learning trajectories in 
neural network models can be analyzed as a function of ini-
tial starting conditions to study the emergence of develop-
mental disorders [30]. In the cognitive modeling literature, 
however, simulations based on DBNs have focused on adult 
performance (i.e., fully trained models) and developmental 
investigations based on unsupervised learning have adopted 
alternative learning paradigms based on deep autoencoders 
[31] trained with error backpropagation [32] to circumvent 
this problem.

In this work we propose a novel learning scheme for tun-
ing the entire hierarchy of connections in a DBN iteratively 
(hereafter, iDBN), using a variant of the original Contrastive 
Divergence (CD) learning algorithm [33]. Through exten-
sive simulations on two different sets of visual stimuli, we 
demonstrate that the proposed approach can achieve the 
same final accuracy of the greedy counterpart, at the same 
time allowing for a precise tracking of the developmental 
trajectory of the models. We further show that an alterna-
tive developmental scheme based on full-stack propagation 
of top-down information does not converge to an optimal 
solution, suggesting that recurrent processing between adja-
cent layers is a key ingredient to successfully drive learning 
through local signals. In a first set of simulations we rely 
on the popular MNIST data set of handwritten digits [34], 
with the goal of validating the proposed iterative scheme 
on a well-known benchmark. In this setup, we also show 
that our developmental learning scheme can be extended to 
continual learning scenarios [35], where the model exploits 
interleaved learning to incorporate knowledge from another 
domain (in our case, handwritten letters) without incurring 
in catastrophic forgetting [36, 37]. Furthermore, we carry 
out graph theoretical analyses to investigate how structural 
properties of the network gradually emerge during learn-
ing. We finally consider a more recent data set consisting 
of images containing a variable number of items, which has 
been used to investigate the perception of visual numerosity 
in humans and machines [14, 16], to demonstrate how the 
iDBN can be used to simulate developmental trajectories in 
the acquisition of cognitive skills.

Methods

In this section we will briefly review the theoretical foun-
dations of deep belief networks and describe their classi-
cal, greedy learning algorithm. We will then introduce our 
iterative learning approach and describe the materials and 
methods used in our simulations.

Deep Belief Networks

The building block of a DBN is the Restricted Boltzmann 
Machine (RBM [38]; for a recent overview see [39]), 
which is a bipartite network composed by two separate sets 
of neurons: visible neurons, which constitute the interface 
with the sensory environment and are thus usually clamped 
to the input data, and hidden (equivalently called ‘latent’) 
neurons that allow to capture high-order correlations in the 
data distribution. Learning in RBMs consists in discover-
ing a set of latent features that can be used to compactly 
describe the statistical regularities in the data distribution, 
by creating an internal model of the environment that can 
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be used to generate plausible activation patterns in the vis-
ible neurons. The lack of connections between neurons in 
the same layer makes it easy to compute the data-depend-
ent and model-dependent statistics used in the Constrastive 
Divergence (CD) algorithm [33], because units in the same 
layer are conditionally independent given the activation of 
the other layer. Deep belief networks are created by stack-
ing together several RBMs [2] (see Fig. 1a), thus allowing 
to exploit hierarchical composition of the features learned 
by the individual RBMs [40].

Greedy Layer‑Wise Learning

For the sake of our argument, it is useful to make an explicit 
distinction between bottom-up recognition connections and 
top-down generative processing (represented by green and 
red arrows, respectively, in Fig. 1). During the recogni-
tion (also called “inference”) phase, the sensory pattern is 
clamped on the visible neurons, and the hidden neurons are 
activated in a bottom-up fashion in order to infer the most 
likely configuration (i.e., activation pattern over the hidden 

Fig. 1  Graphical representation 
of the architecture of a 3-layer 
Deep Belief Network and the 
learning schemes implemented 
in the present work. Green 
arrows represent bottom-up 
recognition connections, while 
red arrows represent top-down 
generative processing. Yellow 
boxes enclose local computa-
tions. We consider the case of 
CD1, CD-k can be recovered 
by repeating the sampling steps 
k times. v ∼ D identifies a data 
instance sampled from the 
training set and hi represents 
the hidden activities of layer i. 
In the greedy scheme a hidden 
layers are trained sequentially, 
from bottom to top, and input 
signals are never projected 
into layer l unless learning at 
layer l - 1 is completed. In the 
iterative scheme b input signals 
are immediately propagated 
through the entire deep network, 
and top-down processing is 
performed locally at each layer 
to jointly learn all connec-
tion weights. In the full-stack 
scheme c both feed-forward 
propagation and top-down 
processing occur over the entire 
deep network

(a)

(b) (c)
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neurons) that could have produced the observed data. During 
the generation phase, the visible neurons are not clamped to 
the data, and all neurons are activated in a top-down fashion 
in order to produce a plausible activation pattern, that is, to 
generate a sample from the internal model.

In the classical approach [2], the RBM constituting the 
bottom layer of the DBN is initially trained using the input 
data. Once this first layer has been fully trained, the weights 
of the first RBM are “frozen” and the input data set is pro-
jected into the activation space of the hidden neurons, thus 
creating a new training set that is used as input for the sec-
ond RBM (black arrows in Fig. 1a). Once training of the sec-
ond layer is completed, the data projection is made likewise 
to create the training set for the third layer; the procedure is 
repeated for all the layers constituting the DBN, as shown in 
Fig. 1a. Note that the data patterns projected into the deeper 
layers are created by computing the conditional probability 
distribution of the hidden neurons given the activation of the 
neurons observed in the layer below [41].

Iterative Joint Learning

In contrast to the greedy approach, the proposed iDBN 
learning algorithm attempts to update at once all the param-
eters of the hierarchical generative model, regardless of the 
depth of the respective layer (see Fig. 1b).

As noted before, in the greedy algorithm deeper layers 
are trained sequentially, using as input the projection of 
the data through the weights resulting from learning in the 
previous layers. In our novel iterative algorithm, instead, 
the training patterns for the deeper layers are immediately 
created following each sensory experience, by propagat-
ing the input across the entire processing hierarchy (green 
arrows in Fig. 1b). This process mimics the fast feed-forward 
sweep observed in cortical circuits, where neuronal activ-
ity is rapidly routed to a large number of visual areas after 
stimulus presentation [42, 43]. It should be noted that in 
our algorithm the complete feed-forward sweep occurs even 
during the initial learning phase, where all the connection 
weights are randomly initialized, which makes learning of 
the subsequent layers challenging since the data distribution 
(i.e., hidden unit activation) is non-stationary. Concurrently 
with the fast feed-forward sweep, top-down generative con-
nections are locally used to reconstruct the data representa-
tions at each level of the hierarchy (red arrows in Fig. 1b), 
mimicking the kind of processing supported by recurrent 
and horizontal connections within cortical areas [42, 44]1. 

A schematic pseudo-code that illustrates the implementation details of our iterative 

algorithm is reported below2.

Full‑Stack Joint Learning

An alternative way to jointly learn all weights of a DBN 
could be to first propagate the input across the entire pro-
cessing hierarchy (as in the first phase of iDBN) and then 
produce top-down reconstructions starting from the deepest 
layer back to the sensory layer (see Fig. 1c). This processing 
scheme is simpler to implement, but suffers from the vanish-
ing gradient problem encountered in standard deep learning 
settings [45]. We use this full-stack developmental scheme 
as a benchmark for our iterative developmental scheme.

Simulations

MNIST Data Set

The same DBN structure is used and held fixed during the 
simulations for both greedy and iterative learning. In order 
to allow for a fair comparison, we maintained the same 
architecture and hyper-parameters of the original model [2], 
which was composed of one visible layer with 784 neurons, 
two hidden layers with 500 neurons each and a final hidden 
layer with 2000 neurons (see Fig. 1a). Connection weights 
are initialized with random values sampled from a Normal 
distribution N(0, 0.01), while biases are intialized to zero. 
We also tested an alternative initialization scheme known 
as the Glorot initialization [47], in order to evaluate learn-
ing convergence under more advanced weight initialization 
strategies. The weights matrices initialized with the Glorot 

1 It should be noted that, following the initial feed-forward sweep, 
the generative phases at subsequent levels of the hierarchy still occur 
sequentially, because the model-driven activation of hidden neurons 
at layer t should not interfere with model-driven activation of the 

same neurons at layer t + 1 . Other families of generative models, such 
as the Deep Boltzmann Machine [46], resolve this potential interfer-
ence by incorporating top-down influences during learning, but nev-
ertheless require a greedy training strategy.

Footnote 1 (continued)
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scheme are multiplied by a factor of 0.1 to make them com-
patible with the range observed in the Normal initialization. 
The learning rate is set to � = 0.01 and the weight decay 
coefficient is set to � = 0.0001 . The momentum parameter � 
is set to 0.5 in the initial learning stage and then updated to 
0.9 after 5 epochs of training. The loss is minimized using 
standard stochastic gradient descent, implemented through 
CD1 learning. The model is trained for 50 epochs. Further 
tests, using both Normal and Glorot initialization schemes, 
also included dropout regularization [48] with the probabil-
ity of unit presence set to p = 0.1.

The first quantity inspected to evaluate the quality of the 
learned models is the accuracy of a linear readout at each 
hidden layer: since in DBNs the input patterns are non-line-
arly transformed from one layer to the next one, the internal 
representations are supposed to become more linearly sepa-
rable as we move up in the hierarchy [11]. The accuracy of a 
simple Ridge classifier is used as a measure of separability.

The performance of the trained models is then assessed 
in three image generation tasks: 1) reproduction of clean 
images, 2) completion of partially occluded images and 3) 
denoising of images corrupted by noise. In the second case, 
an arbitrary number of subsequent rows in the image matrix 
are set to zero (i.e., turned to black). In the latter case, all 
values {Xij}

28

i,j=1
 (being 28 the number of side-pixel of the 

images) are spoiled by adding Gaussian noise, that is 
Xij ← Xij + � , � ∼ N(0, 0.5) . Images are fed to the visible 
layer of the DBN, propagated through all its hidden layers 
and then fed back to the visible layer through feedback con-
nections. In this way the noisy / corrupted samples can be 
adjusted according to the internal model learned by the 
DBN. Original samples and the corresponding reconstruc-
tions are quantitatively compared using mean squared error 
(hereafter MSE) between input patterns and reconstruction. 
For each case, the error is computed as ‖X0 − Xr‖ , where the 
superscript 0 denotes the original sample and r means that 
the image has been reconstructed (reproduced, recreated or 
denoised) and ‖ ⋅ ‖ denotes an L2 norm. Model performance 
is averaged over 10 model runs with different random ini-
tialization in order to assess the robustness of the analyses. 
We also visualize the receptive fields of neurons at different 
hidden layers to qualitatively assess the type of features (i.e., 
internal representations) learned by the DBNs.

Continual Learning

To further support the cognitive validity of our approach, we 
investigate whether the proposed developmental algorithm 
could effectively deal with a challenging continual learning 
scenario, where the DBN should learn a generative model of 
data distributions provided incrementally, without forgetting 
knowledge obtained during the preceding stages. In such 

scenario it is well known that neural networks suffer from 
catastrophic forgetting, whereby knowledge learned during 
the subsequent stages completely disrupts previously learned 
information (for review, see [37]). Several solutions have 
been proposed to mitigate this issue, and here we specifi-
cally consider one that can be readily implemented within 
our framework: interleaved learning [49]. We consider a 
somewhat simplified version of interleaved learning, where 
unsupervised learning during a second training phase takes 
advantage of both patterns from the new target distribu-
tion and patterns belonging to the previous data set. More 
advanced implementations could exploit deep generative 
replay [50] to directly sample previously learned patterns 
from the hierarchical generative model, allowing to build 
the mixed data set in a more data-efficient way.

Following the first stage of unsupervised learning on 
handwritten digits, the DBN is exposed to a subset of hand-
written letters from the EMNIST data set [51]. In one setup 
the DBN is trained sequentially, which means that only let-
ter patterns are used to train the network during the second 
stage. In the interleaved setup, instead, during the second 
stage the unsupervised training set includes both digits 
and letters. In order to balance the number of patterns and 
output classes, we randomly sample 20,000 digits from the 
MNIST data set and we evenly sample 20,000 uppercase 
letters from the first 10 EMNIST classes. Continual learning 
performance is probed by monitoring both digit recognition 
accuracy (using the readout classifier trained during the first 
learning stage) and letter recognition accuracy (training a 
new readout classifier on the EMNIST patterns).

Graph Analysis

Recent work has shown that graph theory can be success-
fully used to study deep learning models from a network 
science perspective [52, 53]. In order to investigate how 
topological properties of the graph derived from the DBN 
might emerge during the course of unsupervised learning, 
we thus performed a graph analysis on the structure of the 
deep network during learning over the MNIST data set.

From the trained DBN we extract the weights matrices 
and define a graph having the same architecture and con-
nections weights as the DBN. A methodological difficulty is 
posed by the continuity of the connection weights: in order 
to determine the nodes degrees, we thus prune the network 
by binarizing the connections according to a suitably chosen 
cutoff threshold. A sensible choice of the cutoff threshold 
is a value that allows to remove redundant connections and 
to keep those that contribute most to the signal propagation 
through the network. Note that the concept of “redundant” 
and “important” connections is largely arbitrary and not obvi-
ous to assess. For the sake of the structural analysis, how-
ever, this choice is based on the numerical magnitude of the 
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connections strengths. A range of such thresholds has been 
set to {0.2, 0.4, 0.6, 0.8, 1, 1.25, 1.5} , and structural analysis 
has been performed for each of these values. A cutoff thresh-
old of c discards the weights in the interval [−c, c] , while 
those outside the interval are kept for the network analysis.

As customary in network science, the structural proper-
ties of the “real” networks (DBNs) are compared with the 
same properties observed in a random counterpart. A ran-
dom “replica” of the network is generated according to its 
architectural characteristics (such an number of nodes) and 
its local properties (e.g., mean node degree or edge prob-
ability). The process is composed of two main steps: 1) gen-
erate a random replica of the real network and 2) perform 
the structural analyses on both the instances. In our case, 
the real network was compared with an analogous bino-
mial graph generated using the probability of edge exist-
ence, computed as the ratio between number of effective 
edges and the maximum number of potential edges (which 
depends of the number of node couples). This random rep-
lica is generated in such a way to have the same architecture 
of the DBN, in particular it is a stack of bipartite binomial 
graphs with the same number of nodes as the DBN layers. 
Due to this architecture, the node connectivity is constrained 
by the number of nearby layers. For example, one node of 
the first layer is not allowed to be connected with one node 
of the third layer or superior. Such graph structure poses a 
problem in the characterization of the nodes degree distribu-
tion, which is used in network science to evaluate whether 
a graph is random or derived from a real network. These 
latter (might them be natural, biological, technological or 
social networks) typically have a degree distribution well 
described by a power-law [54], while random graphs have 
a degree distribution that depends on the method they are 
generated with. For example, binomial random graphs have 
a degree distribution that follows, by design, the Binomial 
distribution. In our setup, the constrained nodes connectivity 
would lead the normalization of the degree distribution to 
have such architectural bias. To mitigate this effect, we chose 
to weight the degree of each node according to its potential 
maximum degree, as described in detail in Appendix C.

Numerosity Data Set

The “numerosity” data set was first introduced by Stoianov and 
Zorzi [14], who demonstrated that the approximate number 
of objects in a visual scene can be estimated by a hierarchical 
processing architecture that learns to extract increasingly more 
abstract representations from the sensory input in a completely 
unsupervised way (sample images are provided in Fig. 7 in 
Appendix A). Here we focus on the development of “number 
acuity” in the network, which has been recently investigated 
using a developmental approach based on deep autoencod-
ers [31]. Number acuity can be measured using a numerosity 

discrimination task, where the network is asked to classify any 
image in terms of containing a larger or smaller number of 
objects with respect to a given reference number. Also in this 
case, to ensure a fair comparison with the original model [14], 
we considered the same model architecture and task. The DBN 
is composed by a visible layer composed of 900 visible neu-
rons, while the first and the second hidden layers have 80 and 
400 neurons, respectively. We adopted a Normal initializa-
tion scheme, where weights are initialized with random values 
sampled from N(0, 0.1). The learning rate and weight decay 
are set to � = 0.1 and � = 0.0002 , respectively, and the initial 
and final momentum are set to � = 0.5 and 0.9, again with a 
momentum switch at epoch 5. The model is trained for 100 
epochs.

To assess the number acuity of the network (also known 
as “internal Weber fraction”), a linear classifier is applied to 
the deepest layer of the model, with the goal of establishing 
whether the hidden neurons’ activation correspond to an input 
image containing a numerosity larger than a reference number 
(i.e., 8 or 16). This task becomes trivial in the limit of the 
difference between the given numerosity ni and the reference 
number Nref being large. For example, it is easier to tell which 
numerosity is smaller among 4 and 16, but it is harder for 
15 and 16. For this reason, each reference numerosity has an 
associated window of numerosities used for the comparison: 
{5,… , 12} for Nref = 8 and {10,… , 24} for Nref = 16 , so that 
the ratios ri = ni∕Nref yield the range [0.65, 1.25]. The percent-
age of correct classifications is analyzed as a function of these 
numerical ratios: each value ri has associated the percentage 
of correct classifications yi . This ensemble of points (r, y) is 
used to fit a psychometric function corresponding to a logistic 
curve, defined by

being Φ the cumulative distribution function of the Normal 
distribution and w the Weber fraction.

Our interest is to compare the progressive refinement of the 
Weber fraction during the unsupervised learning phase. The 
final performance can be directly compared with the Weber 
fraction achieved by a DBN trained using the greedy scheme 
[14], while the developmental trajectories can be compared to 
the learning curves recently reported for deep autoencoders [31].

Results

MNIST Data Set

Readout Accuracy and Reconstruction Error Trends

Results discussed in this section only refer to the DBN con-
figuration with Normal initialization and no dropout, since 
it turned out that differences with Glorot initialization and 

(1)y = 1 − Φ(� = r, � =
√
2w)
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inclusion of dropout are negligible. The reader may refer 
to Appendix B for the complete results.

Figure 2a shows that the readout accuracy increases 
with depth, suggesting that during the course of unsuper-
vised learning the internal representations became more 
disentangled (i.e., linearly separable). The reconstruction 
errors (MSE at each hidden layer) keep decreasing mono-
tonically and eventually converge (Fig. 2b). Not surpris-
ingly, results related to the first layer are almost perfectly 
overlapping for the greedy and iterative learning schemes: 
the activation of the visible layer corresponds to the raw 
data in both cases, thus the learned weights do not depend 
on the training modality. For the second and third layers, 
instead, the greedy scheme achieves higher readout accu-
racy in fewer epochs: however, this effect is due to the 
fact that the previous layers have been already completely 
trained, thus providing a head-start for the upper layers. 
At the end of training, the final accuracy is indistinguish-
able. Notably, the alternative developmental variant based 
on full-stack propagation does not exhibit the same opti-
mal convergence, as highlighted by the poor reconstruc-
tion error measured in the first hidden layer (see Fig. 8 in 
Appendix A).

Generative Capabilities

As shown in Fig. 2c, at the end of the learning phase the 
greedy and iterative DBNs achieve equivalent generative 
capabilities (samples of generated images are provided in 
Fig. 9 in Appendix A). The completion task appears as the 
more challenging, probably because when entire regions of 
the images are corrupted it is difficult to generate plausible 
completions. The full-stack developmental version does not 
converge to a satisfactory generative model, as highlighted 
by its poor capability in all generation tasks.

Emergent Internal Representations

Receptive fields are useful to qualitatively inspect what kind 
of features are learned by the different layers of the hierar-
chical model during training. Such inspection is done by 
visualizing the connection weights of a given neuron in the 
input space [11]. The first hidden layer is easy to inspect, 
since we just need to plot the weights matrix of the first layer 
W1 . When it comes to neurons of the second hidden layer it 
is necessary to compose the weights matrices, so that it is 
still possible to represent the visualization in terms of the 

Fig. 2  Performance of the 
greedy vs. iterative learning 
schemes during learning (top 
and middle panels) and at the 
end of the unsupervised learn-
ing phase (bottom panel). For 
the latter case we also report 
the generation capabilities of 
the alternative developmental 
scheme based on full-stack 
propagation (a)

(b)

(c)
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visible layer dimension. The weights matrices are simply 
multiplied, thus producing a linear combination: we can sim-
ply plot some chosen rows of the product W2W1 to look at the 
receptive fields of the second layer neurons, W3W2W1 for the 
third layer, and so forth. As shown in Fig. 10 in Appendix A, 
the greedy and iterative learning schemes developed quali-
tatively similar receptive fields across the entire processing 
hierarchy.

Resilience to Catastrophic Interference

As clearly shown in Fig. 3, the sequential learning setup 
(dashed lines) is dramatically affected by catastrophic inter-
ference: while the readout accuracy on the new letter data 
set increases, the performance of the classifier trained on the 
previous digits data set steadily drops as learning proceeds. 
On the contrary, the interleaved learning setup (solid lines) 
allows to easily incorporate knowledge from the new letter 
data set, achieving the same accuracy of the sequential setup, 
at the same time allowing to maintain previously learned 
knowledge, as demonstrated by the preservation of the read-
out accuracy for the digit data set.

Emergence of Structural Properties During Learning

Typically, inspecting the degrees distribution of a given net-
work gives a first idea of the nature of the system, at least 
to determine whether the network is random or real. Here, 
our main focus is on how the structural properties (among 
the other, also the mean degree) are affected by the learning 
dynamics. The degree distribution itself is not informative 
about the structural evolution that the network experiences 
during training but still could give useful insights about the 

structural differences of each network. We chose to track 
other global properties, e.g., mean degree, mean geodesic 
distance and number of connected components. Figure 4 dis-
plays these quantities, while Appendix C provides a broad 
explanation on the degrees distribution and how to approach 
its evaluation in this constrained-architecture setup.

Results suggest that the deep network undergoes a sub-
stantial transformation during unsupervised learning. A 
major difference lays in the mean degree evolution during 
training. Referring to Fig. 4a, non-trivial network properties 
tend to emerge in later stages of learning, especially for the 
greedy network. This suggests that the iterative implementa-
tion favors the development of complex circuits within the 
network connections and eventually the emergence of larger 
components. This applies both to the mean degree and to the 
number of connected components (recall that an isolated 
node itself is considered a component). The visualization of 
the mean geodesic distance shows that the evolution of this 
property is similar in both the greedy and iterative cases, in 
particular we can observe a phase transition between an ini-
tial state in which all nodes are isolated (indeed an isolated 
node is considered a component in which the geodesic dis-
tance is zero) to the emergence of some components. Once 
the different component connect to each other and the con-
nections strengthen, the mean geodesic distance decreases.

The second set of results, in Fig. 4b, displays the evolu-
tion of the same properties in the binomial replicas. The 
names “binomial greedy” and “binomial iterative” mean that 
the binomial counterparts are obtained using the probabili-
ties of edge existence derived from the real greedy and itera-
tive networks, in the epochs considered. The main difference 
is that both the greedy and iterative instances display the 
same overall behavior. Unsurprisingly, the visualizations of 
mean degree and connected components practically overlap. 
This expected results are given by the fact that there is no 
such thing as the effect of a learning dynamics that shapes 
the networks internal structure. In addition, the bottom 
panels (connected components) show that in random net-
works the formation of only one giant component is strongly 
encouraged. Note further that mean degree and mean geo-
desic distances attain larger values in binomial networks. 
This is indeed what one could expect: random networks do 
not have hubs, i.e., nodes with a larger degree with respect 
to the vast majority of the other nodes, which are instead a 
characteristic of real scale-free networks. The absence of 
few super-connected nodes implies a larger mean degree.

The results discussed above refer to the evolution of 
global network properties. As mentioned before, in net-
work science it is well known that real networks exhibit 
a power-law degree distribution. As a further comparison 
between the real networks and their binomial counter-
parts, we thus choose to also inspect the degree distribu-
tion in both the greedy and iterative cases. For this test, 

Fig. 3  Readout accuracy in the continual learning scenario. The 
sequential learning regimen is strongly affected by catastrophic for-
getting, while interleaved learning incorporates information from the 
new distribution (Letters) while preserving previous knowledge (Dig-
its). Classifiers are evaluated at 10 regularly spaced intervals during 
each unsupervised learning epoch
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we analyze the networks at the end of training and we also 
include the results obtained with the implementation of 
dropout, to see if the sparsity induced by dropout changes 
the network structure. Figure 5 shows the visualization 
of the degree distributions for real and binomial graphs 
for the case of Normal initialization, both with and with-
out dropout. The effect of the architectural bias discussed 
above is particularly clear on the two leftmost upper and 
lower panels, despite the implementation of the modified 
degree distribution that accounts for the maximal potential 
connectivity for each node. This result suggests that the 

modified degree distribution should be further refined in 
order to model more accurately the distribution of nodes 
degrees; still, the degrees distributions show qualitatively 
different shapes, suggesting that learning dynamics in 
DBNs characterizes the derived network as a non-random 
graph. Interestingly, the effect of dropout is to make ran-
dom replicas more structurally similar to real networks. 
The top and down right panels of Fig. 5 show that a larger 
connectivity for a small number of nodes is tolerated also 
in binomial graphs.

Fig. 4  Contour plots of mean 
degree, mean geodesic distance 
and number of connected 
components for the case of 
Normal initialization without 
dropout. Note that while the 
iterative iDBN algorithm allows 
to analyze the entire network 
since earliest learning stages, in 
the greedy case the upper layers 
remain untouched by the update 
rule until the lower layers are 
fully trained. This motivates the 
visualization choice of the right 
column: the dashed line repre-
sents the subdivision between 
layers, so that to display the 
trend of change in the whole 
network during the true learning 
time-span

(a)

(b)



 Cognitive Computation

1 3

Numerosity Data Set

As shown in Fig. 6a the psychometric function observed at 
the end of the unsupervised learning phase is well aligned 
with the results obtained by Stoianov and Zorzi using the 
greedy training scheme [14]. The authors reported a Weber 
fraction value of 0.15, while we obtained a value of 0.17.

Concerning the developmental trajectory, as shown 
in Fig. 6b the Weber fraction trend displays a significant 
decrease during the learning period, especially at the early 
stages of development. This trend is similar to that observed 
during human development [55, 56]. Note that our curve has 
been obtained by averaging 20 model runs, training 5 dif-
ferent classifiers for each data point to collect more reliable 
statistics. Thus, the average values account for a population 
of 100 data points for each sample epoch. It is interesting to 
note that in the early stages the network might yield a wors-
ening of the performance, and hence highly varying values 
of w. The behavior stabilizes to an asymptotic value in more 
advanced learning stages.

Figure 6c and d display the same data points, along with 
a power-law fit obtained using the method proposed by Tes-
tolin et al. [31]. Due to the initial zero value of the epoch 
time stamp, the basic functional form is actually a modified 
power-law [21]:

The parameters a, b and s are fitted to the data points 
describing the progressive development of the Weber fraction. 
The resulting parameters are reported in Table 1: the fit closely 
follows the trajectory of Weber fraction, hence describing sat-
isfactorily well the development of the number sense across 
the learning period of our networks.

(2)y = a(1 + s x)b

Discussion

Our simulations demonstrate that deep belief networks can be 
trained iteratively, by jointly adjusting all the weights of the 
model hierarchy following observation of each sensory pattern 
(or minibatch of patterns). This innovative learning algorithm 
can be used in place of the traditional greedy, layer-wise learn-
ing algorithm in order to accurately track the developmental 
trajectory of the model. This allows to study how global prop-
erties of the network can gradually emerge during the course 
of learning, at the same time enabling a systematic comparison 
with biological developmental trajectories observed in empiri-
cal studies.

The proposed algorithm was first evaluated on the popular 
MNIST benchmark, where DBNs trained using the greedy 
algorithm have traditionally achieved very good performance. 
We showed that the DBN trained using our iterative algorithm 
was able to achieve a performance comparable to the greedy 
counterpart, both in terms of readout accuracy from the inter-
nal representations and in terms of reconstruction capabilities. 
We also probed the final models on a variety of generative 
tasks, which assessed the DBN ability to reproduce, complete 
and denoise corrupted input images. Also in this case, we did 
not observe significant differences between the greedy and 
iterative versions of the learning algorithm. On the contrary, 
the attempt to implement joint training of all weights by simply 
propagating signals across the full stack both in the bottom-up 

Fig. 5  Degrees distributions 
with cutoff threshold set to 0.4. 
The networks analyzed for this 
figure have been initialized 
with the Normal distribution; 
the case of Glorot initialization 
does not display significant 
differences

(a) (b)

(c) (d)

Table 1  Fitted parameters as 
in Eq. 2 for both the w values 
scaled, respectively, according 
to the method of S & Z [14] and 
TZM [31]

a b s R
2

S & Z 0.61 0.59 0.13 0.9
TZM 0.86 0.59 0.13 0.9
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and top-down learning phases led to poor convergence and 
unsatisfactory results. This reveals that, subsequently to the 
feed-forward propagation across the entire DBN hierarchy 
(which resembles the fast feed-forward sweep observed in 
cortical circuits [42, 43]), neurons’ activation at the deepest 
layer cannot be fed all the way back to the visible layer in 
a (symmetrical) fast feedback sweep but need to be locally 
processed at each layer to compute the learning signals (as 
implemented in the iDBN). Notably, the latter scheme is also 
consistent with local recurrent processing supported by recur-
rent and horizontal connections within cortical areas [42, 44].

To further support the cognitive plausibility of the 
proposed developmental scheme, we also implemented a 
straightforward interleaved training approach to tackle con-
tinual learning tasks, demonstrating that the iDBN can be 
also extended to challenging scenarios that require to incre-
mentally incorporate new knowledge in the deep network. 
This paves the way to the investigation of more plausible 
continual learning schemes that exploit the top-down gen-
erative properties of the DBN to sample the stimuli that are 
needed for interleaved training [57]. Moreover, we carried 
out an extensive analysis on the progressive development of 

structural properties in the DBN, by investigating the emer-
gence of a variety of graph theoretical properties, such as 
degree, geodesic distance and connected components. Our 
iterative learning approach allowed to emphasize the gradual 
refinement of these properties at the global level, thus open-
ing the possibility to more systematically study the topologi-
cal development of such complex hierarchical systems.

We finally evaluated our iterative approach on a data set 
that has been recently exploited in a variety of cognitive 
models to simulate the perception of visual numerosity. Also 
in this case, the iDBN achieved a final accuracy comparable 
to the greedy counterpart, at the same time allowing for a 
precise tracking of the progressive development of the inter-
nal representations of the model. Behavioral performance, 
supported by a linear readout from the internal represen-
tations, can also be continuously tracked to monitor skill 
acquisition. Indeed, the learning curves resulting from our 
approach closely resemble the learning curves reported in 
experimental studies with human children, and also overlap 
with those reported in a recent developmental model based 
on deep autoencoders.

Fig. 6  Final number acuity and 
developmental trajectories of 
the DBN. Panel 6a reports the 
psychometric curve obtained 
from the numerosity dis-
crimination task at the end of 
unsupervised iDBN learning. 
The Weber fraction measures 
the steepness of the curve, here 
w = 0.17 . Panel 6b reports the 
trend of decay of the Weber 
fraction during unsupervised 
learning. The solid curve 
represents the average w values 
obtained in different simula-
tion runs, while the shaded 
area represents the standard 
deviation. Panels 6c and 6d 
show the power-law fit accord-
ing to Eq. 2. The dashed lines 
represent reference values for 
the final w from [14] and [31] 
respectively

(a) (b)

(c) (d)
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of widespread learning disabilities such as dyscalculia, for 
which we are still lacking a computational characterization 
[30]. It would also be useful to explore whether the proposed 
iDBN approach could be applied in other cognitive domains 
involving unsupervised deep learning. This would be valu-
able not only from a machine learning standpoint, but also 
from a cognitive modeling perspective: Indeed, our iterative 
algorithm allows to create developmental models that can 
be quantitatively validated against empirical data collected 
on humans. Similarly, the proposed graph analysis could be 
applied in developmental physiology to better understand 
how structural and functional properties of self-organizing 
networks might gradually emerge from unsupervised learn-
ing dynamics.

Conclusion

The scope of the present work was twofold. On the one hand, 
we presented a novel unsupervised learning algorithm for 
deep belief networks that allows to accurately track the 
progressive development of the internal representations of 
the model. We validated our algorithm on two prototypical 
benchmark domains, achieving results comparable to the 
state-of-the-art. On the other hand, we demonstrated that 
our iterative learning algorithm can be extended to more 
realistic learning scenarios, at the same time supporting the 
psychometric analysis of progressive changes in behavioral 
performance and the study of the gradual development of 
network properties from the point of view of network theory.

Future studies might take advantage of the proposed itera-
tive algorithm to investigate how the emergence of develop-
mental disorders can be related to impairments in both the 
initial conditions of the system and the subsequent learning 
phases. This would be particularly relevant for the study 

Fig. 7  Samples from the Numerosity data set, which contains 51200 
images featuring a variable number of white rectangles drawn on a 
black background. Numerosity ranges from 1 to 32 and objects have 

variable position and dimension (see  [14] for further details). The 
corresponding numerosity is reported on top of each image

Fig. 8  Reconstruction error trend of the first hidden layer for the iter-
ative (iDBN) vs. full-stack developmental schemes. We verified that 
convergence for the full-stack scheme did not improve even after pro-
longing learning for 100 epochs

Appendix A: Supplementary Figures
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Fig. 9  Examples from the 
image generation tasks. First 
row: original data. Second row: 
reproduction of the original 
data. Third row: Partially 
observed data. Fourth row: 
completion of partially observed 
data. Fifth row: noisy data. 
Sixth row: denoised data

Fig. 10  Emerging receptive 
fields for the Normal ini-
tialization. Top row: Greedy 
algorithm. Bottom row: Iterative 
algorithm

(a) (b) (c)

(d) (e) (f)
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Appendix B: Robustness of the Iterative 
Learning Scheme Results

Results discussed in the main text about the equivalence in 
terms of performance between greedy and iterative training 
were focused on the Normal initialization configuration, with 
no dropout. To assess the robustness of our analyses, here we 
show that the same results are found when the weights are sam-
pled Ã la Glorot and when dropout is added as a regularizer.

Glorot Initialization and Dropout

Figure 11 reports the readout and reconstruction profiles 
obtained with the Glorot initialization. The results show con-
sistency with those presented in the main text. As mentioned 
before, the weight matrices are down-scaled by a factor 0.1 
in such a way to bring these weights values in a range similar 
to the weights of Normal initialization.

We also evaluated the effect of dropout on our training 
scheme. Dropout is an effective regularization method that 
can be applied to RBMs [48]. The idea is to randomly silence 
some neurons during training, in such a way to prevent con-
nections to over-learn. This can yield improved generalization 
capability, though in some cases it might also hinder learning 
performance. Bottom panels in Fig. 11 shows that also in this 
setup the overall performance of the model is not affected.

Appendix C: Graph Analysis in Depth

In “Graph analysis” we discussed the critical choice of 
the cut-off threshold and displayed aggregated data of the 
emerging global structural properties. Here the degrees 
distributions are discussed in finer-grained detail, since the 
graph structure extrapolated from a DBN poses some case-
specific problems. Indeed, it is not straightforward to choose 
a model distribution to fit the emergent weights configura-
tion, since during learning some connection strengths are 
significantly increased, leading to long-tail frequency distri-
butions. Rather than searching or producing an ad-hoc prob-
ability distribution for the learned weights and then pruning 
the network according to some distribution-specific values 
(e.g. quantiles), an heuristic choice is rather to prune the 
network based on a user-defined cut-off threshold. In “Graph 
analysis”, a set of such meta-parameters is used jointly with 
the reference epochs to draw mean degrees, distances and 
connected components maps. Here the focus is on the degree 
distribution for a given cut-off threshold, which has differ-
ent characteristics in random graphs and real networks [58].

Degrees Distribution

Real networks typically exhibit a degree distribution than 
follows a power-law, expressed by:

Fig. 11  a, b Performance of 
the greedy vs. iterative schemes 
during learning, for the Glorot 
weights initialization. c–e Gen-
erative accuracy of the greedy 
vs. iterative schemes at the end 
of learning, for combinations of 
Glorot initialization and dropout

(a)

(b)

(c) (d) (f)
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where k represents the degree, � is the decaying exponent 
and a is a constant. Results in Fig. 5 were obtained by 
eliminating all the weights in the interval [−0.4, 0.4] , thus 
excluding the majority of connections. The power-law fit 
performs poorly for these DBN-like networks and the shape 
of the distribution deviates from the linear trend typical of 
scale-free networks, creating issues with the empirical way 
of computing the degrees distribution. Typically, one would 
count all the nodes having degree k, call this quantity Nk . 
The fraction of such nodes is:

where N is the number of nodes in the network and Nk is the 
fraction of nodes having degree k. This expression identifies 
a legitimate probability mass function, since 

∑
k pk = 1 . The 

network architecture poses a subtle problem: while in real 
networks any node could be connected to virtually any other, 
here each node can be connected to all and solely those 
belonging to neighboring layers. Thus, each node should be 
associated with a potential maximum degree. This quantity 
is used to correct the degrees distribution, by penalizing a 
node depending on its maximum allowed connectivity, thus 
smoothing the resulting distribution. The nodes fraction is 
set to:

where � is the indicator function. This distribution is nor-
malized computing the normalizing function numerically as 
C =

∑
k p̃k . Assume that node i has degree k. Its relevance 

in the number of nodes Nk is weighted with its potential 
maximum degree, computed as the sum of the row i of the 
adjacency matrix A. The aim of this model is to normal-
ize the nodes degrees according to the potential maximum 
degree of each node.

Binomial Replicas

To make the analysis more robust, we experiment a compari-
son with a synthetic null model having the exact same archi-
tecture as the DBN, created as a Binomial Random Graph 
(also known as Erdős-Renyj model, ER hereafter, [59]). The 
comparison between the degrees distributions of real network 
and binomial replicas is displayed in Fig. 5 in the main text. To 
generate the random network counterparts G(N, p), the same 
architecture of the real network is used. The probability of edge 
existence p is then computed as the ratio between the number 
of the actual edges (once the network has been pruned) and the 
total number of connections (given by the architecture), p =

m

M
 

(3)pk = a k−�

(4)pk =
Nk

N

(5)p̃k =
Nk

N

N�

i=1

�ki=k

1
∑N

j=1
Aij

[60]. The same probability is used to generate random links 
between all the four layers of nodes of the random network 
produced. The resulting replicas are random, but not strictly 
binomial: the degree distribution inevitably deviates from the 
Poissonian trend, and this is not (only) due to the fact that the 
number of nodes is relatively small (3784 nodes), but rather 
to the network bipartite structure.

Correction of Degrees Distribution

Due to architectural constraints, it is not possible to observe 
the idealized power-law and binomial degrees distributions 
for our networks. Binomial networks have a binomial degrees 
distribution and the probability mass function is expressed by:

which means that a given node has k links with probability p, 
out of a total of N − 1 links it could have if the network was 
fully connected, i.e. p = 1 . The number of connections of a 
given node ranges between virtually zero and its potential 
maximum degree, which is the total number of neurons of 
the neighboring layers.

We propose a correction to normalize the node degrees in 
such a way to correct the architectural bias. The strategy cho-
sen for generating the results in the main text is that of Eq. 5, 
however the choice of this model is not unique. For example, 
we could choose a model that sets the fraction of nodes hav-
ing degree k to the corrective factor previously multiplied by 
Nk∕N:

again being A the full-graph adjacency matrix. This frac-
tion can be computed easily, then the actual distributions are 
computed normalizing the raw fractions p̃ and q̃ as follows:

The two model distributions have been chosen performing 
some observation on completely random graphs, completely 
independent of the probabilities of edge existence of the real 
network. The first synthetic graph GN(p) shares the same 
architecture of the DBN, with tunable probability of exist-
ence p, chosen small. A second test case involves a bipartite 
random graph with the same number of nodes N on both 
sides. The third test case involves a bipartite graph having 
N and M nodes on the two sides. The goal is to compare 
qualitatively both the distributions P and Q on these three 
test cases to check whether one or the other model distribu-
tions perform better. Figure 12 displays the results of these 

(6)P(k) =

(
N − 1

k

)
pk (1 − p)N−1−k

(7)q̃k =

N�

i=1

�ki=k
wi =

N�

i=1

�ki=k

1
∑N

j=1
Aij

(8)Pk =
p̃k∑
k p̃k

Qk =
q̃k∑
k q̃k
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simulations. The experiments reveal that P adheres better to 
the Poissonian trend, thus motivating the choice of the model 
distribution P for the analyses presented in the main text.
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