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Abstract 

Multivariate prediction of human behavior from resting state data is gaining increasing popularity in the neuroimag-
ing community, with far-reaching translational implications in neurology and psychiatry. However, the high dimen-
sionality of neuroimaging data increases the risk of overfitting, calling for the use of dimensionality reduction meth-
ods to build robust predictive models. In this work, we assess the ability of four well-known dimensionality reduction 
techniques to extract relevant features from resting state functional connectivity matrices of stroke patients, which 
are then used to build a predictive model of the associated deficits based on cross-validated regularized regression. In 
particular, we investigated the prediction ability over different neuropsychological scores referring to language, verbal 
memory, and spatial memory domains. Principal Component Analysis (PCA) and Independent Component Analysis 
(ICA) were the two best methods at extracting representative features, followed by Dictionary Learning (DL) and Non-
Negative Matrix Factorization (NNMF). Consistent with these results, features extracted by PCA and ICA were found to 
be the best predictors of the neuropsychological scores across all the considered cognitive domains. For each feature 
extraction method, we also examined the impact of the regularization method, model complexity (in terms of num-
ber of features that entered in the model) and quality of the maps that display predictive edges in the resting state 
networks. We conclude that PCA-based models, especially when combined with L1 (LASSO) regularization, provide 
optimal balance between prediction accuracy, model complexity, and interpretability.
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1 Introduction
Resting State Functional Connectivity (RSFC) repre-
sents the correlation in the spontaneous fluctuations of 
the blood oxygen level-dependent signal between brain 
regions, measured at rest using functional magnetic 
resonance imaging (fMRI) [1–3]. One important goal of 
current neuroimaging research is to associate individual 

RSFC with behavior. Predictive modeling of individ-
ual differences from neuroimaging data is particularly 
attractive in the context of neurological or psychiatric 
disorders, with potential applications to prediction of 
long-term behavioral outcomes or response to interven-
tion [4]. In stroke patients, RSFC has been successfully 
employed to predict individual deficits in several cogni-
tive domains, such as language, visuo-spatial memory, 
verbal memory, and attention [5, 6].

Machine learning has been a key enabling technology 
for investigating brain–behavior associations, because 
the analysis of neuroimaging data requires the adoption 
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of multivariate approaches that can efficiently oper-
ate over high-dimensional feature spaces [7–9]. At the 
same time, neuroimaging datasets typically have a much 
greater number of features than observations [8, 10], 
which raises the risk of overfitting, that is, extracting 
rules or statistical patterns that specifically describe the 
training data but cannot be generalized to new observa-
tions [11, 12]. One possible way to mitigate the overfitting 
issue is to adopt regularization methods. For example, 
regularized regression methods such as ridge regression 
[6], elastic-net [13], and least absolute shrinkage and 
selection operator (LASSO) [14] include a penalty term 
that pushes the estimated coefficients of irrelevant fea-
tures toward zero [15]. Besides limiting multicollinearity 
and overfitting, this often also improves model interpret-
ability [13, 16, 17], making regularized algorithms par-
ticularly suitable for the analysis of neuroimaging data 
(for a recent review, see [18]). Another useful approach to 
tackle the “curse of dimensionality” in neuroimaging data 
is to first apply unsupervised dimensionality reduction 
techniques [8, 10, 19], to extract a limited number of fea-
tures that can compactly describe the data distribution.

However, both regularized regression methods and 
feature extraction techniques can vary in performance, 
depending on the type of data and the task [10, 18], call-
ing for a systematic assessment of the differences between 
these methods on neuroimaging data. Some recent works 
have compared the performance of several machine 
learning algorithms [18], and their interaction with 
dimensionality reduction methods [20]. Nonetheless, to 

the best of our knowledge, a similar approach has not yet 
been applied to multiple unsupervised feature extraction 
techniques.

The goal of the present work is to systematically 
explore the impact of regularization in combination 
with different dimensionality reduction techniques, to 
establish which method can be more effective to build 
predictive models of behavioral outcome from RSFC. In 
particular, we used RSFC data from a relatively large and 
heterogeneous cohort of stroke patients [21] to predict 
the neuropsychological scores using a machine learning 
framework. In a first step, the RSFC matrices underwent 
a feature extraction analysis, implemented through dif-
ferent unsupervised dimensionality reduction methods: 
Principal Component Analysis, Independent Component 
Analysis, Dictionary Learning and Non-Negative Matrix 
Factorization. In a second step, the extracted features 
were entered as predictors into a regularized regression 
model . We used the elastic-net, a regularized regres-
sion method that linearly combines the L1 and L2 penal-
ties of the LASSO and ridge methods, thereby allowing 
maximum flexibility in the choice of regularizer. Never-
theless, we also examined models restricted to “pure” L1 
(LASSO) or L2 (ridge) regularization to assess the impact 
of the regression method as well as the potential interac-
tion with the feature extraction methods (see Fig. 1 for a 
graphical illustration of the analysis pipeline). Finally, we 
compared the classic leave-one-out cross-validation with 
the more complex “nested” cross-validation scheme for 
models’ hyper-parameter tuning [22], which potentially 

Fig. 1 Machine learning pipeline for the prediction of neuropsychological scores from Resting State Functional Connectivity (RSFC) matrices 
of stroke patients. The mean RSFC matrix ( 324× 324 ) across all patients is shown as reference. Parcels in the matrix are sorted in relation to 12 
large-scale intrinsic brain networks. Model predictions can be validated against left-out empirical data (top-right panels), while the most predictive 
edges can be visualized in a brain-like topology to better understand the contribution of different circuits to the behavioral deficits (bottom-right 
panel)
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leads to a more conservative estimate of model per-
formance. Note that previous work on the same stroke 
dataset has only used Principal Component Analysis 
combined with ridge regression and non-nested cross-
validation [5, 6].

The results section is organized as follows. First, we 
report results in the prediction of language scores. Lan-
guage deficits are a very frequent outcome of stroke and 
their neural correlates show lower inter-individual vari-
ability in comparison to other cognitive functions like 
memory [6], thereby offering an ideal platform for sys-
tematic comparison of the different approaches (also 
see [23]). Prediction of language deficits in stroke has 
also been a main focus of studies that applied machine 
learning on structural lesion images [24–26]. In addition 
to reporting predictive accuracy, for each feature extrac-
tion method, we examined model complexity (in terms of 
the final number of features that entered in the model) 
and quality of the predictive maps obtained by back-pro-
jecting the regression weight to display the most predic-
tive RSFC edges. We then extend our assessment on two 
additional neuropsychological scores that index verbal 
memory and spatial memory. Note that memory has a 
more distributed neural basis and the prediction of defi-
cits from structural lesions is relatively poor compared 
to other behavioral domains [5]. Therefore, prediction of 
memory scores represents an important benchmark for 
RSFC-based machine learning methods.

2  Materials and methods
2.1  Participants and data acquisition
RSFC data were taken from a previously published 
study [6], which is the largest RSFC dataset available for 
stroke patients. The study included 132 symptomatic 
stroke patients who underwent a 30-minute-long RS-
fMRI acquisition, 1–2 weeks after the stroke occurred. 
32 subjects were excluded either for hemodynamic lags 
or excessive head motion. Functional connectivity can be 
represented with a symmetric matrix that captures the 
correlation structure between individual brain regions, 
defined according to a specific parcellation. In our case, 
for each patient, a RSFC matrix (of size 324 × 324 ) was 
calculated across 324 cortical parcels [27] (Fig.  1). The 
matrices were then vectorized, resulting in 52,326 FC val-
ues per subject. After fMRI acquisition, all participants 
underwent a behavioral assessment spanning several 
cognitive domains.

In this work, we focus on three different cognitive 
domains: language, spatial memory and verbal memory. 
Neuropsychological scores for these domains are avail-
able for different subsets of the participants. For the lan-
guage domain ( n = 95 ), we used an overall “language 
factor” score [6] which captures the shared variance of 

several sub-tests (first principal component accounting 
for 77.3% of variance). In the memory domain, the first 
two components accounted for 66.2% of variance and 
were associated with spatial ( n = 78 ) and verbal ( n = 78 ) 
memory, respectively. All scores were normalized to rep-
resent impaired performance with negative values.

2.2  Unsupervised feature extraction
Since the feature extraction process was unsupervised, 
in this phase, the entire dataset was used (here n = 100 
and p = 52, 326 ), regardless of the availability of the neu-
ropsychological score. All the employed feature extrac-
tion methods aim to find a weight matrix W that can 
linearly transform the original n× p data matrix X in a 
new set of k features, with k < p and usually k < n , such 
that

where F is the new feature space, and the parameter k is 
the number of features to be extracted. Since choosing 
the value of k is non-trivial, we systematically varied k 
from 10 to 95, with step size = 5, which resulted in 18 
feature sets for each employed technique. The original 
data can be reconstructed by back-projecting the new 
feature set in the original space:

where XR is the reconstructed data. To compare the com-
pression ability of the feature extraction methods, the 
reconstruction error was calculated as the mean squared 
error (MSE) between X and XR , for each value of k.

2.2.1  Principal component analysis (PCA)
PCA linearly transforms the original data into a smaller 
set of uncorrelated features called principal compo-
nents, sorted by the data variance they explain [28]. First, 
X must be centered [29], so that it has zero-mean. PCA 
then searches for the eigenvalues and eigenvectors of the 
p× p covariance matrix XTX . Hence, matrix factoriza-
tion via singular value decomposition is applied, such 
that

where U is an n× n matrix containing the eigenvectors 
of XXT , D is an n× p matrix with the square root of the 
eigenvalues on the diagonal, and W is a p× p matrix con-
taining the eigenvectors of XTX . However, if p > n , there 
are only n− 1 non-zero eigenvalues, so only the first 
n− 1 columns of D and W are kept [29]. Eigenvectors are 
sorted in descending order of explained variance. Hence, 
W contains n− 1 principal components, expressed as a 
set of p weights that can map the original variables in a 

(1)F = XW ,

(2)XR = FWT ,

(3)X = UDWT ,
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new compressed space. Since PCA is the only determin-
istic method we explored, it was performed only once 
and the first k features were then iteratively selected. For 
the other methods, the procedure had to be run repeat-
edly for each value of k. The pca MATLAB function was 
used.

2.2.2  Independent component analysis (ICA)
ICA assumes that a p-dimensional signal vector XT

i,∗ is gen-
erated by a linear combination of k sources (with k ≤ p ), 
contained in vector FT

i,∗ . The sources are assumed to be 
latent, independent and non-Gaussian [30]. Therefore,

where A is a p× k unmixing matrix, which maps the sig-
nal in the sources. Hence, the sources are obtained by

where W is the inverse of the unmixing matrix A. Then 
FT
i,∗ represents k latent independent features [30, 31]. To 

simplify the ICA problem, the data distribution is first 
centered, and then pre-processed through whitening so 
that a new vector XT

i,∗ with uncorrelated components and 
unit variance is obtained. In this case, PCA was used for 
data whitening [31]. The FastICA function of the scikit-
learn library was used.

2.2.3  Dictionary learning (DL)
The DL algorithm, sometimes known as sparse coding, 
jointly solves for a p× k dictionary W and the new set of 
features F that best represent the data. However, an L1 pen-
alty term is included in the cost function, to obtain only few 
non-zero entrances. Hence, the cost function becomes

where � is the L1 penalty coefficient, controlling for the 
sparsity of the compressed representation [32]. The Dic-
tionary Learning function of the scikit-learn library was 
used.

2.2.4  Non‑negative matrix factorization (NNMF)
NNMF is a form of matrix factorization into non-negative 
factors W and H [33, 34], such that the linear combination 
of each column of W weighted by the columns of H can 
approximate the original data X:

To do that, the NNMF aims to minimize the following 
loss function:

(4)XT
i,∗ = AFT

i,∗,

(5)FT
i,∗ = WXT

i,∗,

(6)
(W , F) = min

(W ,F)

1

2
�X − FWT

�
2
2 + ��F�1,

subject to �Wj�2 ≤ 1, ∀ j = 1, . . . , k ,

(7)X ≈ WH .

The nnmf MATLAB function with the “multiplicative 
update algorithm” was used.

2.3  Regularized regression
The feature sets extracted by each method were then 
used as regressors for the prediction of the neuropsy-
chological scores. Note that only the subjects with avail-
able score were kept in this phase (see sect.  2.1 above). 
The regressors were first standardized, and then entered 
into the elastic-net penalized regression [13, 17, 35] 
(the MATLAB lasso function was used). The elastic-net 
regression solves for

where n is the number of observations, yi is the predic-
tion target at observation i, xi is the data observation 
i with p variables, � is the non-negative regularization 
coefficient, β is the p regression coefficient and Pα is 
defined as

Therefore, the elastic-net loss function requires two free 
parameters to be set, namely the � and α parameters. The 
� parameter regulates the penalization strength, so the 
larger the � , the more coefficients are shrunk toward zero. 
The α parameter sets the regularization type: with α = 1 , 
an L1 penalization (LASSO) is obtained, whereas with 
α ≈ 0 , the L2 penalty (ridge regression) is approached 
[36]. The main difference is that LASSO forces the coef-
ficient estimates to have exactly zero values, whereas the 
ridge regularization shrinks the coefficients to near-zero 
values [16]. Lastly, the elastic-net regression combines 
both the penalization terms [36]. The � was tuned over 
100 possible values, logarithmically spaced between 10−5 
and 105 . The considered set of α values was 0.001, 0.25, 
0.5, 0.75, and 1.

2.4  Cross‑validation setup and model estimation
To find optimal hyper-parameters, it is common practice 
to employ a grid-search procedure with cross-validation 
(CV). We tested the combinations of possible values for 
all hyper-parameters (k, � and α ) using a Leave-One-
Out (LOO) scheme: the grid search was repeated for n 
iterations, where n is the number of subjects. At each CV 
iteration, a different subject was removed from the sam-
ple, and the remaining n-1 subjects (training set) were 
used to estimate the coefficients with each parameter 

(8)�X −WH�
2
F , subject toW ,H ≥ 0.

(9)min
β

(

1

2n

n
∑

i=1

(yi − xTi β)
2
+ �Pα(β)

)

,

(10)Pα(β) =

p
∑

j=1

(

1

2
(1− α)β2

j + α|βj|

)

.
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combination. Each model was then used for the predic-
tion of the neuropsychological score of the left-out sub-
ject (test set), and the difference between the prediction 
and the true value was recorded. The combination of 
hyper-parameters leading to the model with lowest MSE 
was selected as the “best model”. Note that a constraint 
was implemented on the parameter k, to avoid to select 
models with k > n.

In the standard LOO, however, selection of the best 
model is based only on the test error, which could lead to 
optimistically biased model performance [8]. To compare 
the standard LOO procedure with a more sophisticated 
(but computationally more expensive) cross-validation 
scheme, for the case of the language score, we also imple-
mented a nested LOO (n-LOO) CV. In this case, the 
hyper-parameters are tuned on different observations 
from that of the test set: the n–1 training set is iteratively 
further decomposed into a n–2 training set and a left-out 
subject, called validation set. As a consequence, selec-
tion of the best model is based on the minimization of 
the error calculated on the validation set. Once the best 
model is selected within the inner loop, it is applied to 
the test set to measure the final performance [8, 19, 35]. 
A drawback of this approach is that it can lead to the 
choice of different models across the CV loops: to pro-
duce the final model of the n-LOO procedure, three 
measures of central tendency were used for choosing the 
optimal hyper-parameters, namely mean (n-average con-
dition), median (n-median condition) and mode (n-mode 
condition).

2.5  Performance measures and model comparison
To assess model performance and compare the models 
generated by the different feature extraction methods, we 
report both R2 and MSE. The R2 was computed as

where Y are the observed behaviour scores, Y ′ are the 
predicted behavioural scores, and Y  is the mean of the 
observed behavioural scores. Moreover, we computed 
the Bayesian information criterion (BIC) [37] to provide 
a measure of fit that takes model complexity into account 
(note that only the non-zero coefficients were used for 
BIC calculation). Potential differences in the distributions 
of the quadratic residuals were statistically tested through 
the Wilcoxon signed rank test [38], corrected for multi-
ple comparisons using the Bonferroni method. Finally, 
for each method, the optimal regression coefficients 
were back-projected in the original space, by means of 
linear transformation through the features’ weights, and 
restored in a symmetric matrix. This provides a map 

(11)R2
= 1−

∑

(Y − Y ′)2
∑

(Y − Y )2
,

that displays the predictive edges in the resting state net-
works. To visualize critical connectivity patterns related 
to each cognitive impairment we also represented the 
most important edges (top 200 in absolute value) using a 
brain-like topology (see rightmost part of Fig. 1).

The complete source code used to perform the analy-
ses presented in this article is made freely available online 
(see section “Availability of data and materials”).

3  Results
The feature extraction methods were first assessed based 
on their reconstruction error. For all methods, the recon-
struction error decreased when increasing the number 
of features (Fig. 2, top-left panel). PCA and ICA showed 
the lowest reconstruction error, suggesting a higher com-
pression ability of these methods. DL performed slightly 
worse, and NNMF showed generally higher reconstruc-
tion error. 

In the language domain, PCA and ICA features yielded 
the best prediction accuracy, whereas DL- and NNMF-
based models explained 6–7% less variance (Table  1; 
also see Fig. 2 top-right panel for a graphical illustration 
of the PCA-based model predictions). Despite PCA and 
ICA having very similar R2 values, the ICA-based model 
showed better performance when considering the BIC 
value because of its smaller number of parameters (i.e., 
features entering in the final model). However, no sig-
nificant difference between the squared residuals of the 
models was detected by the Wilcoxon signed rank test 
(all p > 0.05/6).

We also examined the effect of the CV scheme upon 
model performance (Fig.  2, bottom). In the nested CV 
scheme, by averaging the hyper-parameters (n-mean 
condition), PCA ( R2

= 0.51 ; MSE = 0.49 ) and ICA 
( R2

= 0.50;MSE = 0.50 ) showed only a marginal 
decrease of the performance, whereas a larger con-
traction of the predictive accuracy was observed 
in the DL- ( R2

= 0.35;MSE = 0.64 ) and NNMF- 
( R2

= 0.29;MSE = 0.70)  based models. In the n-mode 
condition, the final models yielded the same perfor-
mance as those selected in the LOO setup, except for 
the NNMF-based model. However, the resulting perfor-
mance ( R2

= 0.44;MSE = 0.56 ) decreased only by 0.09% 
compared to the LOO scheme. Finally, the n-median 
condition was the most consistent across methods and 
yielded the same level of performance obtained in the 
standard LOO setup. It appears, therefore, that the meas-
ure of central tendency used for choosing the final model 
in the n-LOO scheme can affect the performance. The 
predictive model can be poor when averaging the param-
eters across subjects, whereas choosing the median (or 
mode) allows to achieve the same performance level 
obtained using the simpler LOO scheme. This finding 
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can be explained by the high susceptibility of the mean to 
outliers, so that major departures from the distribution 
of the selected parameters could drive the mean toward 

the outlier values. In this case, the median represents a 
more stable measure of central tendency. In light of the 
comparable performance yielded by LOO and n-LOO 
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Fig. 2 Top left: reconstruction error for each dimensionality reduction method as a function of the number of extracted features. Top right: 
PCA-based model predictions of language scores with LOO CV. Bottom: R2 and BIC differences across the CV schemes for each feature extraction 
method

Table 1 Results of elastic-net regression

Performance of elastic-net regression models in the prediction of neuropsychological scores as a function of the feature extraction method. The value of the 
optimized parameters ( � , α , and k) and the number of non-zero features (NZ) are also reported. R2 : percentage of variance explained.

 MSE mean squared error, BIC Bayesian information criterion

Cognitive domain Method R
2 MSE BIC � α k NZ

Language ( n = 95) PCA 0.52 0.48 404.10 0.22 0.001 45 45

ICA 0.51 0.49 305.60 0.11 0.25 25 23

DL 0.45 0.55 335.52 0.09 0.25 30 27

NNMF 0.44 0.56 404.95 0.04 0.50 45 42

Spatial memory ( n = 78) PCA 0.23 0.76 295.45 0.11 1 50 22

ICA 0.24 0.75 395.18 0.56 0.001 45 45

DL 0.20 0.79 285.88 0.09 1 40 19

NNMF 0.21 0.78 371.87 0.09 0.75 75 39

Verbal memory ( n = 78) PCA 0.34 0.65 327.62 0.09 0.75 45 32

ICA 0.28 0.72 391.29 0.44 0.001 45 45

DL 0.18 0.81 444.48 0.56 0.001 55 55

NNMF 0.10 0.88 451.38 1.42 0.001 55 55
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(especially for the n-median condition), we only con-
sidered the simpler and computationally lighter LOO 
scheme for extending our investigation to the prediction 
of verbal and spatial memory scores. 

For each method, we then examined the model regres-
sion coefficients to highlight the features associated with 
the strongest weights, which in turn drive the model 
predictions (Fig.  3 for PCA; Fig.  4 for ICA; Additional 
file 1: Fig. S1 for DL; Additional file 2: Fig. S2 for NNMF). 
Comparison of the top features in the PCA- and ICA-
based models reveals good consistency across methods 
and highlights the importance of functional connec-
tivity in the auditory network for the prediction of lan-
guage scores (also see Additional file 1: Fig. S1 for DL and 
Additional file 2: Fig. S2 for NNMF). Moreover, for each 
method, we back-projected the model regression coeffi-
cients into the original space to assess the quality of the 
predictive maps (Fig.  5, top panel; see Additional file  3: 
Fig. S3 for ICA, DL and NNMF): the resulting structures 
look fairly similar, and the matrices are indeed highly cor-
related ( rPCA-ICA = 0.84 ; rPCA-DL = 0.72 ; rICA-DL = 0.71 ), 
with the exception of the NNMF-based model 
( rNNMF-PCA = 0.58 ; rNNMF-ICA = 0.58 ; rNNMF-DL = 0.44 ). 
In particular, connectivity patterns in the auditory, 

cingulo-opercular, dorsal attentional and fronto-parietal 
networks seem to be particularly relevant for the predic-
tion of language scores.  

When predicting the spatial memory score, an analo-
gous pattern to that of the language domain emerged. 
PCA and ICA features reached the best performance 
with similar R2 values, followed by DL and NNMF 
(Table  1). Nonetheless, the regression based on PCA 
allowed to select fewer parameters than ICA, resulting in 
a lower BIC value. Also in this case, the Wilcoxon signed 
rank test did not show any significant difference between 
the models (all p > 0.05/6 ). Furthermore, the back-pro-
jected coefficients (Fig.  5, middle panel; see Additional 
file  3: Fig. S3 for ICA, DL and NNMF back-projected 
coefficients) were highly correlated between the PCA and 
ICA models ( rPCA-ICA = 0.77 ) and between the ICA and 
DL models ( rICA-DL = 0.71 ). The correlation values were 
instead smaller between PCA and DL ( rPCA-DL = 0.59 ), 
and NNMF correlated poorly with all other methods 
( rNNMF-PCA = 0.20 ; rNNMF-ICA = 0.17 ; rNNMF-DL = 0.39 ). 
Notably, some relevant intra-network connectivity pat-
tern associated with the performance in the spatial mem-
ory domain can be identified, such as dorsal and ventral 
somato-motor networks, cingulo-opercular network, 
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language scores, and model regression coefficients
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and auditory network. The PCA features associated to 
the strongest regression weights are shown in Additional 
file 4: Fig. S4.

The features extracted by PCA were the best predic-
tors also for the prediction of the verbal memory score. 
ICA yielded a slightly worse performance (explaining 6% 
less variance), and the PCA-based model also retained 
fewer parameters leading to a lower BIC value (Table 1). 
In the DL- and NNMF-based models, the R2 dropped by 
16% and 23%, respectively. Despite the differences in the 
predictive accuracy, no significant differences was found 
across the models (all p > 0.05/6 ). Back-projection of 
the coefficients (Fig.  5, bottom panel; see Additional 
file 3: Fig. S3 for ICA, DL and NNMF results) produced 
maps that were highly correlated across the PCA, ICA 
and DL methods ( rPCA-ICA = 0.86 ; rPCA-DL = 0.80 ; 
rICA-DL = 0.90 ), whereas the NNMF-based model did 
not show notable correlations ( rNNMF-PCA = 0.46 ; 
rNNMF-ICA = 0.56 ; rNNMF-DL = 0.57 ). Intra-network con-
nectivity in the dorsal somato-motor, auditory, cingulo-
opercular, and ventral and dorsal attentional networks 
appears to be particularly relevant for the prediction 
of the neuropsychological score in the verbal memory 

domain. The PCA features associated with the strongest 
regression weights are shown in Additional file 5: Fig. S5.

We finally assessed the predictive accuracy obtained 
with the different feature extraction methods when 
the regularized regression method was kept constant 
by forcing the α parameter to be either 0.001 (yield-
ing ridge regression) or 1.0 (yielding LASSO regres-
sion) (Table  2). The results are aligned with those in 
which α was optimized. Nevertheless, the type of regu-
larization appears to interact with the feature extrac-
tion method. For instance, in the language domain, 
the PCA-based model achieved marginally superior 
R2 value with α = 0.001 but for verbal memory the 
α = 1 model was markedly superior. For the spatial 
memory score, the predictive accuracy was equivalent 
between the two values of α . ICA reached the best per-
formance with α = 0.001 both in the spatial and ver-
bal memory domains. In the language domain instead, 
the R2 values were very similar. The predictive accu-
racy of DL appeared to be independent of the value of 
α when predicting the language and verbal memory 
scores. However, in the verbal memory domain, the 
R2 dropped when α = 1 . The predictive accuracy of 
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NNMF was similar between the two α values both in 
the language and verbal memory domains, whereas a 
slightly greater gap emerged in the prediction of the 
spatial memory score, suggesting that the LASSO solu-
tion was more suitable. Overall, PCA was the best per-
forming method across cognitive domains and for the 
two memory scores this was obtained using LASSO 
regularization (with identical performance to the more 
flexible elastic-net models). For the language domain, 
the advantage of the α = 0.001 model over the LASSO 
model in terms of R2 was marginal (3%) and it was off-
set by the larger number of parameters, as also indexed 
by the lower BIC value of the latter model.

4  Discussion
In this work, we systematically compared four unsuper-
vised dimensionality reduction methods in their ability to 
extract relevant features from RSFC matrices. In particu-
lar, we assessed how different methods influenced a regu-
larized regression model trained on the RSFC features to 
predict the cognitive performance of stroke patients.

Overall, PCA and ICA appeared to be the best methods 
for extracting robust predictors, which is consistent with 
the greater compression ability exhibited by these meth-
ods, compared to DL and NNMF. A greater compression 
capacity is indeed related to a better representation of the 
data, and so to a higher amount of information retained 
in the encoding space.

Though PCA- and ICA-based models had similar per-
formance, PCA might be overall preferable. Indeed, the 
PCA-based model reached the best performance in the 
prediction of both the language and verbal memory 
scores, and it also approached the predictive accuracy of 
the ICA-based model when predicting the spatial mem-
ory score. Furthermore, in the spatial and verbal memory 
domains, the PCA-based model relied on fewer param-
eters than ICA. This facet should not be underestimated 
since a reduced number of descriptors improves model 
interpretability and might also allow to better generalize 
to out-of-sample predictions. In contrast, ICA relied on 
fewer features for the prediction of the language scores. 
However, considering the PCA-based models in the 
language domain, the variation of the R2 between the 
ridge-approaching and LASSO solutions was quite nar-
row and the latter model was markedly more parsimo-
nious. Moreover, LASSO regression on PCA features 
yielded the same performance level of the more flexible 
elastic-net regression for both verbal and spatial memory 

domains. This suggests that many PCA features can be 
discarded without losing large amounts of predictive 
accuracy. It is also noteworthy that ICA instead showed 
a more significant decrease in R2 in the spatial and verbal 
memory, when forcing a LASSO solution.

Despite the differences across the feature extraction 
methods, we did not observe any significant difference 
between the final predictive models when compared in 
terms of residuals. Furthermore, we observed high cor-
relations between the back-projected predictive maps, 
except for NNMF, which was less aligned with the other 
methods. This is probably due to the non-negativity con-
straint applied on the transformation matrix. Overall, 
these results suggest that PCA, ICA and DL extract simi-
lar structure from the RSFC matrices. Inspection of the 
predictive maps suggested that the language score was 
associated with functional connectivity in the auditory, 
cingulo-opercular, dorsal attentional and fronto-parietal 
networks. The prediction of the neuropsychological score 
in the spatial memory domain was associated with the 
dorsal and ventral somato-motor networks, the audi-
tory network and the cingulo-opercular network. Finally, 
the dorsal somato-motor network, auditory network, 
cingulo-opercular network, and ventral and dorsal atten-
tional networks appeared to be relevant for the predic-
tion of the verbal memory score.

Previous studies that used machine learning to predict 
the cognitive performance of stroke patients applied PCA 
on the RSFC matrices and retained all principal compo-
nents that cumulatively explained 95% of the variance as 
features for (non-nested) cross-validated ridge-penalized 
regression [5, 6]. Here we did not set any a priori con-
straints on the number (and type) of features as well as 
on the type of regularization, opting instead for a more 
data-driven approach. It is, therefore, valuable to com-
pare results across studies based the same dataset. 
Notably, the present PCA-based models systematically 
outperformed the predictive accuracy of the models 
reported in the recent work of Salvalaggio et  al. [5]. 
Moreover, the number of PCA features retained in the 
previous work was much higher (range 64–79) compared 
to the present PCA models (range 22–45 for the same 
cognitive domains). The number of features was less than 
half (range 22–35) for the PCA + LASSO solution. Over-
all, this suggests that PCA combined with L1-regularized 
(LASSO) regression provides optimal balance between 
predictive accuracy and model complexity. A further 
advantage of PCA over ICA is the lower computational 

(See figure on next page.)
Fig. 5 Maps of predictive functional connectivity edges for PCA-based models obtained by back-projecting the regression coefficients. The top 
200 edges are projected onto a semitransparent brain: green connections represent positive weights, whereas orange connections represent 
negative weights. The spheres/nodes represent the cortical parcels linked by the selected edges and are displayed with size proportional to their 
contribution to the model



Page 10 of 13Calesella et al. Brain Inf.             (2021) 8:8 

La
ng

ua
ge

Sp
at

ia
l m

em
or

y
Ve

rb
al

 m
em

or
y

Predictive edges

Top 200

Projection on the brain

Top 200

Top 200

Higher deficit

Lower deficit



Page 11 of 13Calesella et al. Brain Inf.             (2021) 8:8  

burden, also because PCA is computed independently 
of the number of components that are later selected for 
regression.

The analyses carried out on the language score also 
compared a standard cross-validation scheme with a 
nested cross-validation approach. The latter is usually 
considered as more appropriate because it prevents the 
potential performance inflation induced by tuning the 
model hyperparameters on the test set: nested cross-vali-
dation should lead to a more conservative estimate of the 
generalization performance of the predictive model [39]. 
However, in the language domain, we did not find any 
difference in performance between the nested and non-
nested cross-validation approaches when using median 
or mode as criteria for choosing optimal hyper-parame-
ters. This suggests that the non-nested setup could still 
lead to the selection of optimal models that can general-
ize to new observations, but with a much less intensive 
computational burden (see also [40] for an extensive 
empirical assessment of the performance difference 
between nested and non-nested CV approaches).

Future studies should further extend our results to 
other data and tasks. For instance, the impact of the fea-
ture extraction method might also be evaluated for other 
types of neuroimaging data available for stroke patients, 
such as EEG connectivity measures [41] or 3D images of 
brain lesions [23]. Moreover, despite our approach allows 
building robust models even with limited samples, fur-
ther efforts should be spent in creating larger-scale data-
sets, which would allow to deploy even more powerful 
predictive models, such as those based on deep learning 
[42].

5  Conclusion
Type of data and task are known to potentially affect 
the performance of both regularized regression and fea-
ture extraction techniques. In this work, we compared 
the ability of four unsupervised dimensionality reduc-
tion methods to extract meaningful features from RSFC 
data of stroke patients. The goodness of the extracted 
features was assessed based on their capacity to predict 
the neuropsychological scores of the patients in three 
cognitive domains (i.e., language, spatial memory, and 
verbal memory) by means of different regularized regres-
sion methods. Our results suggest that a machine learn-
ing pipeline based on PCA and regularized regression 
method promoting feature selection is the preferable 
method. Besides yielding the highest predictive accuracy, 
its sparse solution promotes model simplicity and inter-
pretability. Overall, our methodological approach allows 
to draw solid conclusions in relation to the optimal 
machine learning pipeline that should be used to build 
predictive models of neuropsychological deficits to strike 
a balance between accuracy and model complexity, which 
is of crucial importance given the strong translational 
implications of this kind of tools.
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RSFC: Resting state functional connectivity; LASSO: Least absolute shrinkage 
and selection operator; PCA: Principal component analysis; ICA: Independent 
component analysis; DL: Dictionary learning; NNMF: Non-negative matrix fac-
torization; fMRI: Functional magnetic resonance imaging; MSE: Mean squared 
error; CV: Cross-validation; LOO: Leave-one-out; n-LOO: Nested leave-one-out; 
BIC: Bayesian information criterion; EEG: Electroencephalography.

Table 2 Results with α = 0.001 and α = 1

Performance of regularized regression with the α parameter fixed at 0.001 (ridge) and 1 (LASSO) in the prediction of neuropsychological scores as a function of the 
feature extraction method. The number of non-zero features (NZ) is also reported. R2 : percentage of variance explained

 MSE mean squared error, BIC Bayesian information criterion

Cognitive domain Method α = 0.001 α = 1

R
2 MSE BIC NZ R

2 MSE BIC NZ

Language ( n = 95) PCA 0.52 0.48 404 45 0.49 0.51 365 35

ICA 0.49 0.50 364 35 0.50 0.49 303 22

DL 0.43 0.57 352 30 0.43 0.57 366 33

NNMF 0.42 0.57 422 45 0.44 0.56 378 36

Spatial memory ( n = 78) PCA 0.23 0.76 396 45 0.23 0.76 295 22

ICA 0.24 0.75 395 45 0.19 0.80 344 32

DL 0.20 0.79 421 50 0.20 0.79 286 19

NNMF 0.15 0.84 403 45 0.20 0.79 364 37

Verbal memory ( n = 78) PCA 0.27 0.72 501 70 0.34 0.65 319 30

ICA 0.28 0.72 391 45 0.19 0.80 378 40

DL 0.18 0.81 444 55 0.07 0.91 297 19

NNMF 0.10 0.88 451 55 0.08 0.91 266 12
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